

DISASTER RESILIENCE FRAMEWORK

75% Draft for San Diego, CA Workshop

11 February 2015

DISASTER RESILIENCE FRAMEWORK

75% Draft for San Diego, CA Workshop

Executive Summary

1. Framework Introduction

1.1. Overview

1.2. Defining Communities

1.3. Community Resilience

1.4. Community Resilience of the Built Environment

1.4.1. Resilience Concept

1.5. Why is Community Resilience Needed?

1.5.1. Developing a Plan for Community Resilience

1.6. Other Federal Activities Supporting Resilience

1.6.1. The National Preparedness Frameworks

1.6.2. Disaster Mitigation Assessment

1.7. Disaster Resilience Framework and Supporting Activities

1.7.1. Disaster Resilience Framework

1.7.2. Disaster Resilience Standards Panel

1.7.3. Model Resilience Guidelines

1.8. References

2. The Social Context for Community Resilience

2.1. Introduction

2.2. Social Dimensions of a Community

2.2.1. Understanding Needs of Community Members

2.2.2. Social Institutions Common to all Communities

2.2.3. Social Vulnerabilities and Disasters

2.3. Prioritization of Social Institutions and their Functions

2.3.1. Dependence of Social Institutions on the Built Environment

2.3.2. Dependence of Social Institutions on Other Social Institutions

2.4. Community Examples of Recovery and Resilience

2.5. Community Engagement in Resilience

3. Community Disaster Resilience for the Built Environment

3.1. Community Level Disaster Resilience

3.1.1. Community Disaster Resilience for the Built Environment

3.1.2. Contributing Factors to Disaster Resilience

3.1.3. Acceptable Risks

3.1.4. Implementing Community Resilience Planning

3.2. Pathway to Community Resilience

3.2.1. Identifying Clusters of Buildings and Infrastructure Systems

DISASTER RESILIENCE FRAMEWORK

75% Draft for San Diego, CA Workshop

- 3.2.2. *Hazard Events*
- 3.2.3. *Community Performance Goals*
- 3.2.4. *Anticipated Performance of the Physical Infrastructure Clusters*
- 3.2.5. *Summary Resilience Matrix*

3.3. Mitigation and Recovery Strategies

- 3.3.1. *Non-Construction Strategies*
- 3.3.2. *Construction Related Strategies*

3.4. References

4. Dependencies and Cascading Effects

4.1. Introduction

4.2. Dimensions of Dependency

- 4.2.1. *Internal and External Dependency*
- 4.2.2. *Time Dependency*
- 4.2.3. *Space Dependency*
- 4.2.4. *Source Dependency*

4.3. Planning for Infrastructure System Dependencies

4.4. References

5. Buildings

5.1. Introduction

- 5.1.1. *Social Needs and Systems Performance Goals*
- 5.1.2. *Reliability v. Resilience*
- 5.1.3. *Interdependencies*

5.2 Building Classes and Uses

- 5.2.1. *Government*
- 5.2.2. *Healthcare*
- 5.2.3. *Schools and Daycare Centers*
- 5.2.4. *Religious and Spiritual Centers*
- 5.2.5. *Residential and Hospitality*
- 5.2.6. *Business and Services*
- 5.2.7. *Conference and Event Venues*
- 5.2.8. *Detention and Correctional Facilities*

5.3. Performance Goals

5.4 Regulatory Environment

5.5 Standards and Codes

- 5.5.1. *New Construction*
- 5.5.2. *Existing Construction*

5.6. Strategies for Implementing Community Resilience Plans

- 5.6.1 *Available Guidance*
- 5.6.2 *Strategies for New/Future Construction*

DISASTER RESILIENCE FRAMEWORK

75% Draft for San Diego, CA Workshop

5.6.3. Strategies for Existing Construction

5.7. References

6. Transportation Systems

6.1. Introduction

6.1.1. Social Needs and System Performance Goals

6.1.2. Interdependencies

6.2. Transportation Infrastructure

6.2.1. Roads, Bridges, Highways, and Road Tunnels

6.2.2. Rail

6.2.3. Air

6.2.4. Ports, Harbors, and Waterways

6.2.5. Pipelines

6.3. Performance Goals

6.4. Regulatory Environment

6.4.1. Federal

6.4.2. Regional, State, and Local

6.5. Standards and Codes

6.5.1. New Construction

6.5.2. Existing Construction

6.6. Strategies for Implementing Community Resilience Plans

6.6.1. Available Guidance

6.6.2. Strategies for New/Future Construction

6.6.3. Strategies for Existing Construction

6.7. References

7. Energy Systems

7.1. Introduction

7.1.1. Social Needs and Systems Performance Goals

7.1.2. Reliability, Energy Assurance, and Resilience

7.1.3. Interdependencies

7.2. Energy Infrastructure

7.2.1. Electric Power

7.2.2. Liquid Fuel

7.2.3. Natural Gas

7.2.4. Emergency and Standby Power

7.3. Performance Goals

7.4. Regulatory Environment

7.4.1. Federal

7.4.2. State

7.4.3. Local

DISASTER RESILIENCE FRAMEWORK

75% Draft for San Diego, CA Workshop

7.5. Standards and Codes

7.5.1. New Construction

7.5.2. Existing Construction

7.6. Strategies for Implementation of Community Resilience Plans

7.6.1. Available Guidance

7.6.2. Strategies for New/Future Construction

7.6.3. Strategies for Existing Construction

7.7. References

8. Communication and Information Systems

8.1. Introduction

8.1.1. Social Needs and System Performance Goals

8.1.2. Availability, Reliability, and Resilience

8.1.3. Interdependencies

8.2. Critical Communication and Information Infrastructure

8.2.1. Landline Telephone Systems

8.2.2. Internet Systems

8.2.3. Cellular/Mobile Systems

8.2.3.1. Cell Towers

8.2.3.2. Backhaul Facilities

8.3. Performance Goals

8.4. Regulatory Environment

8.4.1. Federal

8.4.2. State

8.4.3. Local

8.4.4. Overlapping Jurisdiction

8.5 Standards and Codes

8.5.1. New Construction

8.5.2. Existing Construction

8.6. Strategies for Implementing Community Resilience Plans

8.6.1. Available Guidance

8.6.2. Strategies for New/Future Construction

8.6.3. Strategies for Existing Construction

8.7. References

9. Water and Wastewater Systems

9.1. Introduction

9.1.1. Social Needs and Systems Performance Goals

9.1.2. Interdependencies

9.2. Water and Wastewater Infrastructure

9.2.1. Water Infrastructure

DISASTER RESILIENCE FRAMEWORK

75% Draft for San Diego, CA Workshop

9.2.2. *Wastewater Systems*

9.3. *Performance Goals*

9.4. *Regulatory Environment*

9.4.1. *Federal*

9.4.2. *State*

9.4.3. *Local*

9.5. *Standards and Codes*

9.5.1. *New Construction*

9.5.2. *Existing Construction*

9.6. *Strategies for Implementing of Community Resilience Plans*

9.6.1 *Available Guidance*

9.6.2 *Strategies for New Construction*

9.6.3. *Strategies for Existing Construction*

9.7. *References*

10. Community Resilience Metrics

10.1. *Background*

10.2. *Desirable Characteristics for Community Resilience Metrics*

10.3. *Types of Metrics*

10.3.1. *Recovery Times*

10.3.2. *Economic Vitality*

10.3.3. *Social Well-Being*

10.3.4. *Hybrids*

10.3.5. *Other Metrics*

10.4. *Examples of Existing Community Resilience Assessment Methodologies*

10.4.1. *SPUR Methodology*

10.4.2. *Oregon Resilience Plan*

10.4.3. *UNISDR Disaster Resilience Scorecard for Cities*

10.4.4. *CARRI Community Resilience System*

10.4.5. *Communities Advancing Resilience Toolkit (CART)*

10.4.6. *Baseline Resilience Indicators for Communities (BRIC)*

10.4.7. *Rockefeller Foundation City Resilience Framework*

10.4.8. *NOAA Coastal Resilience Index*

10.4.9. *FEMA Hazus Methodology*

10.4.10. *Comparison Matrix*

10.5. *Economic Evaluation of Community Resilience Investment Portfolio*

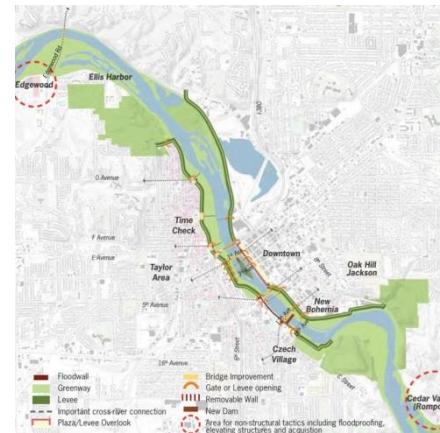
10.5.1. *Portfolio Considerations*

10.5.2. *Economic Decision-Making Involving Risk and Uncertainty*

10.6. *References*

1 **Executive Summary**

2 **Developing a Disaster Resilient Plan.** In the United States, there are always a handful of individual
3 communities working to recover from a hazard event. Whether due to severe weather, fire, floods or
4 earthquakes, each community will eventually need to recover from a hazard event. All communities
5 recover, but the length of recovery and the ultimate outcome depends on planning, preparedness,
6 mitigation, response, and facilitation of the recovery. A disaster resilient community recovers quickly and
7 to a better state than before the event occurred. An unprepared community often faces decades of
8 recovery and may never achieve full restoration.


9 **Envisioning a Better Outcome.** Communities are overwhelmed with issues, policies, and regulations that
10 need to be addressed. Each demands time and investment to resolve. Dealing with low probability-high
11 consequence hazard events is often a low priority without a government mandate or recent event that
12 focuses community interests. These stories illustrate the reality: resilience planning makes a major
13 difference in how well community recovery is executed and illustrates why it should become part of
14 normal planning and operations.

15 **Cedar Rapids, Iowa.** Cedar Rapids, Iowa, has multiple sources of natural hazards: floods, severe
16 weather, tornadoes, severe windstorms, and heat waves. The city is also just downstream from a
17 commercial nuclear power facility. The community has a well exercised evacuation plan for dealing with
18 a nuclear disaster. Those plans played a large role during the flooding of 2008 when the river crested at
19 well above its predicted 500-year flood event (<http://www.cedar-rapids.org/city-news/flood-recovery-progress/floodrecoveryplans/Pages/FloodRecoveryTimeline.aspx>). No lives were lost in that event
20 because the evacuation plans were in place (NRC 2012). In addition, because the City Council and City
21 Manager instituted a community engagement process to develop a shared vision and planning system
22 months before the 2008 flood, they successfully responded to the flooding. Currently, they are rapidly
23 implementing their Recovery and Reinvestment Plan, which is improving the community's resilience for
24 flooding events (CARRI 2013).
25

**Downtown Cedar Rapids, Iowa, during the 2008 Floods
that Crested at 31 Feet**

<http://www.nydailynews.com/news/world/flooding-puts-cedar-rapids-iowa-water-article-1.292913>

Cedar Rapids, Iowa Resilience Plan

http://corridorrecovery.org/rcrp/04_flood_management_map.asp

Figure 1. Cedar Rapids, Iowa

26 **Chile.** Chile is a country that knows earthquakes well.
27 After a massive event in 1960, the country developed and
28 continued to update stringent building codes and
29 emergency response procedures. In 2010, the country
30 experienced a similar major seismic event that caused
31 damage from Santiago in the North to
32 Concepcion 500 miles to the south and generated a large
33 tsunami. New emergency response procedures that grew
34 out of that experience, along with greatly improved
35 building standards that had been in place for 50 years,
36 resulted in much less damage, especially to high-rise
37 residential buildings. Power restoration began to critical
38 infrastructure within days; within a few months over
39 50,000 provisional homes had been constructed; and
40 within three years infrastructure repairs were complete.
41 Within four years, nearly all subsidized home rebuilding projects were complete. Even though this
42 extreme event caused widespread damage to older buildings and infrastructure systems, the extent of
43 modern construction and the response and recovery plans that were in place allowed the communities,
44 with the assistance of the national government, to manage the event and rapidly build back in a way that
45 is better prepared for the next seismic event (Britannica.com 2015).

Figure 2. Santiago Chile Skyline. A Resilient City in a Resilient Nation.
(en.wikipedia.org)

46 **New Orleans, Louisiana.** Hurricane
47 Katrina (2005) followed a scenario that
48 had been frequently predicted and was
49 the focus of multiple State and Federal
50 response exercises. One scenario even
51 envisioned a levee breach. However,
52 numerous communities and industrial
53 facilities that support national fuel
54 supplies were severely damaged.
55 Communities either did not understand
56 the threat posed by storm surge or
57 ignored the predictions and did not
58 prepare at the local level for response
59 and recovery (APA 2014). The lack of
60 suitable design codes, response plans, processes to coordinate various local, state, and Federal agencies,
61 and local leadership stalled the recovery. In New Orleans, the local government now has the New Orleans
62 Redevelopment Authority (NORA, <http://www.noraworks.org/>) that supports land stewardship,
63 commercial revitalization, and affordable housing. Organizations like Habitat for Humanity, Make-it-
64 Right Foundation, and Rebuilding Together New Orleans (RTNO 2015, <http://www.rtno.org/>) have, in
65 cooperation with local government and community leaders, made significant, though somewhat
66 controversial, strides in aiding homeowners to return to their communities and rebuild their lives.
67 However, the population is at approximately 75% of its pre-Katrina levels after 10 years (APA 2014) and
68 it may be decades before New Orleans fully recovers from the event.

Figure 3. NGO Make-it-right reconstruction plans for New Orleans 9th Ward (www.makeitright.org)

69 **The Resilient Community.** The concept of setting recovery goals for community resilience is easy to
70 understand but requires detailed development and involvement by all stakeholders. Community resilience
71 addresses the complex interactions of people, the services they need, and the local economy that sustains
72 life and drives growth. Community resilience requires a governance structure that sets direction and
73 provides services, and a built environment that supports the community's social institutions. The built

74 environment is the foundation of recovery; governance sets the direction; financing governs the pace; and
75 the community provides the support and will to make improvements.

76 Disaster resilience planning must eventually include in depth understanding of a community's interwoven
77 social, political, and economic systems; how they are supported by the built environment; a clear
78 understanding of their vulnerability and damage for expected hazard events; and how any damage will
79 impact community recovery. The most useful plans are developed by a broad cross section of planners
80 and stakeholders and include a sufficient level of detail that informs specific short and long term actions
81 aimed at improving resilience over time.

82 This Disaster Resilience Framework provides a methodology and supporting detail to help communities
83 understand and characterize their social community and built environment, and how to link the
84 community's social institutions with the built environment. With that understanding, the resilience plan
85 can identify the buildings and infrastructure systems and the levels of functionality needed during and
86 after a hazard event, including recovery plans to restore community functionality. The gaps between
87 desired and anticipated performance of the physical infrastructure are prioritized, and strategies are
88 developed to implement the resilience plan. The framework provides guidance on developing a
89 community-level resilience plan, with specific guidance for identifying the social aspects of resilience,
90 their dependence on buildings and infrastructure systems, and is compatible with FEMA Mitigation plans.

91 Striving for community disaster resilience need not be expensive, but the process is unique for each
92 community and will take time both to implement and to accrue benefits. The process to achieve disaster
93 resilience requires concentration; persistence; a willingness to understand the present effectiveness of the
94 social institutions, governance, economics, the buildings, and infrastructure systems; and the
95 consequences for the community that an actual hazard event will trigger. The intersection of a
96 community's daily needs and the anticipated damage from hazard events forms the basis for resilience
97 planning.

98 Short term plans can be developed for emergency and interim solutions that can be implemented if the
99 event occurs tomorrow. Long term plans provide the roadmap for eventually achieving disaster resilience.
100 It begins by envisioning a better outcome, understanding your community, developing a resilience plan,
101 and initiating implementation.

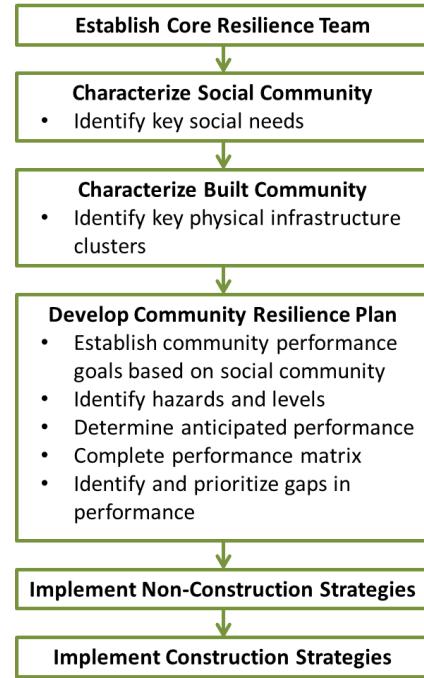
102 Many communities have Mitigation Plans, which are required by FEMA since the passage of the Disaster
103 Mitigation Act in 2000 ([DMA 2000](#)). These plans are complementary to Community Resilience Planning
104 outlined in the framework. A combination of FEMA-directed mitigation planning and the resilience
105 planning described in this framework provides a first step toward becoming a disaster resilient
106 community.

107 ***Understanding Your Community and its Built Environment.*** Communities are gatherings of people who
108 need places to live, work, find security, and a sense of belonging so they can grow and achieve. All
109 communities have a common set of social institutions in place to meet the needs of individuals and
110 households. While common in description, they are organized and delivered uniquely in each community.

111 Individual needs and social institutions are described in Chapter 2 and include Family and Kinship,
112 Economic, Government, Health Care, Education, Community service organizations, Religious
113 Organizations and others that support belief systems, and the media. When considering a community's
114 social institutions and their dependence on the built environment, it is important to recognize and address
115 social vulnerability and inequity since all people do not have equal access to the social institutions nor do
116 they have the same needs. This becomes especially critical after a hazard event occurs.

117 Linking a community's social institutions to the built-environment is illustrated in Chapter 2. People need
118 housing, kids need schools, neighborhoods need retail districts, businesses need suitable facilities and

119 everyone needs healthcare, a transportation network, electricity, fuel, water, sewer systems and
120 communication tools. Any disruption in availability of these services needs immediate attention, even
121 without a hazard event.


122 In a perfect world, hazard events would not cause serious disruptions or damage to the built environment
123 or its support of individuals and social institutions. Unfortunately, that is not the case. Most of the built
124 environment in the nation does not have the ability to remain in service after significant hazard events
125 occur, even though most people are not prepared to be on their own after disruptive events. This reality is
126 demonstrated every time a significant hazard event occurs. Most communities try to rebuild as quickly as
127 possible to restore damaged buildings and infrastructure, sometimes waiving code enforcement, with no
128 time to develop improved reconstruction plans. The significant amount of funding available for rebuilding
129 becomes a lost opportunity without a plan to improve community resilience.

130 In reality, only a fraction of the built environment is essential in the first few days after a significant
131 hazard event, primarily to support emergency response. More of the built environment needs to be
132 functional in the subsequent weeks and months of recovery. The key question is, "When do the buildings
133 and infrastructure systems that support each social institution needs to be fully restored to service?" The
134 desired time for recovery of community functions is the performance goal. The difference between the
135 current anticipated performance and the desired performance is the key question to be answered during
136 resilience planning.

137 **Developing a Community Resilience Plan.** The NIST framework provides a methodology for developing
138 a Community Resilience Plan that accounts for social aspects of resilience when setting performance
139 goals and recovery plans for the built environment. For example, the buildings and infrastructure systems
140 that support emergency response typically include hospitals, police and fire stations, and emergency
141 response centers. Housing and neighborhoods need to be restored within weeks with special attention to
142 vulnerable populations. Once people are safe, recovery attention turns to restoring government, business,
143 industry, education, general healthcare, and other services. Desired performance goals in terms of
144 recovery times for community functions are set, informed by
145 social issues. The current anticipated performance of the existing
146 infrastructure may indicate longer recovery times than identified
147 in the plan and that cause significant impediments to community
148 recovery.

149 Understanding the gaps between desired and actual performance
150 are determined for specific clusters of buildings and infrastructure
151 systems and can then inform short and long terms solutions. In
152 the short term, these gaps can be addressed with interim plans for
153 emergency response and temporary actions. In the long term, new
154 construction can be designed to the designated performance goals
155 and the existing infrastructure can be retrofit as appropriate.
156 Recognizing the balance between pre-event and post-event
157 actions and resource allocation is a key outcome of the process.
158 Not all buildings and systems need to be mitigated or retrofit to
159 current standards to achieve resilience.

160 Figure 4 shows a flow chart of the Community Resilience
161 Planning process. First steps include establishing the core
162 resilience planning team, determining social assets and
163 identifying key social needs for community recovery, and
164 determining physical infrastructure assets and natural resources
165 that support the key social needs. With this community

**Figure 4: Flow Chart for
Developing Resilience Plan**

166 information, the community resilience plan is developed with the following steps: 1) establish
167 community-level performance goals, 2) determine anticipated performance of infrastructure clusters; 3)
168 complete the performance matrix, and 4) identify and prioritize gaps between the desired and anticipated
169 performance for the clusters and each hazard. Once the gaps are prioritized, the community can develop
170 strategies to mitigate damage and improve recovery of functions across the community.

171 The built environment is a complex and highly interdependent system of systems. Buildings generally
172 house the functions that support the social institutions. Their functionality after a hazard event not only
173 depends on the condition of the building but also on the infrastructure systems that service it. Roads are
174 needed to access the building, and electricity, water, sewer systems, and communication networks are
175 needed to let it operate and function as intended.

176 Infrastructure systems are also highly interdependent with each other. For example, the electrical power
177 system needs roads for their crews to access damaged areas and restore power, water for cooling, and
178 communication networks for repair coordination, etc. The framework presents considerations and
179 examples of interdependencies that may need to be addressed when setting performance goals for
180 recovery of community functions. Substantial background information is also provided about buildings
181 and infrastructure systems, as well as guidance for setting performance goals, and strategies for
182 improvement of infrastructure systems for new and existing construction.

183 Figure 4 is further developed through a description of core activities for developing a community
184 resilience plan in Table 1. The social dimensions of the community are reviewed to identify important
185 functions for the community, and when they need to be available during or after a hazard event. This
186 includes considerations for the needs of individuals and social, government, business, industry, and
187 financial institutions. Buildings and infrastructure systems that support the identified social functions are
188 grouped, or clustered, as a subsystem. Additionally, anticipated hazards and the effects of changing
189 conditions are identified. The desired and expected performance (i.e., recovery of function) of the
190 clustered subsystems after a hazard event is evaluated. Significant gaps between these two performance
191 levels are prioritized for strategies for improvement. Last, strategies are developed to address prioritized
192 needs in the built environment.

193 **Table 1. Core Activities for Community Resilience**

Characterize Community's Social Dimensions	<ul style="list-style-type: none">Identify and assess actual and desired functions of social institutions, including business, industry, and financial systems, based on individual/social needs met by these institutions and social vulnerabilities.Identify key stakeholders and representatives for decision making.
Characterize Community's Built Environment and Hazards	<ul style="list-style-type: none">Identify and assess building and infrastructure systems, including condition, location, and vulnerabilities, and the ways in which the built environment support social functions.Identify hazard types and range of levels or intensities and changing conditions that the community anticipates.Identify key stakeholders and representatives for decision making.
Develop Plan for Community Resilience	<ul style="list-style-type: none">Establish desired performance goals for the built environment during and after a hazard event that meet needed social functions after a hazard event with input from all key stakeholdersIdentify and prioritize gaps in the desired performance of the built environment that need to be addressed to improve community resilience
Implement Strategies for Existing Built Environment	<ul style="list-style-type: none">Identify methods that may include mitigation, retrofit, or relocation optionsPrioritize strategies based on gaps in the desired performance goals
Implement Strategies for New Built Environment	<ul style="list-style-type: none">Adopt provisions to improve the integrated performance of the built environment, such as land use, zoning, codes and standards, and local ordinances for buildings and infrastructure systems

194 This process is conducted at the community level for each hazard, with supporting detailed plans for
195 buildings and infrastructure systems. Each hazard is evaluated at three hazard levels to help communities
196 understand performance across a reasonable range of expected hazard levels or intensities. For instance, a
197 hazard event is likely to occur near the design level as well as below and above the design level over a 50
198 to 100 year period. Communities need to understand how their social systems and built environment will
199 perform and recover over the range of hazard levels. A detailed overview of buildings and infrastructure
200 systems is provided that addresses system performance for hazard events, how performance may affect
201 community resilience, a review of primary codes, standards, and regulations, and possible strategies for
202 setting performance goals and determining prioritization of resilience efforts. There is also a summary of
203 available guidance, metrics, and tools for assessing community resilience.

204 ***Community Resilience and Mitigation Planning.*** Nearly 24,000 communities, representing 80% of the
205 people in the United States, have developed mitigation plans in accordance with Federal Emergency
206 Management Agency (FEMA) guidance. As mitigation is a component of resilience, these communities
207 are taking substantive steps toward planning for resilience. A planning process that includes a detailed
208 consideration of the built environment as outlined in the Disaster Resilience Framework and incorporates
209 ongoing mitigation planning provides a comprehensive understanding of community resilience.

210 With the existing community mitigation planning structures, expanding the scope to resilience is the next
211 logical step. Those already involved in mitigation activities have similar types of roles and responsibilities
212 needed for resilience. The mitigation planning process emphasizes public participation in vetting
213 mitigation strategies with targets, actions and priorities. Community resilience plans can be built around
214 existing mitigation plans using the framework techniques related to the built environment.

215 Chapter 2 of the framework provides a methodology for understanding communities and their needs from
216 the built environment. Chapter 3 describes a process for doing a risk assessment of the built environment
217 which then informs both short and long term implementation planning. In FEMA's Local Mitigation
218 Planning Handbook, the Hazard Mitigation Plan has 9 Tasks, from defining the planning area and team
219 through Creating a Safe and Resilient Community, that are compatible with the resilience activities
220 described in the framework.

221 Additionally, FEMA was tasked through Presidential Policy Directive 8 (PPD-8) on National
222 Preparedness to produce a series of frameworks to address the spectrum of prevention, protection,
223 mitigation, response, and recovery. Each Mission Area has a framework document associated with it that
224 describes the roles and responsibilities of the whole community. The NIST Disaster Resilience
225 Framework complements the PPD-8 framework documents by providing a methodology and specific
226 guidance for developing a prioritization plan, at the local level, for recovering the function of buildings
227 and infrastructure following a disruptive event to meet the societal goals of the community. The Disaster
228 Resilience Framework allows a community to consider the interdependencies among buildings,
229 infrastructure and the social and economic systems present in the community and consider the
230 downstream cascading effects that can occur due to disruptions in these systems.

1 **1. Framework Introduction**

2 **1.1. Overview**

3 Communities are places where people live, work, play, and build their futures. Each community has its
4 own identity based on its location, history, leadership, available resources, and the people who live and
5 work there. Successful communities provide their members with the means to meet essential needs as
6 well as pursue their interests and aspirations.

7 All communities are subject to disruptive events. Across the nation, communities experience disruptions
8 from weather events, infrastructure failures, cyber-attacks, technological accidents, sea level rise, or other
9 disruptive events. Buildings and infrastructure systems are vital to community prosperity and health. If
10 these systems fail or are damaged, essential services are interrupted. Depending on the magnitude and
11 duration of the disruptive event, communities may experience anything from temporary interruptions in
12 services to a permanent loss of businesses and relocation of residents.

13 Community resilience is the ability of a community to prepare for anticipated hazards, adapt to changing
14 conditions, and withstand and recover rapidly from disruptions. Communities are looking for ways to
15 become more resilient to disasters. This framework focuses on community resilience planning for the
16 built environment, where the performance goals for the physical infrastructure systems are informed by
17 the needs of the residents and social institutions. The built environment includes buildings and
18 infrastructure systems, including power, communication, water and wastewater, and transportation
19 systems.

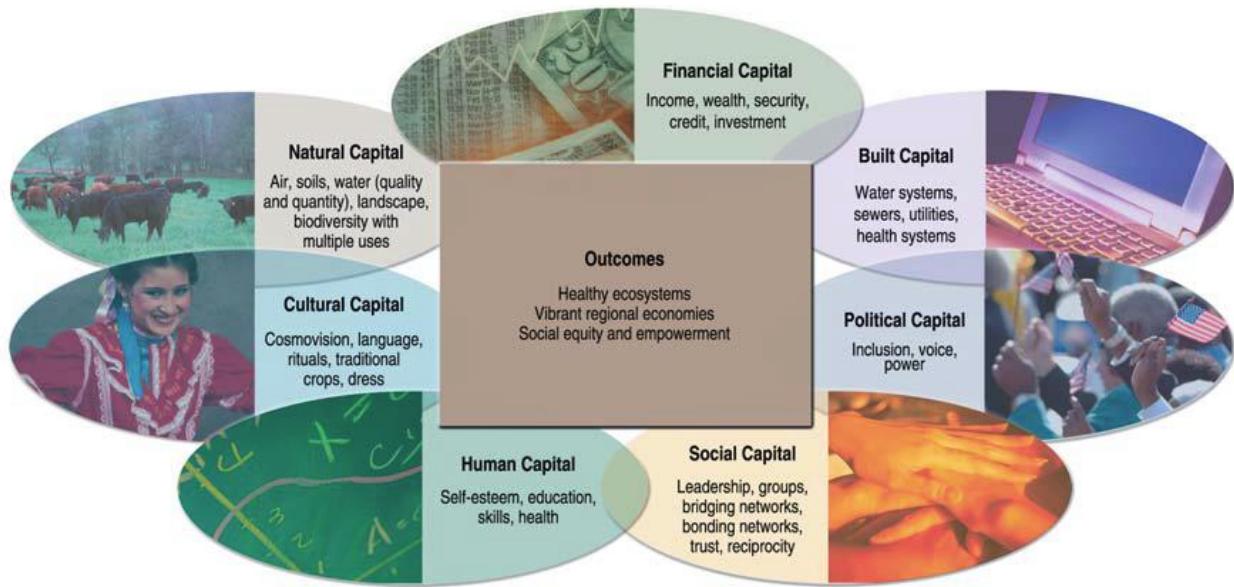
20 Communities are increasingly aware of the need to become proactive and take steps to improve their
21 resiliency, by preparing for anticipated hazards, adapting to changing conditions, and withstanding and
22 recovering rapidly from disruptions. Changing conditions include the effects of aging infrastructure
23 systems and climate change, such as sea level rise in coastal areas. In a resilient community, a hazard
24 event at the design level should cause only local disruptions that the community can tolerate without long-
25 term detrimental effects. If an unanticipated or extreme event occurs, the resilience planning and
26 preparation should reduce the extent of disruption and recovery time. Additionally, communities that have
27 a well-developed resilience plan are prepared to recover in a way that improves sustainability and
28 resilience.

29 The Disaster Resilience Framework provides communities with a methodology to plan for resilience by
30 prioritizing improvements to buildings and infrastructure systems based on their importance in supporting
31 social institutions and economic functions in the community. Communities should implement resilience
32 plans as a part of their long-term community planning process. Integrated long-term planning and
33 implementation of measures to improve resilience can benefit community goals, such as providing an
34 attractive, vibrant place to live for residents and a reliable environment for businesses to locate. A
35 resilient community also provides day-to-day benefits to communities by reducing daily disruptions if
36 improved design and construction practices are adopted. Even if it is many years before a significant
37 hazard occurs, the community's resilience plan will continue to improve the performance of buildings and
38 infrastructure systems to other hazards, including interdependencies and cascading effects of system
39 failures.

40 This community resilience methodology has a set of core activities for developing a community resilience
41 plan, presented in Chapters 2 to 9:

42 • Characterize Social Dimensions of the Community
43 • Characterize Built Environment and Hazards
44 • Plan for Community Resilience
45 • Develop Strategies for Existing Built Environment

46


- Develop Strategies for New Built Environment

47 Community resilience planning for the built environment requires input from all stakeholders, including
 48 local government, owners and operators of buildings and infrastructure systems, and residents with equal
 49 representation from the community's social institutions and economic functions. When all interests and
 50 needs are addressed in a comprehensive evaluation at the community level, communities develop a
 51 transparent, supportable path forward that is embraced and supported by everyone. Additionally, precious
 52 resources can be allocated based on a community-wide evaluation that prioritizes needed improvements.

53 **1.2. Defining Communities**

54 Communities are highly variable and diverse, with geographic areas and populations ranging from small,
 55 rural communities to large, urban, dense communities. Communities also differ by their histories,
 56 cultures, social make-up, businesses, industries, and access to and availability of resources.

57 The Community Capitals Framework, depicted in Figure 1-1, describes community assets and resources
 58 in terms of various forms of capital: natural, built (physical), financial (economic), human, social,
 59 political, and cultural. Each of the community capitals are interrelated and interact with each other, and
 60 can be considered the collective set of assets available within a given community.

61

62 **Figure 1-1: The Community Capitals Framework (Flora et al, 2008).**

63 Community capitals are described as:¹


- **Natural** – resources such as air, land, water, minerals, oil, and the overall stability of ecosystems
- **Built** – buildings and infrastructure systems within a community
- **Financial** – financial savings, income, investments, and available credit at the community-level
- **Human** – the knowledge, skills, health and physical ability of community members
- **Social** – social networks, associations, and the trust generated by them among groups and individuals within the community
- **Political** – having access to resources and the ability/power to influence their distribution; also, the ability to engage external entities in efforts to achieve goals

¹ Ritchie, Liesel A. and D.A. Gill, "Considering Community Capitals in Disaster Recovery and Resilience." http://www.riskinstitute.org/peri/component/option,com_deeppockets/task,catContShow/cat,86/id,1086/Itemid,84/.

72 • **Cultural** – language, symbols, mannerisms, attitudes, competencies, and orientations of local
73 community members/groups.

74 Knowledge about each type of capital in a community provides stakeholders with valuable information,
75 as it contributes to understanding about the community's well-being, sustainable development, and
76 resilience. Awareness of community capitals helps identify short-term and long-term benefits, whether or
77 not a hazard event occurs, and provides input to mitigation, preparedness, response, and recovery plans
78 and investments.

79 While all the types of capitals are important to each community, this report focuses primarily on built
80 capital (buildings and infrastructure systems), with consideration of how built capital supports other
81 capitals within a community. The needs of citizens and social institutions, government, industry, and
82 business should help define functional requirements for a community's buildings and infrastructure
83 systems, as illustrated in Figure 1-2. For instance, after a significant hazard event, will residents be able to
84 remain in their homes? Can governments communicate with residents to inform them and support
85 recovery efforts? Will businesses and industries be able to resume operations within a reasonable period?
86 These types of social needs determine the performance expected from a community's buildings and
87 infrastructure systems. However, functional requirements at the community level are often not explicitly
88 established.

89
90 *Figure 1-2: Social activities, such as individual citizens and social institutions, business and
91 government define the functional requirements of the community buildings and infrastructure systems.*

92 A resilience plan offers a community answers and available alternative options. There may be multiple
93 solutions or multiple stages to meet a requirement, including alternative or temporary solutions to meet
94 the immediate need, as well as restoring a building or infrastructure system.

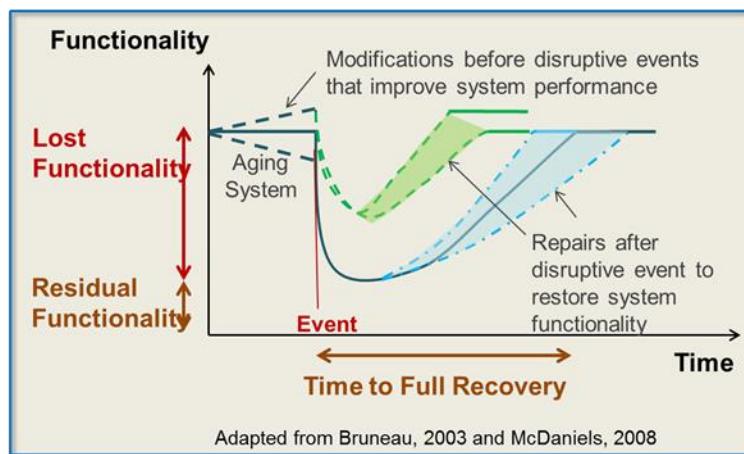
95 Functional buildings and infrastructure systems are necessary for communities to prosper. When
96 buildings and infrastructure systems are damaged by hazard events, social services are interrupted,
97 economic losses soar, and precious resources must be re-allocated to repair and rebuild. When the damage
98 is extensive, the recovery process can be a significant drain on local residents and their resources and can
99 be drawn out over years.

100 **1.3. Community Resilience**

101 The term “resilience” is used in many ways. The definition for the framework is contained in Presidential
102 Policy Directive 21 (PPD-21).² The definition states, “The term ‘resilience’ means the ability to prepare
103 for and adapt to changing conditions and withstand and recover rapidly from disruptions.” Under this
104 broad definition, resilience includes activities already conducted by some communities, such as disaster
105 preparedness, hazard mitigation, code adoption and enforcement, and emergency response.

² Presidential Policy Directive 21, <http://www.whitehouse.gov/the-press-office/2013/02/12/presidential-policy-directive-critical-infrastructure-security-and-resil>.

106 In the context of this framework, the phrase “prepare for and adapt to changing conditions” refers to
 107 preparing for conditions that are likely to occur within the lifetime of a facility or infrastructure system,
 108 such as a hazard event, and hazard intensities or physical conditions that may change over time.
 109 Depending on location, this may include effects of climate change, such as sea level rise in coastal areas
 110 or a change in understanding of a hazard such as tornadoes. Changing conditions also include changes in
 111 our use of infrastructure systems. For example, increasing the use of communication and information
 112 devices leads to evolving levels of dependencies on information and power systems. Changing conditions
 113 may also include aging effects on infrastructure systems. If buildings and infrastructure systems are
 114 designed, maintained and operated properly, disruption to community functions should reduce over time,
 115 as more of the built environment will be performing at levels compatible with community resilience
 116 goals.


117 The second part of the definition, “withstand and recover quickly from disruptions,” must be examined
 118 for the anticipated range of possible hazard events. In a resilient community, a hazard event at the design
 119 level may cause local disruptions tolerated by the community without long-term detrimental effects (e.g.,
 120 permanent relocation of residents or business). If an unanticipated or extreme event occurs, the resilience
 121 planning and preparation will likely reduce the extent of disruption and recovery time. Additionally,
 122 communities that have a well-developed resilience plan are prepared for the recovery process.

123 **1.4. Community Resilience of the Built Environment**

124 **1.4.1. Resilience Concept**

125 Figure 1-3 illustrates the concept of resilience for an element of the built environment in terms of
 126 ‘functionality’ versus ‘recovery time.’ Functionality is a measure of how well a building or infrastructure
 127 system is able to operate and perform at its intended purpose. Recovery time provides a measure of how
 128 long a building or system function is unavailable or is operating at a reduced capacity. Recovery time also
 129 provides an indirect measure of the pre-event condition of the system, the performance of the system
 130 during the event, and the level of damage sustained.

131 Planning for resilience can minimize or even eliminate loss of functionality for a range of hazard event
 132 intensities, depending on the available solutions, resources, and priorities. For hazard events, loss of
 133 functionality occurs suddenly – on the order of minutes to days – due to physical damage to one or more
 134 systems, whereas recovery of functionality may take anywhere from hours to years. Typically, a lesser
 135 degree of lost functionality corresponds to a reduced time to full recovery. However, this simple example
 136 does not account for dependencies on other systems.

137
 138 **Figure 1-3: Resilience can be expressed simply, in terms of system functionality and the time to recover**
 139 **functionality following a disruptive hazard event.**

140 1.5. Why Is Community Resilience Needed?

141 Hazard events can disrupt community functions so extensively that they result in permanent changes.
142 Hurricane Katrina, in 2005, and Superstorm Sandy, in 2012, both caused extensive damage across many
143 communities that are still recovering. However, even for lesser storm events, communities across our
144 country experience significant damage each year. There were between 45 and 81 Presidential disaster
145 declarations each year, from January 2000 to January 2011, for floods, hurricanes, tornadoes,
146 earthquakes, fire events, and severe storms (FEMA 2011). Many of the disaster declarations were for
147 hazard events with loads less than current design levels. Communities need to be proactive in staying
148 resilient and minimizing and mitigating disruptions.

149 Communities currently reduce threats and vulnerabilities through activities that include adoption and
150 enforcement of codes, standards, and regulations, as well as preparedness, mitigation, codes and
151 standards-based design, and emergency management. These activities are necessary and prudent, but they
152 are not enough to make a community resilient. Community resilience also requires that the built
153 environment maintains acceptable levels of functionality during and after events. More specifically,
154 communities should develop plans that recover the built environment to full functionality within a
155 specified period. The recovery times are based on the role and importance of each facility or system
156 within the community and the extent of disruption that can be tolerated while remaining functional.

157 However, across the nation, communities continue to experience significant damage and losses, despite
158 robust adoption and enforcement of best practices, regulations, and codes and standards. This is partly
159 because each one is developed independently for buildings and each infrastructure system and they do not
160 address interdependencies between systems, nor community-level performance goals. As a result,
161 integrated performance and dependencies between buildings and infrastructure systems cannot currently
162 be addressed solely through the universal adoption of codes and regulations.

163 Additionally, communities are primarily composed of existing construction. Buildings and infrastructure
164 systems are built to different standards based on the understanding of the hazards at the time. Many of the
165 nation's infrastructure systems are reaching the end of their useful service life or operating in a degraded
166 state. The American Society of Civil Engineers (ASCE) is committed to protecting the health, safety, and
167 welfare of the public. As such, ASCE is equally committed to improving the nation's infrastructure
168 systems. To document the national needs, a Report Card is issued to evaluate the condition and
169 performance in 16 categories for infrastructure systems, assigning letter grades that are based on physical
170 condition and needed investments for improvement. In 2013 (ASCE 2013), the overall Grade was a D+
171 with estimated investment of \$3.6 trillion needed by 2020. Further, not all of these systems are operated
172 and maintained as intended, some operate beyond design lifetimes, and the replacement rate for the built
173 infrastructure is slow. While this deteriorated state is a cause for significant concern, it is also an
174 opportunity to develop and implement a new paradigm – community resilience – when planning for and
175 envisioning the future of each community.

176 1.5.1. Developing a Plan for Community Resilience

177 **Resilience Activities.** For a community to have a resilient built environment, additional activities are
178 needed beyond code adoption and enforcement. Figure 1-4 depicts how community resilience can be
179 addressed at the community level. Disruptive events, including all anticipated hazards and effects of
180 changing conditions are countered by a community resilience plan that includes performance goals for the
181 built environment, and supporting strategies that include mitigation, response, and recovery activities.
182 Other aspects of a resilient community – security, protection, emergency response, business continuity,
183 and other issues related to human health, safety, and general welfare – may also inform the performance
184 goals for the built environment. Plans to improve community resilience may also include land use policy,
185 temporary measures, and other non-structural approaches.

186 **Mitigation through Land Use Planning.** Land use planning is an important part of community planning
187 and mitigation measures. Building and infrastructure design and construction are just one part of a
188 comprehensive community development process that involves both new and renewed development. For
189 communities that are built out, or are concerned about areas already constructed, there are two resilience
190 options: (a) implement land use planning and redevelopment strategies to reduce the potential damage and
191 disruption before a hazard event if there is political will and resources to do so and (b) develop plans for
192 alternate land use/redevelopment strategies as part of the recovery process (return of functions and
193 repairs/rebuilding). These options are part of hazards-based community development processes,
194 particularly in geologic and flood-prone hazard areas.

195
196 **Figure 1-4. Community resilience can be achieved over time by developing performance goals and**
197 **implementing methods to mitigate, resist, or recover from damage imposed by hazards, degradation,**
198 **and climate change effects.**

199 **Hazards.** Many older systems are difficult to improve through mitigation or design improvements.
200 Therefore, it is helpful for communities to understand how their built environment (buildings and
201 supporting infrastructure systems) will respond to a range of hazard levels or intensities. A hazard that
202 occurs several times during the life of the system, such as every 10 to 20 years, is not expected to cause
203 significant damage, and is referred to as a *Routine Hazard* event in this framework. *Expected Hazard*
204 events, or design-level hazard events, may occur over the service life of a system. At a minimum,
205 buildings are anticipated to remain stable during a hazard event, so that occupants can evacuate safely.
206 However, the building may need to be repaired or replaced, depending on the hazard event and the extent
207 and type of damage. Occasionally, *Extreme Hazard* events occur with a greater level or intensity than the
208 Design Hazard. A system's capacity may be exceeded and cause widespread, cascading damage to other
209 systems. These varying levels of hazard should all be considered with appropriate levels of emergency
210 response and recovery plans.

211 **Performance Goals.** Inclusion of desired performance goals versus anticipated performance of the built
212 environment to hazard events, and expected recovery sequences, time, and costs provides a complete
213 basis for communities to allocate resources and prioritize improvements. Ideally, community resilience
214 planning should integrate with long-term plans for economic development to achieve improved social and
215 economic well-being in the long term. San Francisco and the state of Oregon are developing and
216 implementing this approach for resilience planning (SPUR 2009, Yu, Wilson, and Wang 2014).

217 **Implementation.** Community resilience is achieved over time through implementation of prioritized
218 improvements occurring as funds and opportunities are available. Resilience planning at the individual
219 system level, without a comprehensive understanding of the social and economic drivers present and the
220 role of building or infrastructure systems in the community, may be incomplete and less effective.

Framework Introduction, Why Is Community Resilience Needed?

221 With a resilience plan, answers and alternative options for the restoration of the built environment will be
 222 available and understood by the community. There may be multiple solutions or multiple stages to meet a
 223 requirement, including temporary or short-term solutions to meet immediate needs as well as long-term,
 224 permanent solutions that restore buildings or infrastructure systems.

225 **Core Activities.** Table 1-1 lists core activities for developing a community resilience plan. The social
 226 dimensions of the community identify what functions are important to a community, and when they need
 227 to be available during or after an event.

228

Table 1-1: Core Activities for Community Resilience

Establish Core Resilience Team	<ul style="list-style-type: none"> Identify Chief Resilience Officer or other resilience leader Establish Resilience Office within community government Engage key stakeholders
Characterize Social Dimensions of the Community	<ul style="list-style-type: none"> Identify and assess actual and desired functions of social institutions, including business, industry, and financial systems, based on individual/social needs met by these institutions and social vulnerabilities. Identify key stakeholders and representatives for decision making.
Characterize Built Environment and Hazards of the Community	<ul style="list-style-type: none"> Identify and assess building and infrastructure systems, including condition, location, and vulnerabilities, and the ways in which the built environment support social functions. Identify hazard types and range of levels or intensities and changing conditions that the community anticipates. Identify key stakeholders and representatives for decision making.
Develop Plan for Community Resilience	<ul style="list-style-type: none"> Establish desired and expected performance goals for the built environment during and after a hazard event that meet needed social functions after a hazard event with input from all key stakeholders Identify and prioritize gaps in the desired performance of the built environment that need to be addressed to improve community resilience
Implement Strategies for Existing Built Environment	<ul style="list-style-type: none"> Identify methods that may include mitigation, retrofit, or relocation options Prioritize strategies based on gaps in the desired performance goals
Implement Strategies for New Built Environment	<ul style="list-style-type: none"> Adopt provisions to improve the integrated performance of the built environment, such as land use, zoning, codes and standards, and local ordinances for buildings and infrastructure systems

229 Chapter 2 discusses considerations for the needs of individuals and how a community meets these needs
 230 through social institutions, including government, business, industry, health care, and education
 231 institutions. Buildings and infrastructure systems that support the identified social functions are grouped,
 232 or clustered, as a subsystem. Additionally, anticipated hazards and the effects of changing conditions are
 233 identified. The desired and expected performance (i.e., recovery of function) of the clustered subsystems
 234 after a hazard event is evaluated. Significant gaps between these two performance levels are prioritized
 235 into strategies for improvement. Last, strategies are developed to address prioritized needs in the built
 236 environment. Chapter 3 offers guidance related to this process at the community level, and the basis for
 237 three hazard levels and intensities for each hazard. Chapters 5 to 9 provide a more detailed overview of
 238 buildings and infrastructure systems' performance in hazard events of all sizes, how they may affect
 239 community resilience, primary codes, standards, and regulations, and strategies for setting performance
 240 goals and determining prioritization and improvement of mitigation efforts.

241 **Resilience Guidance, Metrics and Tools.** Chapter 10 summarizes available guidance, metrics, and tools
 242 for assessing community resilience. The chapter presents three types of community resilience metrics:
 243 recovery times for restoring function in building and infrastructure systems; economic metrics that

244 represent business, tax base, income, local services and amenities; and sustained growth, and social
245 metrics that represent survival, safety and security, sense of belonging, and growth and achievement. The
246 chapter further reviews examples of existing community resilience assessment tools and identifies the
247 primary metrics used in each method.

248 **1.6. Other Federal Activities Supporting Resilience**

249 **1.6.1. The National Preparedness Frameworks**

250 For the last several years, the Federal Government worked to improve the resilience of the nation to
251 disruptive events such as natural and human-caused hazards. This effort resulted in a number of guidance
252 documents and tools for use to assess threats, hazards, and vulnerabilities in buildings and infrastructure
253 systems and to develop approaches to reduce or eliminate those vulnerabilities. In particular, the Federal
254 Emergency Management Agency (FEMA) was tasked through Presidential Policy Directive 8 on National
255 Preparedness to produce a series of frameworks to address the spectrum of prevention, protection,
256 mitigation, response, and recovery. This section provides a brief overview of the Presidential Policy
257 Directive 8 frameworks and the relationship of the NIST Disaster Resilience framework to those
258 documents.

259 On March 30, 2011, the President issued Presidential Policy Directive 8 (PPD-8), on National
260 Preparedness.³ PPD-8 directed the Secretary of Homeland Security to develop a National Preparedness
261 Goal, establish a National Preparedness System, build and sustain preparedness, and submit a National
262 Preparedness report annually.

263 The National Preparedness Goal, developed in response to PPD-8 is:

264 *“A secure and resilient nation with the capabilities required across the whole community to
265 prevent, protect against, mitigate, respond to, and recover from the threats and hazards that pose
266 the greatest risk.”⁴*

267 The National Preparedness Goal further established 31 core capabilities necessary to achieve the goal.⁵
268 These core capabilities are organized into five mission areas: Prevention, Protection, Mitigation,
269 Response, and Recovery. Each mission area has a framework document that describes the roles and
270 responsibilities of the whole community.

- 271 • Individuals, families, and households
- 272 • Communities
- 273 • Non-governmental organizations (NGOs)
- 274 • Private sector entities
- 275 • Local governments
- 276 • State, tribal, territorial, and insular area governments
- 277 • Federal Government

278 With the exception of the National Prevention Framework, which specifically addresses, “the capabilities
279 necessary to avoid, prevent, or stop a threatened or actual act of terrorism,”⁶ the remaining framework
280 documents address protection, mitigation, and response to all hazards – natural and human-caused. The
281 National Response Framework, while structured somewhat differently to address the roles that state, tribal
282 and, especially, the federal government play in supporting recovery following a major event. The

³ Presidential Policy Directive, PPD-8 – National Preparedness, <http://www.dhs.gov/presidential-policy-directive-8-national-preparedness>.

⁴ National Preparedness Goal, <https://www.fema.gov/national-preparedness-goal>.

⁵ National Preparedness Goal, Core Capabilities, <https://www.fema.gov/core-capabilities>.

⁶ National Prevention Framework, http://www.fema.gov/media-library-data/20130726-1913-25045-6071/final_national_prevention_framework_20130501.pdf, page 1.

Framework Introduction, Disaster Resilience Framework and Supporting Activities

283 documents also emphasize the role of community and local government in recovery and especially in pre-
284 event planning for the recovery.

285 The PPD-8 framework documents distinguish between community and local government. The PPD-8
286 documents consider communities as “unified groups that share goals, values, or purposes, and may
287 operate independently of geographic boundaries or jurisdictions.”⁷ When NIST refers to “community” in
288 the Disaster Resilience Framework, it refers to an entity defined by a clear geographical boundary and a
289 governance structure capable of making or influencing decisions that affect resilience. The NIST Disaster
290 Resilience Framework recognizes the importance of these organizations to community resilience, but
291 relies on the local government to coordinate closely with these organizations when establishing plans and
292 priorities for the built environment, so that these organizations are able to carry out their roles in support
293 of response and recovery when disruptive events occur.

294 The NIST Disaster Resilience Framework complements the PPD-8 framework documents by providing a
295 methodology and specific guidance for developing a prioritization plan, at the local level, to reestablish
296 the function of buildings and infrastructure following a disruptive event, so as to meet the societal goals
297 of the community. The Disaster Resilience Framework allows communities to consider interdependencies
298 among buildings, infrastructure and the social and economic systems present in the community. The
299 Disaster Resilience Framework also considers potential downstream cascading effects that occur from
300 disruptions in these systems. The Disaster Resilience Framework provides a critical to identify and
301 address opportunities to enhance resilience.

302 1.6.2. Disaster Mitigation Assessment

303 Nearly 24,000 communities, representing 80% of the people in the United States, have developed
304 mitigation plans in accordance with FEMA Disaster Mitigation Assessment guidance⁸, based on the
305 Disaster Mitigation Act of 2000⁹. As mitigation is a component of resilience, these communities are
306 taking substantive steps toward planning for resilience. A planning process that includes a detailed
307 consideration of the built environment as outlined in the Disaster Resilience Framework and incorporates
308 ongoing mitigation planning provides a comprehensive understanding of community resilience.

309 With the existing community mitigation planning structures, expanding the scope to resilience is the next
310 logical step. Those already involved in mitigation activities have similar types of roles and responsibilities
311 needed for resilience. The mitigation planning process emphasizes public participation in vetting
312 mitigation strategies with targets, actions and priorities. Community resilience plans can be built around
313 existing mitigation plans using the framework techniques related to the built environment.

314 1.7. Disaster Resilience Framework and Supporting Activities

315 1.7.1. Disaster Resilience Framework

316 The framework addresses resilience at the community scale, and provides an adaptable process for
317 communities of varying size and complexity. Communities have a governance structure that can lead
318 development, manage resources, and enforce codes, standards, regulations and other policies. In
319 implementing mitigation and recovery planning, community resilience planning aims to engage the whole
320 community to transform their interdependencies into opportunities for progressive investments in their
321 future that have tangible, everyday benefits with big payoffs.

322 Resilience of the built environment can be assessed at local, regional, or national scales, depending on the
323 infrastructure systems under consideration and the entity conducting the assessment. For instance, many
324 electric power systems provide service to a region with a number of communities. A resilience assessment

⁷ National Protection Framework, http://www.fema.gov/media-library-data/1406717583765-996837bf788e20e977eb5079f4174240/FINAL_National_Protection_Framework_20140729.pdf, page 6.

⁸ <https://www.fema.gov/multi-hazard-mitigation-plan-status>

⁹ <https://www.fema.gov/media-library/assets/documents/4596>

Framework Introduction, Disaster Resilience Framework and Supporting Activities

325 by the power company of its system would likely be at a regional scale. However, a community receiving
326 service from the power company would assess the resilience of its infrastructure systems within the
327 community boundaries, based on individually established needs and performance goals. Part of the
328 community resilience plan should include coordination with and input from the power company to inform
329 the community performance goals. While a community will not own all the infrastructure systems
330 operating within its boundaries, their plans should include input from building and infrastructure system
331 owners.

332 The framework provides guidance on how to identify a community's social functions and establish
333 supporting performance goals for recovery of function for the built environment. Achieving a resilient
334 built environment requires the participation of many parties, from decision makers to system operators
335 and users of the systems. Thus, this framework is intended for several audiences: community-level
336 decision makers, owners and operators of buildings and infrastructure systems, and planners and
337 designers of the built environment.

338 The executive summary provides an overview of why community resilience should be incorporated into
339 community development plans, community resilience activities, and how other ongoing plans, such as
340 mitigation plans, can be incorporated into community resilience plans. Chapters 2 to 4 provide
341 community level guidance for resilience planning and describe the process for setting performance goals,
342 identifying hazards and vulnerabilities, and planning for recovery after a hazard event. These chapters
343 should inform those tasked with developing community level plans and coordinating with owners and
344 operators of infrastructure systems and organizations. Chapters 5 to 9 offer specific resilience guidance
345 for buildings and infrastructure systems and Chapter 10 provides guidance on available resilience tools
346 and metrics.

347 Chapter 2 supplies guidance on the types of social functions and vulnerabilities that a community may
348 need to address following a disaster event, including education, health care, economic and government
349 functions, and on how social needs can help define the performance goals for the built environment.

350 Chapter 3 presents guidance on developing integrated performance goals for recovery of the community,
351 independent of hazards. In other words, the community needs to envision how it wants to function during,
352 and recover after, an event. It is strongly recommended that communities define performance goals for
353 several levels of a hazard: routine hazards, expected hazards, and extreme hazards. When the performance
354 goals are evaluated for each hazard level, different vulnerabilities may be identified.

355 Chapter 4 addresses known interdependencies between infrastructure systems, and identifies the types of
356 cascading events that may occur given the failure of an individual infrastructure system. Knowledge of
357 possible dependencies will improve recovery planning.

358 Chapters 5 to 9 describe the process in more detail for buildings, building clusters and infrastructure
359 systems (i.e., transportation, power, communication, and water and wastewater systems), with a focus on
360 owners and operators. The guidance includes considerations for determining desired and expected
361 performance goals for recovery of function, based on the guidance provided in Chapter 3. These chapters
362 also describe the types of systems that should be considered and the regulatory environment under which
363 they are designed. Primary codes, standards, tools, and best practices are also identified.

364 Chapter 10 provides an annotated listing of available metrics and tools to support resilience planning and
365 implementation.

366 Due to the significant breadth of stakeholders and knowledge required to develop this report, NIST
367 consulted experts in each of the infrastructure domains, held a series of workshops to engage a number of
368 stakeholders across the country, and solicited public comments during the framework development.

369 **1.7.2. Disaster Resilience Standards Panel**

370 A Disaster Resilience Standards Panel (DRSP), representing the broad spectrum of the stakeholder
371 community, will support the further framework development and refinement. The DRSP will operate as
372 an independent organization for the broad range of stakeholders to address community resilience issues.
373 Stakeholder interests include community planning, disaster recovery, emergency management, business
374 continuity, insurance/re-insurance, state and local government, design, construction, and maintenance of
375 buildings and infrastructure systems (water and wastewater, energy, communications, transportation), and
376 standards and code development. The DRSP will also develop Model Resilience Guidelines for
377 communities to enhance their disaster resilience.

378 **1.7.3. Model Resilience Guidelines**

379 The Model Resilience Guidelines will promote best practices and help communities develop their own
380 disaster resilience plan. Expected topics include:

381 • Disaster-Resilient Performance Goals for Buildings and Infrastructure Systems
382 • Evaluating Community Disaster Resilience
383 • Procedures for Achieving Resilience Performance Goals
384 • Prioritizing Risk Reduction Activities at the Community Level

385 **1.8. References**

386 FEMA (2011) Presidential Disaster Declarations, January 10, 2000 to January 1, 2011,
387 <https://www.hSDL.org/?view&did=12383>

388 Flora, C.B., M. Emery, S. Fey, C. Bregendahl (2008) Community Capitals: A Tool for Evaluating
389 Strategic Interventions and Projects. Pp. 1186-1187 in Goreham ed., *Encyclopedia of Rural America: The*
390 *Land and People*. Millerton, N.Y.: Grey House Publishing

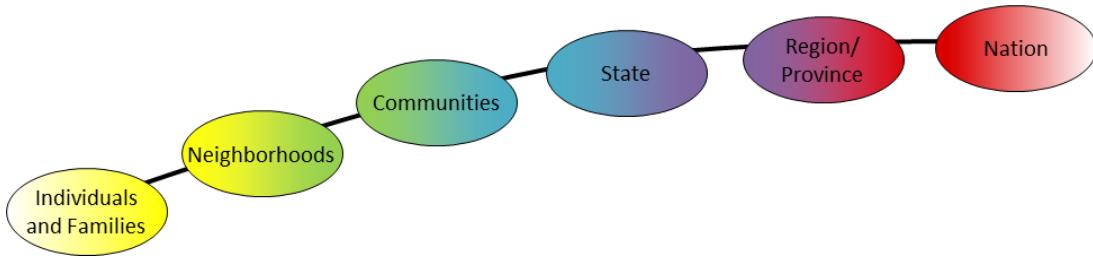
391 McAllister, T.P. (2013) Developing Guidelines and Standards for Disaster Resilience of the Built
392 Environment: A Research Needs Assessment, NIST TN 1795, National Institute of Standards and
393 Technology, Gaithersburg, MD, 20899.

394 NAC (2012) Disaster Resilience, A National Imperative, The National Academies Press, Washington
395 D.C., www.nap.edu

396 PPD-21 (2013) Presidential Policy Directive/PPD-21, The White House, March 30, 2011.
397 [http://www.whitehouse.gov/the-press-office/2013/02/12/presidential-policy-directive-critical-
398 infrastructure-security-and-resil](http://www.whitehouse.gov/the-press-office/2013/02/12/presidential-policy-directive-critical-infrastructure-security-and-resil)

399

1 **2. The Social Context for Community Resilience**2 **2.1. Introduction**


3 Achieving community resilience is a social process; hazard events can damage the built environment,
 4 making it difficult for the community to function. This framework provides communities with a
 5 methodology to plan for resilience by prioritizing buildings and infrastructure systems based on their
 6 importance in supporting the social and economic functions in the community. In other words, ***the social***
 7 ***and economic functions of a community drive the requirements of the built environment.***

8 For the purpose of this framework, a community is defined as “people who live, work, learn, and/or play
 9 together under the jurisdiction of a governance structure, such as a town, city or county.” However, it is
 10 acknowledged that “community” can also refer to groupings of people based on a number of other factors,
 11 including geography, demographics, values, common interests or goals, and economics. For example, the
 12 five frameworks within the National Preparedness Goal¹ define community as “groups that share goals,
 13 values, and institutions. They are not always bound by geographic boundaries or political subdivisions.
 14 Instead, they may be faith-based organizations, neighborhood partnerships, advocacy groups, academia,
 15 social and community groups, and associations.” However, there is value in defining community by the
 16 presence of a local governance structure. It is within this structure that community leaders (both public
 17 and private) can come together to make decisions and take steps that improve the resilience of their
 18 community.

19 This chapter can guide community thinking on the social and economic drivers for community resilience
 20 of the built environment. This chapter describes the social dimensions of communities, highlighting the
 21 needs of community members and the ways in which communities can organize to meet these needs (i.e.,
 22 via social institutions, or the pattern of beliefs and behaviors that meet basic individual and household
 23 needs), while acknowledging that any type of organizational system can foster inequalities among people
 24 within a community. This chapter discusses a process of prioritizing social institutions, and in turn, the
 25 built environment, when planning for resilience, by identifying the ways social institutions rely on each
 26 other and the built environment to function. In an attempt to help communities plan for resilience, this
 27 chapter also provides examples of communities that experienced extreme disasters and implemented their
 28 own prioritization processes for restoration, reconstruction, and recovery. The chapter concludes with a
 29 discussion of the importance of community engagement during the resilience planning process.

30 **2.2. Social Dimensions of a Community**

31 The term, community, as defined in this framework, is situated between neighborhoods (which are made
 32 up of individuals and families) and states, regions and/or provinces, and the nation. Figure 2-1 shows this
 33 organization. Although communities often interact with state, regional, and national entities, this chapter
 34 focuses on individuals and families who live within neighborhoods and interact with their local systems,
 35 services, and the entities that exist in their communities to meet their needs.

36 **Figure 2-1: Levels of a Community (Adapted from John Plodinec, CARRI, redrawn here)**

37 ¹<https://www.fema.gov/national-preparedness-goal>

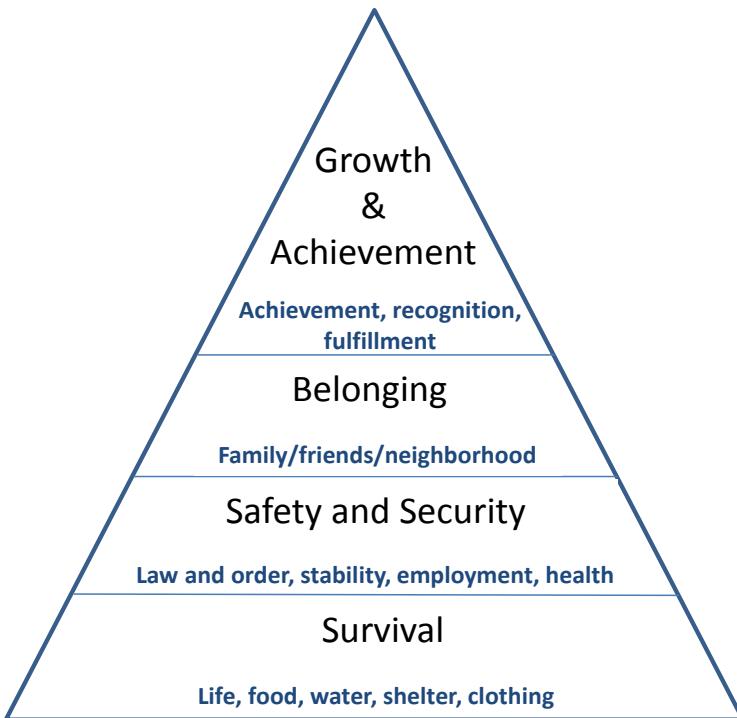
38

2.2.1. Understanding Needs of Community Members

39

Individuals and households in any community have a set of needs they strive to meet on a daily basis. Figure 2-2 presents these individual/household needs in a hierarchical manner, showing the most fundamental needs at the bottom (survival).² Although there are more detailed conceptual models that discuss human needs (e.g., see Max-Neef 1991) this approach – adapted from Maslow's Hierarchy of Needs (1943) – captures the most essential dimensions with which this chapter is concerned.

44


The first and most fundamental need is that of survival. Survival includes necessary physical requirements, such as air, water, food, shelter, and clothing. If these needs are not met, the human body cannot sustain life – people cannot live longer than 5 days without water and 6 weeks without food (assuming inadequate water supply).³ Survival also includes protection of life from the aforementioned disasters.

56

The second need, safety and security, includes all aspects of personal, financial (economic) security, and health and well-being. People require safety and security in their personal lives from situations of violence, physical/verbal abuse, war, etc. They also must know their families and friendship networks are secure. Individuals need financial safety (e.g., job security, a consistent income, savings accounts, insurance policies, and other types of financial safety nets).

69

and/or economic gain (e.g., higher wages)⁷, or because they lost access to their non-liquid assets (e.g., farm land or fishing boats).^{8,9}

Figure 2-2: The hierarchy of human needs (Adapted from Maslow's Hierarchy of Needs – a psychological perspective)

² Adapted from Maslow's Hierarchy of Needs – from a psychological perspective

³ Scientific American. <http://www.scientificamerican.com/article/how-long-can-a-person-sur/>

⁴ Dickinson, Simon Bernard. 2013. *Post-Disaster Mobilities: Exploring household relocation after the Canterbury Earthquakes*. M.S. Thesis, Department of Geography, University of Canterbury, Christchurch, NZ.

⁵ Binder, Sherri Brokopp. 2014. *Resilience and Postdisaster Relocation: A study of New York's home buyout plan in the wake of Hurricane Sandy*. PhD Thesis, Department of Psychology, University of Hawaii, US.

⁶ Sanders, S., Bowie, S., & Bowie, Y. (2003). Lessons learned on forced relocation of older adults: The impact of Hurricane Andrew on health, mental health, and social support of public housing residents. *Journal of Gerontological Social Work*, 40 (4), 23-35; Fraser, J. C., Doyle, M. W., & Young, H. (2006). Creating Effective Flood Mitigation Policies. *Eos*, 87(27), 265-270; Hunter, L. M. (2005). Migration and Environmental Hazards. *Population and environment*, 26(4), 273-302. doi:10.1007/s11111-005-3343-x.

⁷ Belcher, J., & Bates, F. (1983). Aftermath of natural disasters: Coping through residential mobility. *Disasters*, 7 (2), 118-128.

⁸ Black, R., Kniveton, D., Skeldon, R., Coppard, D., Murata, A., & Schmidt-Verkerk, K. (2008). *Demographics and Climate Change: Future Trends and their Policy Implications for Migration*. Retrieved from <http://r4d.dfid.gov.uk/PDF/Outputs/MigrationGlobPov/WP-T27.pdf>.

⁹ Gray, C., Frankenberg, E., Gillespie, T., Sumantri, C., & Thomas, D. (2009). *Population Displacement and Mobility in Sumatra after the Tsunami*. Retrieved from <http://iusspprinceton.edu/papers/90318>.

DISASTER RESILIENCE FRAMEWORK

75% Draft for San Diego, CA Workshop

11 February 2015

The Social Context for Community Resilience, Social Dimensions of a Community

71 These studies emphasize the importance of providing employment and financial security to those within a
72 community. Finally, people require safety from negative health conditions, so they can enjoy life and
73 consistent well-being in their communities.

74 The third need is belonging, which can represent belonging and acceptance among various groups of
75 people (e.g., family, friends, school groups, sports teams, work colleagues, religious congregation) or
76 belonging to a place or location. In relation to groups of people, experts often discuss the concept of
77 social capital within a community. Social capital describes the networks and relationships that connect
78 members of a community¹⁰, including the extensiveness and interconnectedness of social networks within
79 the community, levels of civic engagement, and interpersonal, inter-organizational, and institutional
80 trust.^{11,12} Research into disaster recovery shows that the likelihood of people leaving a community
81 increases when social networks are lost⁹, showing the importance of a sense of belonging within a
82 community.

83 In relation to place, disaster research demonstrates that individuals benefit from a strong sense of
84 belonging to a place, which inhibits their desire to relocate after a disaster.^{13,14} A strong place attachment
85 or sense of belonging to a place can be influenced by, for example, home ownership or having strong,
86 extensive social networks within the community.

87 *[Note to reviewers: In a future draft, this section will be expanded, especially the importance of social
88 capital within a community and what that might mean for different places around the U.S.]*

89 The fourth need, at the top of Figure 2-2, is labeled “growth and achievement.” Humans need to feel a
90 sense of achievement and that they are respected in society. In the figure, this need is accompanied by a
91 need for continual growth and exploration within society, including an individual’s ability to realize
92 his/her full potential – to accomplish all that he/she can – within his/her lifetime. Although these needs
93 may seem less tangible than others, growth and achievement are as important as other needs, often being
94 accomplished through educational achievement and/or participation in arts and recreation.

95 Maslow’s hierarchy, supported by research studies from disaster recovery, identifies the functions of a
96 resilient community.¹⁵ For example, based on the hierarchy of needs, a resilient community: 1) safeguards
97 human life; 2) delivers basic needs; 3) provides safety and security from a personal, financial, and
98 health/well-being perspective; 4) facilitates human relationships and identification (with groups and to a
99 place); and 5) supports growth and achievement. Communities perform all of these functions through
100 social institutions.

101 **2.2.2. Social Institutions Common to all Communities**

102 A social institution is a complex, organized pattern of beliefs and behaviors that meets basic individual
103 and household needs. Traditional studies identify five major institutions as common to all societies: 1) family,
104 2) education, 3) government, 4) religion, and 5) economy – each of which is overlapping and
105 interdependent. Recent conceptualizations include broader notions of each institution, identifying
106 additional types of social institutions. This chapter describes eight social institutions:

¹⁰ Reference the work of Robert Putnam and Daniel Aldrich’s book on the topic Building Resilience.

¹¹ National Research Council of the National Academies. 2006. Facing Hazards and Disasters: Understanding human dimensions, National Academies Press, Washington, DC.

¹² Aldrich, D.P. and M.A. Meyer. 2014. “Social Capital and Community Resilience” American Behavioral Scientist, Published online 1 October 2014.

¹³ Groen, J. A. and A.E. Polivka. 2009. *Going Home after Hurricane Katrina: Determinants of Return Migration and Changes in Affected Areas*. Working Paper 428. BLS Working papers, U.S. Department of Labor, U.S. Bureau of Labor Statistics.

¹⁴ Cutter, S.L., K.D. Ash, C.T. Emrich. 2014. “The geographies of community disaster resilience” *Global Environmental Change*, Volume 29, Pages 65-77.

¹⁵ City Resilience Framework. April 2014. <http://www.sciencedirect.com/science/article/pii/S0959378014001459>.

DISASTER RESILIENCE FRAMEWORK

75% Draft for San Diego, CA Workshop

11 February 2015

The Social Context for Community Resilience, Social Dimensions of a Community

- 107 1. Family and Kinship
- 108 2. Economic
- 109 3. Government
- 110 4. Health Care
- 111 5. Education
- 112 6. Community Service Organizations
- 113 7. Religious Organizations and Others that Support Belief Systems
- 114 8. Media

115 Generally, these institutions satisfy the basic needs of society by defining dominant social values,
116 socializing individuals, establishing patterns of social behavior, and providing roles for individuals. In
117 doing so, institutions contribute to the welfare of society by preserving social order and supporting other
118 institutions.¹⁶ Sections 2.2.2.1 through 2.2.2.8 summarize the socially-based purposes and functions each
119 institution serves in communities, as well as the human needs they meet in the context of Maslow's
120 hierarchy.

2.2.2.1. Family and Kinship

122 Family is the first institution to which we are exposed within a community. Within a family, an individual
123 can learn about the world and the importance of love, care, and a sense of belonging. The family unit is
124 typically defined as a relationship between two or more people who are related by birth, marriage, or
125 adoption. However, it is difficult to define fully what is meant by the term "family," since our
126 understanding varies across cultures and over time. We might consider only those within our family of
127 origin as part of our family unit, even limiting the family unit to those living in the same residence.¹⁷
128 More often, however, our definition of family broadens to include extended family members (e.g.,
129 grandparents, aunts, uncles and cousins), or even long-time friends, friends of family, or other individuals
130 who are not related by blood or marriage. Tight, close-knit bonds are developed within family/kinship
131 units that, among other factors, can determine a community's level of resilience in response to a
132 hazard/disaster event.¹⁸

133 Proximity of family members to one another is also an important consideration. Family members may
134 live within the same residence or different residences within the same community, providing larger
135 numbers of close-knit groups within a community to respond and recover from an event. In other cases,
136 family members may live in different geographical parts of the world. While such distance may decrease
137 the opportunity for social capital, it provides additional sheltering options to family members who wish to
138 evacuate a community that has been disrupted by a hazard event, either temporarily or permanently.

139 Family or kinship units exist to support all human needs in Maslow's hierarchy, from the very basic needs
140 to the need for growth and achievement. It is the responsibility of the family or kinship unit to provide

¹⁶ Notably, this description is primarily a functionalist characterization of social institutions, which may be met with some criticism. For example, the functionalist perspective tends to dismiss the role of human agency with respect to institutions and focuses on maintenance of the status quo – which are necessary in creating and supporting resilience. Readers are encouraged to consider social institutions to better understand which ways social needs are linked to and rely upon the built environment, rather than employing a strict functionalist approach.

¹⁷ "The Concept of The Family: Demographic and Genealogical Perspectives" by Charles B. Nam: <http://www.ncsociology.org/sociationtoday/v22/family.htm>

¹⁸ Aldrich, D.P. and M.A. Meyer. 2014. "Social Capital and Community Resilience" American Behavioral Scientist, Published online 1 October 2014. Ritchie, L.A. and Gill, D.A. Forthcoming. "The Role of Social Capital in Community Disaster Resilience." Invited book chapter for *The Resiliency Challenge: Transforming Theory to Reality*. Virginia Tech Center for Community Security and Resilience.

The Social Context for Community Resilience, Social Dimensions of a Community

141 support and resources to meet survival, safety and security, belonging and acceptance, and growth and
142 achievement needs.

143 **2.2.2.2. Economic**

144 Economic institutions facilitate the allocation of scarce resources across society. Producers and suppliers
145 combine factors of production (e.g., land, labor, and capital) to create goods and services that meet the
146 needs and desires of consumers. The availability of production factors, along with the demand of
147 consumers, determines the final mix of goods and services produced, supplied, and consumed.

148 The economy is a mechanism by which most human needs are satisfied. While not all needs are provided
149 for, the economy produces goods and services that fulfill some element of survival, safety and security,
150 belonging, and growth and achievement from Maslow's hierarchy. Some needs are met through the direct
151 consumption of goods and services (e.g., food and shelter). Other needs are satisfied as a result of a
152 functioning economy. For example, employment affords individuals the means to provide, but also can
153 afford opportunities for (career) growth and achievement. Further, many commercial and for-profit
154 venues (such as colleges, shopping malls, barbershops, and restaurants) facilitate the social gatherings of
155 individuals with shared interests and life experiences, providing people with a sense of belonging. It is
156 obvious then, that the pursuit of economic interests also creates values that have no market; yet, these
157 potentially large, non-market values are also vulnerable to disasters.

158 **Good Production and Service Supply.** Industries within the economy are classified by their production or
159 supply role. Three economic sectors exist: primary, secondary, and tertiary.

- 160 • *Primary Economic Sector:* this sector includes producers of raw materials, such as the
161 agriculture, forestry, fishing, and mining industries. In 2011, these industries represented 3.1% of
162 U.S. gross domestic product.¹⁹
- 163 • *Secondary Economic Sector:* This sector includes producers of goods, such as the manufacturing
164 and construction industries. In 2011, these industries represented 15.9% of U.S. gross domestic
165 product.
- 166 • *Tertiary Economic Sector:* This sector includes suppliers of services, such as utilities, wholesale
167 and retail trade, transportation and warehousing, information, financial activities, professional and
168 business services, education services, health care and social assistance, leisure and hospitality,
169 other services, and federal, state, and local government. In 2011, these industries represented
170 81.0% of U.S. gross domestic product.

171 **Labor Supply.** Of the 316 million people in the U.S. in 2013, approximately 144 million were employed,
172 with around 11 million, aged 16 and over, unemployed (Table 2-1). Unemployed individuals are those
173 that do not have a job, have recently looked for work, and are able to work. Industries that have low
174 unemployment and high weekly hours might find it difficult to handle a disruption. For example, mining,
175 quarrying, and oil and gas extraction has few unemployed individuals, who are likely spread out over a
176 large area. Additionally, they work long hours compared to other industries. This situation might make it
177 difficult for this industry to adapt to a disruption as few workers can fill in and the workers in place could
178 not increase their hours by as much as other industries.

179

¹⁹ Gross domestic product (GDP) is the market value of goods and services produced by labor and capital in a country. In 2011, U.S. GDP measured \$15.1 trillion.

DISASTER RESILIENCE FRAMEWORK

75% Draft for San Diego, CA Workshop

11 February 2015

The Social Context for Community Resilience, Social Dimensions of a Community

180

Table 2-1: U.S. Employment Characteristics, 2013 (Bureau of Labor Statistics, 2015)

	Employed (Thousands)	Unemployed (Thousands)	Avg Wkly Hours	Avg Hourly Earnings
Agriculture and related	2 130	141	-	-
Mining, quarrying, and oil and gas extraction	1 065	64	43.90	29.73
Construction	9 271	935	39.00	26.12
Manufacturing	14 869	1 019	40.80	24.35
Wholesale and retail trade	19 653	1 463	35.05	* 22.13 *
Transportation and utilities	7 415	406	40.45	** 28.77 **
Information	2 960	175	36.70	32.90
Financial activities	9 849	424	37.10	30.15
Professional and business services	16 793	1 284	36.10	28.52
Education and health services	32 535	1 098	32.70	24.44
Leisure and hospitality	13 554	1 379	26.00	13.50
Other services	7 127	445	31.70	21.40
Public administration/Government	6 708	851	-	-
Self-employed, family, and other	-	1 774	-	-
Total	143 929	11 458	-	-

* Average of wholesale trade and retail trade

** Average of transportation/warehousing and utilities

181

Source: Bureau of Labor Statistics. *Current Population Survey*. <www.bls.gov>

182

Consumer Demand. In 2013, personal consumption expenditures amounted to \$11.5 trillion or 68% of GDP, while investment amounted to \$2.6 trillion (16% of GDP). Government consumption amounted to \$3.1 trillion (19% of GDP), and net exports were \$-508.2 billion. As seen in Table 2-2, approximately a third of personal consumption expenditures went toward goods, while the rest went towards services.

186

Table 2-2: Consumption Expenditures as a Percent of Total, by Type of Product (2013)

Goods	34%	Services	66%
• Durable goods	11%	• Household consumption	64%
▪ Motor vehicles and parts	4%	▪ Housing and utilities	18%
▪ Furnishings and household equipment	2%	▪ Health care	17%
▪ Recreational goods and vehicles	3%	▪ Transportation services	3%
▪ Other durable goods	2%	▪ Recreation services	4%
• Nondurable goods	23%	▪ Food services and accommodations	6%
▪ Food and beverages (off-premises)	8%	▪ Financial services and insurance	7%
▪ Clothing and footwear	3%	▪ Other services	9%
▪ Gasoline and other energy goods	4%	• Consumption expenditures of nonprofit institutions serving households	3%
▪ Other nondurable goods	8%		

187

2.2.2.3. Government

188

Governments exist at the national, state, and local levels to write, execute, and interpret and enforce laws and regulations. The government acts as a mechanism by which human needs are satisfied, many of which are not provided for in the private market due to inefficiencies. The government's roles and functions are typically divided across the executive, legislative, and judicial branches. Laws, regulations, and services provided by the government protect life and property, preserve peace and well-being, strengthen group identity and norms, and define social and economic goals for the future. In response to a disaster, the government may provide for many of Maslow's needs, starting with the necessities of food, water, and shelter and extending through safety and security. However, the governmental entity providing

DISASTER RESILIENCE FRAMEWORK

75% Draft for San Diego, CA Workshop

11 February 2015

The Social Context for Community Resilience, Social Dimensions of a Community

196 service may shift during a disaster from federal to local, or even necessitate change from private to public,
197 for example; and such shifts could alter local reliance on the built environment.

198 Local governments, which are the focus of this framework, are made up of general and specific purpose
199 entities. General purpose entities include county, municipal, and township governments. Specific purpose
200 entities are more singular in function, such as school districts. In 2012, there were 90,059 local
201 governments, with 43% serving a general purpose.²⁰

202 **Community Development.** Community development is a major issue for local communities. Community
203 development largely consists of attracting and retaining businesses and jobs, enhancing local amenities,
204 addressing poverty and inequality, and maintaining the quality of the local environment. Communities
205 that cannot attract and retain businesses and jobs tend to fare more poorly after disasters than
206 communities that can. Generally, a community that cannot attract and retain businesses and jobs is in
207 decline.

208 For most cities, local revenue sources consist of some combination of property and sales tax. Sales tax
209 revenue is increased by attracting commercial businesses and jobs. Property tax revenue is generally
210 increased by rising property values. Improving disaster resilience can help increase property values, since
211 a reduction in losses that a property owner will suffer increases the value of that property to the owner.

212 **Poverty & Income Distribution.** Poverty and income distribution are also a major concern of local
213 communities. Many projects communities pursue are aimed at decreasing poverty in their neighborhoods;
214 and many external funding sources available to communities are aimed at alleviating poverty. These
215 issues intersect with disaster resilience in that the disadvantaged are often most vulnerable to disasters.
216 Improving disaster resilience often starts with protecting the disadvantaged.

217 Local communities often hope to improve the quality of life for residents by developing and improving
218 local amenities. Often communities hope that improving local amenities will indirectly attract and retain
219 businesses and jobs. Providing local services is a core function of local governments. In particular, local
220 governments typically supply schools, roads and public safety. Public safety and roads directly impact the
221 resilience of a community in the face of hazards. Schools serve as an amenity that can attract jobs and
222 businesses.

223 **Sustainability.** Local governments are interested in ensuring their communities are sustainable, via two
224 distinct ideas. First, local governments hope to protect and improve their environments. Being “green”
225 and maintaining a small footprint are important to local communities. In turn, these can impact disaster
226 resilience. Second, local governments strive for a vibrant and thriving economy. Communities with weak
227 economies tend to fare poorly, relative to those with stronger economies, after disasters.

228 **2.2.2.4. Health Care**

229 Health is a “state of complete physical, mental and social well-being and not merely the absence of
230 disease or infirmity.”²¹ Health care is the social institution within a community that specializes in
231 promoting, monitoring, maintaining, and restoring health.²² According to the World Health Organization,
232 regardless of how they are organized, all health systems have to carry out six basic functions: 1) provide
233 health services; 2) develop health workers; 3) develop a functioning health information system; 4) provide
234 equitable access to essential medical products, vaccines, and technologies; 5) mobilize and allocate
235 finances; and 6) ensure leadership and governance.²²

²⁰ http://www2.census.gov/govs/cog/g12_org.pdf

²¹ Preamble to the Constitution of the World Health Organization as adopted by the International Health Conference, New York, 19-22 June, 1946; signed on 22 July 1946 by the representatives of 61 States (Official Records of the World Health Organization, no. 2, p. 100) and entered into force on 7 April 1948.

²² WHO framework: http://www.who.int/healthsystems/strategy/everybodys_business.pdf.

DISASTER RESILIENCE FRAMEWORK

75% Draft for San Diego, CA Workshop

11 February 2015

The Social Context for Community Resilience, Social Dimensions of a Community

236 The health care institution primarily meets the survival, and safety and security needs of Maslow's
237 hierarchy. However, a community may consider that, through obtaining a higher level of well-being for
238 its members, a strong community-based health care system can assist with the need for belonging as well
239 as growth and achievement.

240 Health care systems consist of a complex and diverse set of players. Many individuals and organizations
241 are involved in the health care system, including educational and research institutions, medical suppliers,
242 insurers, health care providers, payers (e.g., commercial insurers and employers), claims processors, and
243 regulators/policy makers.²³ Within the health care system, many of these groups can fall under other
244 institutions that are discussed in this section, including education, the economy, and government.

245 The different types of services delivered by health care providers within a community, however, are
246 unique to the healthcare institution:^{23,24}

- 247 • **Preventative care** – aims to prevent future injury or illness, including blood pressure, diabetes
248 and cholesterol tests, cancer screenings, counseling on topics such as quitting smoking or losing
249 weight, routine vaccinations, counseling, screening and vaccinations to ensure healthy
250 pregnancies, and flu shots²⁵
- 251 • **Primary care** – provides integrated health care services aimed at providing the patient with a
252 broad spectrum of preventative and curative care over a period of time²⁶
- 253 • **Specialized care** – provides specialized care by physicians trained in a particular field (e.g.,
254 neurology, cardiology, dermatology, etc.), usually upon referral from primary care²⁷
- 255 • **Chronic or long-term care** – addresses pre-existing or long-term illness
- 256 • **Sub-acute care** – needed by a patients who do not require hospital care (acute care), yet need
257 more intensive skilled nursing care²⁸
- 258 • **Acute care** – addresses short-term or severe illness with a shorter timeframe (i.e., emergency
259 care)
- 260 • **Rehabilitative care** – aids a person in restoring lost skills or function from an injury or illness
261 (physical or mental)
- 262 • **End-of-life care** – care for those facing a life-limiting illness or injury
- 263 • **Mental or behavioral health care** – treating health conditions that “are characterized by
264 alterations in thinking, mood, or behavior (or some combination thereof) associated with distress
265 and/or impaired functioning.”²⁹ Depression is the most common mental illness. Experts believe
266 depression will be the second leading cause of disability throughout the world by 2020.³⁰

267 An element of each of these services can include prescription of medication to patients, highlighting the
268 increasing importance of pharmacy services and staff.

269 One important difference among all health care services is the urgency of care. Some services, for
270 example, acute and chronic or long-term care (i.e., assisted living facilities, nursing homes, adult homes),

²³ Shi, Leiyu and Douglas A. Singh 2008. Delivering Health Care in America: A systems approach. Jones & Bartlett Learning, ...

²⁴ Module 5: Healthcare Systems, US Healthcare Delivery Systems (Appropriate reference needed for this presentation), link: <http://www.aptrweb.org/?page=module5>.

²⁵ <http://www.hhs.gov/healthcare/rights/preventive-care/>

²⁶ <http://www.medicinenet.com/script/main/art.asp?articlekey=5042>

²⁷ http://www.hopkinsmedicine.org/patient_care/pay_bill/insurance_footnotes.html

²⁸ <http://www.dhcs.ca.gov/provgovpart/Pages/SubacuteCare.aspx>

²⁹ U.S. Department of Health and Human Services. *Mental Health: A Report of the Surgeon General*. Rockville, MD: U.S. Department of Health and Human Services; Substance Abuse and Mental Health Services Administration, Center for Mental Health Services, National Institutes of Health, National Institute of Mental Health, 1999.

³⁰ <http://www.cdc.gov/mentalhealth/basics.htm>

The Social Context for Community Resilience, Social Dimensions of a Community

271 provide patients with critical, life-saving care. Each community must assess health care services provided
272 to its members and assign priority to those services rated as most critical.

2.2.2.5. Education

274 Education is the primary social institution dedicated to the transfer of knowledge, skills, and values from
275 one individual or group to another. Typically, when one thinks of education, formal education comes to
276 mind. Formal education can begin in nursery school, and continues through primary and secondary school
277 – often referred to as elementary, middle, and high schools. Formal education also includes higher
278 education in colleges and universities.

279 Formal education typically exposes young people to societal norms, customs, and ideologies; provides a
280 means for cultural innovation and social integration; and facilitates their understanding of social roles. By
281 its very nature, formal education serves the secondary, but equally important, functions of providing
282 childcare for one-parent or two-career families and establishing social networks.

283 Knowledge, skills, and values transfer in other ways within the education institution, including adult
284 education (or continuing education), special education, and informal education. Adult education provides
285 educational programs or courses for adults who are out of the formal education system. Adult education
286 ranges from basic literacy to personal fulfillment (e.g., culinary or language classes) to attainment of an
287 advanced degree.³¹ Special education provides “specifically-designed instruction to meet the unique needs
288 of a child [or adult] with a disability.”³² Finally, informal education can include any other means of
289 knowledge, skills, or value transfer, including visiting museums, reading books, attending book clubs, or
290 participating in recreational classes or demonstrations.

291 The educational institution primarily meets the growth and achievement needs of Maslow’s hierarchy.
292 However, attending any of the forms of education, described in the preceding paragraphs, satisfies an
293 individual’s need for belonging. Additionally, formal educational institutions provide meals to children in
294 nursery, primary, and secondary schools, meeting the survival need.

2.2.2.6. Community Service Organizations

296 Community service organizations (CSOs) are non-profit and non-governmental entities of varying sizes
297 and missions that provide services to individuals around the U.S. It is important to note here that, while
298 organizations such as the Red Cross and the Salvation Army – which are active in disaster-related
299 response and recovery efforts – may be considered CSOs, this section also considers organizations that do
300 not necessarily have a disaster-related focus as part of their missions. Generally speaking, these
301 organizations tend to operate at a local level, often relying on volunteers to support minimal full-time
302 staff. CSOs typically focus in the arenas of human services, natural environment conservation or
303 restoration, and urban safety and revitalization.³³ At the most fundamental level, CSOs may assist
304 individuals in meeting basic needs, such as shelter, food, and clothing, as well as provide emotional and
305 mental health support. They may also enhance the overall quality of life in a community by engaging in
306 work related to neighborhood revitalization, affordable housing, food security, accessible transportation,
307 senior citizens associations, community sustainability, humanitarian/disaster response, medical relief
308 funds, after school programs, youth homes and centers, skill building and education, and civic
309 engagement.

310 With respect to Maslow’s hierarchy, CSOs address human needs related to survival, safety and security,
311 belonging, and growth and achievement. The nature of the needs met by any given CSO depends on its
312 mission and the people it serves. In many cases, CSOs fulfill daily needs of survival, safety and security,

³¹ <http://adulted.about.com/od/whatisadultlearning/p/whatisadulteducation.htm>

³² <http://idea.ed.gov/explore/view/p.root regs.300.A.300%252E39>,

³³ <http://eder671nonprofit.pbworks.com/w/page/18541471/CBOs%20-%20Introduction>

The Social Context for Community Resilience, Social Dimensions of a Community

313 belonging, and growth and achievement for the elderly, people living in poverty, racial and ethnic
314 minority groups, people with disabilities, and those suffering from chronic debilitating illness. These
315 needs may not otherwise be met by traditional family and kinship groups. Other types of CSOs, such as
316 civic, social, and recreational clubs (e.g., Rotary Clubs, Boys and Girls Clubs, after school programs) are
317 more likely to meet, on a regular basis, the needs associated with belonging and growth and achievement,
318 rather than meeting basic needs. CSOs that comprise this social institution depend upon other social
319 institutions, as well as on the built environment.

320 2.2.2.7. Religious Organizations and Others that Support Belief Systems

321 This section addresses social institutions, including religious organizations, as well as other groups that
322 support various belief systems, such as philosophies, ideologies, and science. From a traditional
323 sociological perspective, religion is one of society's fundamental institutions.

324 As an institution, religion involves shared patterns of beliefs and behaviors that bring people together,
325 helping them to understand the meaning and purpose of life. Religion is additionally characterized as
326 groups that provide a sense of solidarity and common purpose.³⁴ Generally, the institution of religion
327 facilitates social cohesion, emotional support, and social control, in addition to serving as an instrument
328 for socialization and providing answers for unexplained natural phenomena. Organizations, other than
329 religious, that support belief systems serve a similar function.

330 As an institution, organizations that support belief systems primarily meet the belonging and growth and
331 achievement needs identified by Maslow. In some cases, they also address basic survival needs by
332 providing food and shelter.

333 2.2.2.8. Media

334 Mass media refers to the channels of communication that, in some way, disseminate information to large
335 numbers of people. A channel or form of communication is often referred to as "one-to-many" in that one
336 person (for example, the author of a book) communicates his/her information to an audience of many. The
337 communication is one-way, as there is rarely an ability to provide feedback to the author.³⁵ Mass media
338 requires a vehicle – often print media (e.g., newspaper, books, magazines), radio, television, cable, and
339 telecommunications (e.g., internet sites).

340 Within the last 25 years, the opportunity for many-to-many communication was created with development
341 of computer networks. Internet chatrooms, peer-to-peer networks, and social network media provide
342 means for mass audiences to simultaneously interact and communicate with each other.

343 The mass media institution has four main functions and four additional sub-functions. The main four
344 functions are: dissemination of information, education of the masses (directly or indirectly, via
345 documentaries, interviews, etc.), entertainment, and persuasion. Additional sub-functions include
346 surveillance (watching society to warn about threatening actions); interpretation (supplying data and facts,
347 explaining and interpreting events and situations); linkages, joining together other types of social
348 institutions (Section 2.5.1); and socialization or the transmission of culture.³⁶

349 The media connects individuals with information from around the world, the nation, the state, and the
350 local community. Most communities have local media outlets that disseminate information about local
351 conditions on a daily basis, via local newspapers, websites, magazines, radio stations, and/or television.
352 Additionally, some local communities house main offices or headquarters of world-, national-, or state-
353 level news outlets. For example, CNN's world headquarters is located in Atlanta, GA.

³⁴ <https://globalsociology.pbworks.com/w/page/14711247/Religion>

³⁵ http://www.sociology.org.uk/media_defined.pdf

³⁶ <http://theonlinemedia.blogspot.com/2012/06/functions-of-mass-media.html>

The Social Context for Community Resilience, Prioritization of Social Institutions and their Functions

354 When a hazard event occurs, information about the event can come from any level of mass media.
355 Depending upon the hazard event's lead or warning time, all levels of news outlets often rush to the
356 location provide coverage. For hazard events with little or no lead-time, local media broadcasters and
357 writers are often first on scene; however, within hours or days, media outlets from around the world
358 converge to cover the story. It is not until days – or even weeks – after an event, when all larger-scale
359 media outlets have left the area, that the dissemination of response and recovery information falls solely
360 to local media sources.

361 The media institution, at all levels, meets many of Maslow's hierarchy of needs. First, media meets safety
362 and security needs, by providing information, interpretation and surveillance to the masses. Additionally,
363 via its socialization function, it promotes belonging among its audience. Finally, the media institution
364 meets the need for growth and achievement by educating and entertaining society.

365 **2.2.3. Social Vulnerabilities and Disasters**

366 In thinking about the roles of institutions in a community, it is important to recognize and address social
367 vulnerability and inequity. Not all people use these systems and/or have access to community systems in
368 the same ways. Therefore, the needs of everyone likely to be affected in a disaster (or on a day-to-day
369 basis), such as the elderly, people living in poverty, racial and ethnic minority groups, disabled, and those
370 suffering from chronic illness, may not be addressed. In addition, renters, students, single-parent families,
371 small business owners, culturally diverse groups, and historic neighborhoods may not be adequately
372 represented.³⁷ Therefore, interactions of individuals/households with community systems can introduce
373 inequalities among certain subpopulations of a community.

374 These inequalities tend to worsen in the context of a disaster. Specifically, a large and growing body of
375 empirical research on hazards and disasters shows that risk is not distributed or shared equally across all
376 groups.³⁷ Pre-disaster vulnerability, inherent in social institutions, may negatively impact response,
377 recovery, and resilience following a disaster event. For example, some individuals and groups face greater
378 risks than others based upon where they are located in the community, the buildings in which they are
379 located (e.g., inferior housing), or having to rely only on public transportation. These groups are also
380 more likely to be marginalized from the political process, with little voice in disaster planning, response,
381 and recovery activities.

382 *[Note to reviewers: Additional text will be added here (i.e., Paton, Phillips Chapter 2, specifically noting
383 that vulnerable populations bring resources to the table – e.g., Community and advocacy groups
384 represent important sources of information and links to particular populations); Will also mention that
385 community engagement and its importance is discussed at length later in this chapter.]*

386 Vulnerability and inequity are mentioned here to ensure all community members and their resources (or
387 lack of resources) are considered when planning for resilience. Community leaders should identify those
388 populations who are most affected – not only in and after a disaster, but also on a day-to-day basis, to
389 make resilience-based decisions that improve life-safety and the well-being of all community members.
390 Communities can assess their social vulnerability using a variety of tools, including the Social
391 Vulnerability Index,³⁸ and obtain further information on vulnerable populations here.³⁷

392 **2.3. Prioritization of Social Institutions and their Functions**

393 The previous section (2.2) of this chapter discussed the social dimensions of a community, including
394 individuals, families, neighborhoods, and the social institutions that exist to support the needs of
395 community members. Additionally, Section 2.2.3 draws attention to the fact that not all community

³⁷ Phillips, Brenda. 2009. *Disaster Recovery*. Boca Raton, FL: Taylor and Francis CRC Press.

³⁸ Reference to the Social Vulnerability Index (University of South Carolina): <http://webra.cas.sc.edu/hvri/products/sovi.aspx>

The Social Context for Community Resilience, Prioritization of Social Institutions and their Functions

396 members have equal access to social institutions. Overall, this chapter described eight social institutions
397 in detail, including their functions, services, and the ways they meet particular needs from Maslow's
398 hierarchy.

399 It is important to understand the types of social institutions present in a community, especially in
400 resilience planning, because hazard events can interrupt the functions of these institutions. Hazards can
401 damage the built environment, making it more difficult for the community, and in turn, its social
402 institutions, to function. However, social institutions may not all carry the same weight within a
403 community – in that they meet different needs of communities in different ways, and some needs (as
404 shown by Maslow's hierarchy) are more urgent than others, especially immediately after an extreme
405 event. Therefore, the community must decide which social institutions (or aspects of those institutions)
406 are required to function without interruption after a disaster (e.g., critical health care), while others can
407 withstand partial functioning for some previously designated period of time (e.g., education). These types
408 of decisions are made by the community when planning for resilience.

409 To help communities prioritize their social institutions, functions, and, in turn, their buildings and
410 infrastructure systems, communities must answer the following questions: 1) ***How do social institutions***
411 ***rely on the built environment to function?*** and 2) ***How do social institutions rely on one another to***
412 ***function?***

413 First, note that not all social institutions rely on the built environment in the same way. Some institutions
414 rely more heavily on the built environment (for example health care via hospitals or other specialized
415 buildings), while other institutions are less reliant. A religious congregation, for example, does not require
416 a building in which to gather or worship.

417 Second, social institutions rely on one another to function as well. This reliance is called
418 “interdependencies” among social institutions. Even within particular institutions, such as the economic
419 or government institutions, industries/entities rely on each other to perform their functions.
420 Communities should understand this interconnectedness when planning for resilience.

421 The following two sections discuss the ways in which social institutions rely on the built environment
422 (Section 2.3.1) and each other (Section 2.3.2). In each case, for each social institution, we provide
423 examples of linkages.

424 2.3.1. Dependence of Social Institutions on the Built Environment

425 The built environment supports many of the functions of social institutions within a community. It is
426 important that a community's own social institutions identify the ways in which the built environment
427 supports each institution's functions. Each of the following sections offers several examples of linkages
428 between social institutions and the built environment, specifically buildings, transportation,
429 water/wastewater, power/energy, and communication systems under normal circumstances. Additional
430 examples are provided to explore additional linkages between social institutions and the built
431 environment in the event of a disaster.

432 2.3.1.1. Family and Kinship

433 In meeting the needs of Maslow's hierarchy, members of the family unit rely on one another and other
434 social institutions, as well as on the built environment. The family institution relies directly on the built
435 environment for housing and protection to meet its survival needs. Members of the family unit also rely
436 on the built environment to communicate with one another, to meet its safety and security, belonging, and
437 growth and achievement needs.

438 Table 2-1 provides examples of the ways the family and kinship institution relies on the built environment
439 on a regular, day-to-day basis. In a disaster, additional links between family and the built environment can
440 be made, including the link between transportation and family for evacuation, or the link between

The Social Context for Community Resilience, Prioritization of Social Institutions and their Functions

441 communication and family to establish situational awareness about family members' safety after a hazard
442 event occurs. Additionally, transportation and communication can be used to reunite family members
443 following an event.

444 2.3.1.2. Economic

445 The built environment is integral to the U.S. economy. For example, buildings house manufacturing
446 facilities, raw material processing plants, office space, commercial retail sales points, the workforce, and
447 consumers. Water and power systems are used to create goods and services. Transportation is used to
448 distribute raw materials and intermediate goods to producers and final goods to consumers.
449 Communication networks transmit supply and demand signals. Components of the built environment also
450 represent some of the final goods produced from economic activity. The built environment supports
451 functions of the economy *and* is owned and/or created by it.

452 Structures and critical infrastructure often play several roles in supporting economic activity. For
453 example, roads support the transport of (1) raw materials to production facilities, (2) final goods to retail
454 stores, and ultimately, to consumers, and (3) workers to their places of employment. Disruptions to
455 individual components of the built environment have the potential to ripple through the economy.

456 Table 2-2 through Table 2-6 illustrate some of the ways the built environment supports economic activity.
457 It is important to acknowledge the role many of these assets play during the response and recovery phases
458 of a disaster. The availability of goods that support survival (e.g., food and water) is critical during the
459 response phase, suggesting the importance of functioning stores, and the means to access them. Whereas,
460 places of employment are vital during the recovery phase by keeping the labor force in place while
461 maintaining the tax base.

462 2.3.1.3. Government

463 Structures and critical infrastructure often play several roles in supporting major government functions.
464 The government functions are grouped by executive, legislative, and judiciary. Table 2-7 through Table
465 show their linkages with the built environment.

466 It is also important to acknowledge the role many of these assets play during the response and recovery
467 phases of a disaster. Some assets may play an elevated role (e.g., emergency operation centers and police,
468 fire, and EMS stations) while others may support an entirely different function than during ordinary times
469 (e.g., schools to support government provided services, such as shelters).

470 2.3.1.4. Health care

471 The built environment supports many of the functions provided by the health care institution within a
472 community. Table 2-10 provides examples of the ways in which the health care institution relies on the
473 built environment on a regular, day-to-day basis. In a disaster, some functions may shift, increasing the
474 importance of understanding the links between health and the built environment. One example is that
475 particular health care buildings, like hospitals, could also be used as a shelter during a hazard event.

476 2.3.1.5. Education

477 The built environment also supports the functions of the education institution. In today's society, some of
478 the ways in which we transfer knowledge, skills and values are done via the Internet or virtually, often
479 without the need to congregate within the same building or structure. However, even in remote situations,
480 where the need for a particular building is absent, we rely on communications systems to function.

481 Table 2-11 provides examples of the ways in which the education institution relies on the built
482 environment on a day-to-day basis. In a disaster, some functions may shift, increasing the importance of
483 understanding the links between education and the built environment. One example is that school

The Social Context for Community Resilience, Prioritization of Social Institutions and their Functions

484 buildings could serve as shelters during and after an event. In the aftermath of disasters, school buildings,
485 in particular, could also emerge as central meeting locations for response and recovery activities.

486 **2.3.1.6. Community Service Organizations**

487 Increasingly, faith-based and other community organizations provide more services to a greater number of
488 community residents on a daily basis.^{39,40} CSOs, particularly those that provide essential services, such as
489 shelter, food, and basic medical services, rely upon the built infrastructure to meet the basic survival
490 needs of those they serve.

491 Table 2-12 provides some examples of the ways in which CSOs rely on the built environment on a
492 regular, day-to-day basis. In the event of a disaster, the role of CSOs, particularly those that provide
493 essential services, becomes even more critical, and the importance of understanding the links between
494 CSOs and the built environment increases. As noted by Ritchie et al. (2008) in a comprehensive study of
495 disaster preparedness among community-based organizations:

496 *After major disasters, frail elderly people living alone still will need meals and other services;
497 low-income disaster victims will need assistance from community clinics; services for people with
498 AIDS and for those with chronic mental illness will need to remain operational; and immigrants
499 still will need aid and support from the same organizations that provide assistance during non-
500 disaster times.*

501 In the event of a disaster, buildings are vital to the protection and safety of staff and clients. It is also
502 critical that CSOs communicate with their staff, volunteers, emergency providers, as well as those they
503 serve, to meet safety and security needs. Similarly, CSOs rely upon transportation to ensure that staff and
504 volunteers can reach their facilities to maintain operations, and that clients can reach the facilities to
505 obtain services during the days and weeks following a disaster event. In many cases, demands for the
506 types of assistance provided by CSOs increase substantially following a disaster, as more people seek
507 assistance. In post-disaster contexts, CSOs of almost any type may adapt and expand their roles and
508 services to support community disaster response and recovery efforts.

509 In the long term, CSOs also provide settings in which Maslow's belonging and growth and achievement
510 needs are met after a disaster. Apart from organizations that provide essential services, CSOs such as
511 civic, social, and recreational clubs (e.g., Rotary Clubs, Boys and Girls Clubs, after school programs)
512 become increasingly important in community recovery processes by providing opportunities and physical
513 settings to draw upon, maintain, and to build social capital. For example, buildings that house CSOs may
514 provide a place for recovery planning. This is an important consideration with respect to understanding
515 the needs of CSOs as related to the built environment in terms of broader community resilience.

516 **2.3.1.7. Religious Organizations and Others that Support Belief Systems**

517 As mentioned earlier, religious organizations and others that support belief systems rely on the built
518 environment to function, albeit not as heavily as other social institutions. Examples of linkages between
519 the religious organizations and others that support belief systems and the built environment are shown in
520 Table 2-13.

521 As with community service organizations, described in the previous section, the roles of religious and
522 other organizations may change in the context of a disaster. For example, buildings regularly used for

³⁹ Ritchie, L.A., Tierney, K., Austin, D., Beres, M., Bevc, C., Gilbert, B., and Sutton, J. 2008. "Disaster Preparedness Among Community-Based Organizations in the City and County of San Francisco." Boulder, CO: The University of Colorado, Institute of Behavioral Science, Natural Hazards Center.

⁴⁰ Ritchie, L.A., Tierney, K., and Gilbert, B. 2011. "Disaster Preparedness among Community-Based Organizations in the City and County of San Francisco: Serving The Most Vulnerable." Pp. 3-39 in D.S. Miller and J.D. Rivera (eds.) *Community Disaster Recovery and Resiliency: Exploring Global Opportunities and Challenges*. Boca Raton, FL: Taylor and Francis.

The Social Context for Community Resilience, Prioritization of Social Institutions and their Functions

523 worship and meetings might serve as evacuation shelters for congregants and members, as well as for
524 residents from the broader community. In these cases, the buildings may also serve as places that protect
525 vulnerable populations by continuing to or adapting to provide and house essential services such as food,
526 water, and medical supplies; they may also protect and preserve religious and cultural artifacts and
527 documents. In the aftermath of disasters, church buildings, in particular, tend to emerge as central meeting
528 locations in the days and weeks during response and recovery activities.

529 **2.3.1.8. Media**

530 As with any institution, media relies on the built environment to serve its functions in one way or another.
531 Table 2-14 provides some examples of the ways the media institution relies on the built environment on a
532 regular, day-to-day basis. In the event of a disaster, some functions may shift, increasing the importance
533 of understanding the links between the media and the built environment. For example, a functioning
534 communication system will allow for communication with the public prior to, during, and after a disaster
535 (to disseminate response and recovery information).

536 *[Note to reviewers: A future draft will include the importance of situational awareness before, during and
537 after a disaster.]*

538

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015

The Social Context for Community Resilience, Prioritization of Social Institutions and their Functions

539

Table 2-1: Family and Kinship: Examples of Purposes with Links to the Built Environment

	Buildings	Transportation	Water/ wastewater	Power/energy	Communication
Purpose (or function) within the Family/kinship Institution	Provide a place to live, build a family, provide sustenance	Access to and from housing	Provide for safe source of water for drinking/eating, cooking, cleaning, cooling, laundry, fire protection; provide for the removal and treatment of waste	Allow for use of housing (lighting, heating, cooling), use of appliances, charging of electronics	Support communication within and outside of housing
How purpose is actualized through the built environment (examples)	Housing (single-family, multi-family, etc.)	Roads/bridges, airports, mass transit, sea ports	Pipelines, pumps/stations, valves, fire hydrants, water and wastewater treatment facilities, storage tanks	Generation facilities, grids, substations, lines, pipelines	Telephones (landline and mobile), computers, TV and radio media

540

Table 2-2: Production of Raw Materials: Examples of Purposes with Links to the Built Environment

	Buildings	Transportation	Water/ wastewater	Power/energy	Communication
Purpose (or function) within the Production of Raw Materials	Prepare materials for transport, store materials, house equipment and machinery	Distribute goods for processing	Production input, cool or heat to facilitate production process, fire protection, eliminate production waste	Ability to operate machinery, use building (e.g., lighting)	Obtain market signals, support production and safety activities
How purpose is actualized through the built environment (examples)	Processing facility, warehouse	Roads and bridges, airports, railways and rail stations, seaports, pipelines	Pipelines, pumps/stations, valves, fire hydrants, water and wastewater treatment facilities, storage tanks	Generation facilities, grids, substations, lines, pipelines	Telephones, computers, internet

541

Table 2-3: Production of Goods: Examples of Purposes with Links to the Built Environment

	Buildings	Transportation	Water/ wastewater	Power/energy	Communication
Purpose (or function) within the Production of Goods	Design and develop goods (buildings and manufactured products), process raw materials, production location, store goods, package and prepare for distribution	Obtain labor and capital, distribute intermediate goods, distribute final goods for sale	Production input, cool or heat to facilitate production process, fire protection, eliminate production waste	Ability to operate machinery, use building (e.g., lighting)	Obtain market signals, support production and safety activities, advertising
How purpose is actualized through the built environment (examples)	Commercial office, Processing plant, manufacturing facility, warehouse, goods (buildings and manufactured products) for sale	Roads and bridges, airports, railways and rail stations, seaports	Pipelines, pumps/stations, valves, fire hydrants, water and wastewater treatment facilities, storage tanks	Generation facilities, grids, substations, lines, pipelines	Telephones, computers, internet, TV and radio media

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015

The Social Context for Community Resilience, Prioritization of Social Institutions and their Functions

542

Table 2-4: Supply of Services: Examples of Purposes with Links to the Built Environment

	Buildings	Transportation	Water/ wastewater	Power/energy	Communication
Purpose (or function) within the Supply of Services	Point of sale, non-sale, service use area	Bring sellers (providers) and consumers together	Service input, equipment operation, eliminate waste, fire protection	Service input, power for machinery, lighting for the building	Obtain market signals, support production and safety activities, advertising, transmit and receive financial transactions
How purpose is actualized through the built environment (examples)	Stores, malls, restaurants, banks, commercial offices, hotels, schools and colleges, hospitals and medical facilities, arenas/stadia, salons and barbershops, internet cafes, online storefronts, gas stations, airports	Roads and bridges, airports, railways and rail stations, seaports	Pipelines, pumps/stations, valves, fire hydrants, water and wastewater treatment facilities, storage tanks	Generation facilities, grids, substations, lines, pipelines	Telephones, computers, internet, TV and radio media

543

Table 2-5: Labor Supply: Examples of Purposes with Links to the Built Environment

	Buildings	Transportation	Water/ wastewater	Power/energy	Communication
Purpose (or function) within Labor Supply	Location of employment, residence	Getting to and returning from work	Allow for safe use of structure/comfort (drinking, cooling, cleaning, eliminating personal waste), fire protection	Power for point of sale devices, lighting, heating and cooling	Offer and deliver services
How purpose is actualized through the built environment (examples)	Production facility, commercial office, warehouse, store, houses and apartments	Roads and bridges, airports, railways and rail stations, seaports	Pipelines, pumps/stations, valves, fire hydrants, water and wastewater treatment facilities, storage tanks	Generation facilities, grids, substations, lines, pipelines	Telephones, computers, internet, TV and radio media

544

Table 2-6: Consumption: Examples of Purposes with Links to the Built Environment

	Buildings	Transportation	Water/ wastewater	Power/energy	Communication
Purpose (or function) within Consumption	Point of sale, non-sale, service use area	Bring sellers (providers) and consumers together	Allow for safe use of structure/comfort (drinking, cooling, cleaning, eliminating personal waste), fire protection	Power for point of sale devices, power for point of non-sale, service use area, lighting, heating and cooling	Obtain information on goods and services available, process payments

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015

The Social Context for Community Resilience, Prioritization of Social Institutions and their Functions

	Buildings	Transportation	Water/ wastewater	Power/energy	Communication
How purpose is actualized through the built environment (examples)	Stores, malls, restaurants, commercial offices, schools and colleges, hospitals and medical facilities, arenas/stadia, salons and barbershops, internet cafes, online storefronts, gas stations, airports, houses and apartments	Roads and bridges, airports, railways and rail stations, seaports	Pipelines, pumps/stations, valves, fire hydrants, water and wastewater treatment facilities, storage tanks	Generation facilities, grids, substations, lines, pipelines	Telephones, computers, internet, TV and radio media

545

Table 2-7: Executive Function: Examples of Purposes with Links to the Built Environment

	Buildings	Transportation	Water/wastewater	Power/energy	Communication
Purpose (or function) within Executive	Provide work and meeting space for leaders and staff, serve as a document repository, protect communication systems, house public safety and emergency response capabilities (people, equipment, vehicles), provide public spaces	Provide access to services, facilitates delivery of services (including emergency response)	Allow for safe use of structure/comfort (drinking, cooling, cleaning, eliminating personal waste), fire protection	Lighting, heating and cooling	Transmission of information, including emergency messaging, public access to government
How purpose is actualized through the built environment (examples)	Offices, police stations, fire and EMS stations, emergency operations centers (EOCs), military installations, jails and prisons	Roads, airports, railways, seaports, bridges, tunnels	Pipelines, pumps/stations, valves, fire hydrants, water and wastewater treatment facilities, storage tanks	Generation facilities, grids, substations, lines, pipelines	Telephones, computers, internet, TV and radio media, 911 call centers, reverse 911, social media, community alert and warning systems

546

Table 2-8: Legislative Function: Examples of Purposes with Links to the Built Environment

	Buildings	Transportation	Water/wastewater	Power/energy	Communication
Purpose (or function) within Legislative	Provide work and meeting space for leaders and staff, serve as a document repository, protect communication systems, public spaces	Provide physical access to lawmakers and law-making bodies	Allow for safe use of structure/comfort (drinking, cooling, cleaning, eliminating personal waste), fire protection	Lighting, heating and cooling	Transmission of information, public access to government
How purpose is actualized through the built environment (examples)	Offices, government chambers	Roads, airports, railways, seaports, bridges, tunnels	Pipelines, pumps/stations, valves, fire hydrants, water and wastewater treatment facilities, storage tanks	Generation facilities, grids, substations, lines, pipelines	Telephones, computers, internet, TV and radio media, 911 call centers, reverse 911, social media

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015

The Social Context for Community Resilience, Prioritization of Social Institutions and their Functions

547

Table 2-9: Judicial Function: Examples of Purposes with Links to the Built Environment

	Buildings	Transportation	Water/wastewater	Power/energy	Communication
Purpose (or function) within Judicial	Provide work and meeting space for leaders and staff, serve as a document repository, protect communication systems, provide public spaces	Provide physical access to legal venues	Allow for safe use of structure (drinking, cooling, cleaning, eliminating personal waste), fire protection	Lighting, heating and cooling	Transmission of information, public access to government
How purpose is actualized through the built environment (examples)	Offices, courts and courthouses, libraries and archives	Roads, airports, railways, seaports, bridges, tunnels	Pipelines, pumps/stations, valves, fire hydrants, water and wastewater treatment facilities, storage tanks	Generation facilities, grids, substations, lines, pipelines	Telephones, computers, internet, TV and radio media, 911 call centers, reverse 911, social media

548

Table 2-10: Health Care: Examples of Purposes with Links to the Built Environment

	Buildings	Transportation	Water/ wastewater	Power/energy	Communication
Purpose (or function) within Health Care	Provide a place for emergency, short- and long-term health needs (physical and mental); Storage for medical records, equipment, pharmaceuticals	Provide access to and from the facility for patients, staff	Allow for safe use of health care facility (drinking, cooling, cleaning, laundry, eliminating personal waste), and ability to use specific medical equipment that require water (e.g., dialysis), fire protection	Allow for use of facility, including technology, equipment, lights/electricity for all rooms/offices, computers and appliances	Communicate within facility, access information/ resources (e.g., medical records), communicate outside of facility
How purpose is actualized through the built environment (examples)	Hospitals, Clinics, Mental health agencies, clinics, hospitals, Urgent care centers, Poison centers, Dialysis centers, Rehabilitation centers, Hospices, Assisted living facilities, Nursing homes; Pharmacies	Roads/bridges, Vehicles - buses – public, subways, personal vehicles	Pipelines, pumps/stations, valves, fire hydrants, water and wastewater treatment facilities, storage tanks	Generation facilities, grids, substations, lines, pipelines	Internet, emergency communication system, phones (voice and text), email

549

Table 2-11: Education: Examples of Purposes with Links to the Built Environment

	Buildings	Transportation	Water/wastewater	Power/energy	Communication
Purpose (or function) within the Educational Institution	Provide a place to learn, to interact/connect, storage for equipment and books	Provide access to and from the facility to students/parents, teachers	Allow for safe use of educational facility/comfort (drinking, cooling, cleaning, eliminating personal waste), fire protection	Allow for use of educational facility, including power to classrooms, computers, appliances, offices	Communicate within facility, access information/resources (e.g., online), communicate outside of facility
How purpose is actualized through the built environment (examples)	Schools, universities (campus and dormitories), educational offices, museums, libraries	Roads/bridges, Vehicles - buses – public, subways, personal vehicles	Pipelines, pumps/stations, valves, fire hydrants, water and wastewater treatment facilities, storage tanks	Generation facilities, grids, substations, lines, pipelines	Internet, emergency communication system, phones (voice and text), email

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015

The Social Context for Community Resilience, Prioritization of Social Institutions and their Functions

550

Table 2-12: Community Service Organizations: Examples of Purposes with Links to the Built Environment

	Buildings	Transportation	Water/ wastewater	Power/energy	Communication
Purpose (or function) within CSOs	Provide a place where basic needs can be met (in some cases, shelter and sustenance), facility where people can interact with others	Provide access to and from the CSO facility to clients/staff/volunteers	Allow for safe use of CSO facility/comfort (drinking, cooling, cleaning, eliminating personal waste), fire protection	Allow for use of CSO facility, including lights/electricity, power for appliances	Communicate with clients/staff/volunteers; between CSOs; outside the CSO facility
How purpose is actualized through the built environment (examples)	Housing and provision of sustenance	Roads/bridges, Vehicles – public transportation (buses, subways) personal vehicles	Pipelines, pumps/stations, valves, fire hydrants, water and wastewater treatment facilities, storage tanks	Generation facilities, grids, substations, lines, pipelines	Internet, emergency communication system, phones (voice and text), email

551

Table 2-13: Religious Organizations and Others that Support Belief Systems: Examples of Purposes with Links to the Built Environment

	Buildings	Transportation	Water/ wastewater	Power/energy	Communication
Purpose (or function) within Religious Organizations and Others	Provide place of worship, social interaction, education, daycare, and other basic services; Provide places to house and protect religious and cultural artifacts/ documents (<i>the buildings themselves may be considered sacred or have symbolic meaning</i>)	Provide access to and from the facility to organization leaders/staff/ congregation/ community members	Allow for safe use of religious/belief facility (drinking, cooling, cleaning, eliminating personal waste), fire protection	Allow for use of facility (congregation, community members), including lights/electricity to all rooms, power for appliances	Communicate with leaders/staff/ congregation/ community members; outside of the facility
How purpose is actualized through the built environment (examples)	Churches, synagogues, other places of worship, meeting places	Roads/bridges, Vehicles – public transportation (buses, subways) personal vehicles	Pipelines, pumps/stations, valves, fire hydrants, water and wastewater treatment facilities, storage tanks	Generation facilities, grids, substations, lines, pipelines	Internet, emergency communication system, phones (voice and text), email

552

Table 2-14: Media: Examples of Purposes with Links to the Built Environment

	Buildings	Transportation	Water/ wastewater	Power/energy	Communication
Purpose (or function) within Media	Provide a place to disseminate news and information, protect all media technology and equipment	Provide physical access to and from facilities, also to news sites	Allow for safe use of facility (drinking, cooling, cleaning, eliminating personal waste), fire protection	Allow for use of facilities, allow for use of broadcasting/ media equipment	Communicate within facility, access information/ resources (e.g., online), broadcast information outside of facility (media function)
How purpose is actualized through the built environment (examples)	News and broadcasting stations, Television stations, Radio station, Newspapers/ magazine publishing, Publishers' headquarters, Offices, Equipment/ computer storage	Roads/bridges, Vehicles – public transportation (buses, subways) personal vehicles News/ broadcasting vehicles	Pipelines, pumps/stations, valves, fire hydrants, water and wastewater treatment facilities, storage tanks	Generation facilities, grids, substations, lines, pipelines	Internet, emergency communication system, phones (voice and text), email <i>Note to reviewer: Links will be made to Chapter 8</i>

553 In addition to relying on the built environment, social institutions also rely on one another to function. In
554 turn, damage to the built environment may affect one social institution directly, which can have ripple
555 effects on other institutions. The following section discusses the interdependencies of social institutions,
556 to help communities think about prioritizing the built environment for resilience planning.

557 **2.3.2. Dependence of Social Institutions on Other Social Institutions**

558 A disruption in the built environment that affects one social institution will likely also affect others, since
559 social institutions are linked with each other in many ways. It is important for a community to identify the
560 ways social institution are linked with each other, referred to here as *interdependencies*. Since each
561 community is different, it is impossible to provide an exhaustive list of all of the ways social institutions
562 can become dependent on one another. Instead, examples of interdependencies among social institutions
563 are provided here⁴¹:

- 564 • *Government and economic institutions*: The longer it takes businesses to recover, the higher the
565 potential for loss of local taxes (e.g., sales taxes); the longer it takes for law firms to recover, the
566 higher the potential for courthouse delays⁴².
- 567 • *Economic and family/kinship institutions*: The longer it takes for businesses to recover, the higher
568 the potential for unemployment; Suppliers of goods and service (e.g., restaurants, staff) need a
569 customer base and, at the same time, people need places to shop for goods and services⁴³.
- 570 • *Economic (labor), family/kinship, and education/government*: Without childcare, people may be
571 unable to return to work and earn income, which may result in temporary or permanent relocation
572 of the person/family.
- 573 • *Government and family/kinship*: People may encounter delays and/or difficulties in rebuilding (or
574 may not wish to rebuild) due to new land use or zoning policies and building department policies
575 (e.g., inspections or permitting).
- 576 • *Healthcare, education, economic, government, or media and family/kinship*: Each social
577 institution needs staff and/or employees (e.g., doctors, nurses, medical technicians, billing, as
578 examples for health care) to function
- 579 • *Government, economic, and family/kinship*: People may be unable to return to work without food
580 and water at home, insurance appointments, and/or disaster assistance.
- 581 • *Government, media, and family/kinship*: The media serves as an intermediary between the
582 government and the members of a community⁴⁴ and often works to link certain social institutions
583 together.

584 Additionally, interdependencies also exist among services located within each institution. For example,
585 industries located within a community (i.e., the economic institution) can depend upon each other to
586 function.

587 Industries can be important drivers of the economy due to their size (e.g., contribution to GDP),
588 proportion of the workforce they employ, and/or their importance with other industries (e.g., as producers
589 and consumers of intermediate goods from other industries). A disruption to the built environment has the
590 potential to affect several, seemingly unrelated industries across the economy through these inter-industry
591 relationships. National and regional input-output models capture the inter-industry linkages.

⁴¹ Holistic Disaster Recovery Document, Natural Hazards Center (PERI).

⁴² Case study/example of this was Cedar Rapids, Iowa:

(<http://blogs.mlmins.com/ruatrisk/?p=25>)

(http://www.abajournal.com/news/article/cedar_rapids_law_firm_opens_offices_in_nearby_middle_school)

⁴³ Brenda Phillips Infrastructure chapter.

⁴⁴ <http://theonlinemedia.blogspot.com/2012/06/functions-of-mass-media.html>

The Social Context for Community Resilience, Community Examples of Recovery and Resilience

592 Table 2-15 presents each industry's (1) size in millions of dollars of GDP, (2) percent contribution to total
 593 GDP, (3) 'impact per dollar demand,' and (4) 'impact of dollar supply.' The percent contribution of GDP
 594 shows the total flows from an industry as a percent of all flows in the economy. The impact per dollar
 595 demand is the value of GDP from other industries needed to produce one dollar of GDP from the listed
 596 industry – it shows what happens when flows to an industry are disrupted. The impact per dollar supply is
 597 the change in GDP that results from a dollar change in GDP from the listed industry – it shows what
 598 happens when the flows from an industry are disrupted. For example, the Wholesale and Retail Trade
 599 industry added \$1.96 trillion dollars to the U.S. economy in 2011, which constituted 13% of U.S. GDP.
 600 To produce \$1.0 million of GDP in Wholesale and Retail Trade, required \$1.4 million of GDP produced
 601 by the other industries in the economy. To produce \$1.0 million of GDP from other industries in the
 602 economy requires \$1.94 million of GDP produced by Wholesale and Retail Trade.

603 **Table 2-15: Industry size and inter-industry relevance (2011)***

Industry	GDP (\$ million)	% GDP	Impact \$/Demand	Impact \$/Supply
Agriculture and Mining	466,194	3.1	1.74	1.92
Food, Beverages and Tobacco	221,187	1.5	3.36	2.48
Other Manufacturing	1,627,644	10.8	2.08	1.66
Electricity, Gas and Water Supply	246,896	1.6	1.21	2.62
Construction	549,011	3.6	1.69	2.70
Wholesale and Retail Trade	1,960,689	13.0	1.40	1.94
Hotels and Restaurants	473,854	3.1	1.71	2.68
Inland Transport	191,587	1.3	1.82	2.51
Water Transport	14,819	0.1	2.14	2.99
Air Transport	65,468	0.4	2.07	2.97
Other Supporting and Auxiliary Transport Activities; Activities of Travel Agencies	142,442	0.9	1.44	2.33
Post and Telecommunications	370,637	2.5	1.62	2.33
Finance and Real Estate	5,034,867	33.4	1.50	1.36
Public Admin and Defense; Compulsory Social Security	1,853,704	12.3	1.54	2.68
Community, Social and Personal Services	1,869,079	12.4	1.57	2.35

604 *Data sources: World Input-Output Database. http://www.wiod.org/new_site/database/wiots.htm;
 605 Marcel P. Timmer (2012), "The World Input-Output Database (WIOD): Contents, Sources and Methods", WIOD Working
 606 Paper Number 10, downloadable at
 607 <<http://www.wiod.org/publications/papers/wiod10.pdf>>

608 A smaller impact per dollar demand value implies a larger potential for an industry to be affected by
 609 disruptions in other industries. For example, the Electricity, Gas, and Water Supply industry is the most
 610 sensitive to production value changes from the rest of the economy. A smaller impact per dollar supply
 611 value implies a larger potential for other industries to be affected by a disruption from an industry (e.g.,
 612 the economy is most sensitive to production value changes from the Finance and Real Estate industry).

613 The example in Table 2-15 details data on industry size and inter-industry relevance at a national level.
 614 This example can help communities think about the ways their industries, at the local level, interconnect
 615 and provide some guidance on how to quantify interdependencies, if the industry size and relevance data
 616 exists at the local level.

617 **2.4. Community Examples of Recovery and Resilience**

618 The process of resilience planning and prioritization is community-specific. Communities vary in size,
 619 social make-up (including social vulnerabilities), culture and traditions, and disaster history, which can
 620 influence a community's industrial composition (i.e., major industries), governance and regulations,
 621 social capital, economics/budgeting, and access to and types of built environment (assets). Therefore,

The Social Context for Community Resilience, Community Examples of Recovery and Resilience

622 there is no one-size-fits-all approach for communities in the U.S. to think about planning and prioritizing
623 institutions, services, and/or systems for resilience.

624 Examples in this section show the ways in which communities, who experienced extreme disasters, have
625 thought about and prioritized for the restoration of the built environment. Although resilience priorities
626 can and should be set by communities of all types, regardless of their experiences with disasters,
627 examples are provided here of community priorities set directly after experiencing large-scale, extreme
628 disasters.

629 **Joplin, Missouri** developed priorities/goals during their recovery from the EF5 tornado that devastated
630 their city on May 22, 2011; a city of 50,000 residents that increases to over 200,000 people during the
631 workweek. The 2011 Joplin, MO tornado, which left a path of destruction eight miles long and ¾ miles
632 wide, claimed 161 lives and injured over 1,000 people, in addition to damaging city infrastructure, parks,
633 and 7,500 structures.⁴⁵ In response to the disaster, Joplin, MO created the Citizen Advisory Recovery
634 Team (CART) to provide community members with a platform to bring post-disaster recovery ideas to
635 the table, form a consensus, and allow these ideas to be taken to the City Council for consideration. On
636 November 7, 2011, after multiple public meetings, CART presented its recommendations to the City
637 Council for consideration and adoption. The City adopted CART's report and created the Implementation
638 Task Force (ITF) to be the lead public/private entity in the redevelopment. The ITF included leadership
639 from the CART and representatives of the City of Joplin, Duquesne, Joplin Schools, and the Joplin Area
640 Chamber of Commerce. The role of the ITF was to assign responsibilities and priorities to the plan. As a
641 result, several projects were developed that fell under four main headings: housing and neighborhoods,
642 schools and community facilities, infrastructure and environment, and economic development. As a way
643 to summarize these projects, the ITF plan provided a list of recovery goals:⁴⁶

- 644 • Replace lost residential housing, office, commercial, medical, etc.
- 645 • Create ties from the redeveloped area to downtown Joplin
- 646 • Expand opportunities for employment
- 647 • Create destination activity center(s)
- 648 • Establish a memorial to those lost in the storm
- 649 • Address other projects and goals as developed by the CART
- 650 • Use redevelopment efforts as a catalyst to build upon existing goals for development and
651 redevelopment in Joplin, including a parkway or series of neighborhood parks supporting the
652 recovering neighborhoods; develop a performance and visual arts center; create a community
653 and/or event center; and extend the walk/bike paths.

654 In another example, **Greensburg, Kansas** prioritized sustainable development after a tornado hit their
655 town on May 4, 2007, killing 13 people and injuring more than 60 others. The tornado destroyed 95% of
656 the town's structures and seriously damaging the other 5%. Immediately after the disaster, 50% of the
657 population relocated to other areas, and eventually, FEMA installed mobile homes that housed around
658 300 families.⁴⁷ Greensburg, KS is now the "world's leading community in LEED-certified buildings per
659 capita."⁴⁷ With support from the community, the Greensburg City Council adopted the resolution that, "all
660 large public buildings in Greensburg with a footprint exceeding 4,000 square feet must meet the LEED-
661 platinum standards of the U.S. Green Building Council and utilize renewable energy sources."
662 Reconstruction is almost complete, with the entire community powered by renewable energy and the

⁴⁵ <http://www.joplincc.com/Joplin%20Pays%20It%20Forward%20Community%20Leaders%20Share%20Our%20Recovery%20Lessons.pdf>

⁴⁶ <http://joplinmo.org/DocumentCenter/View/2687>

⁴⁷ <http://www.usatoday.com/story/news/greenhouse/2013/04/13/greensburg-kansas/2078901/>

The Social Context for Community Resilience, Community Engagement in Resilience

663 construction of six LEED-platinum certified buildings, including the city hall, the memorial hospital, and
664 the K-12 school.

665 Additionally, one question that communities may ask even before setting priorities is whether their
666 current geographical/physical location allows them to reach their recovery and resilience goals.
667 Community members, from **Christchurch, New Zealand**, for example, after their series of major
668 earthquakes in 2010 and 2011 or **Rockaway Peninsula in New York** after Hurricane Sandy hit in 2012,
669 are faced with short-term and long-term relocation decisions based on new land-use and zoning
670 initiatives. In these cases, the first priority is relocation.

671 *[Note to reviewers: In a future draft, this section will end with a paragraph relating to resilience, stating
672 that in the same ways that communities are planning for and executing recovery actions, communities can
673 plan for and execute resilience actions – differently – in ways that work for them.]*

674 **2.5. Community Engagement in Resilience**

675 *[Note to reviewers: In a future draft, this section will begin with a discussion on the social science
676 evidence of the role and importance of social capital. Also, may link this section with the section on
677 Social Vulnerabilities (2.2.3) – discussion on how community engagement can help to identify and offset
678 community vulnerabilities.]*

679 For communities to become engaged in the pursuit of resilience, there needs to be a collective belief in
680 the potential threat from the hazard(s) and the value of investing in resilience. These beliefs and values
681 also reflect the level of risk a community is willing to tolerate, which is usually based on experience and
682 available science. Without direct disaster experience, communities rely on science to present hazard
683 probabilities and design options for reducing or avoiding exposure to these endemic community hazards.
684 Without direct experience, the effectiveness of science to engage communities depends on the trust
685 established between scientists and decision makers in having a common understanding of purpose, roles,
686 responsibilities, and limitations as they relate to potential disasters and the means to plan, detect, notify
687 and respond to threats.

688 Communities may seek out opportunities to pursue resilience based on observed disasters at similar scales
689 or levels of development as their own, which trigger changes in beliefs or values as to the merits of
690 resilience. Another manner of engaging community decision makers may come from translating the value
691 of investing in resilience into their performance goals of long-term growth and into the values of
692 sustainability. Many communities have adopted sustainability as a goal for the sake of reducing the
693 dependence on natural and other limited resources through efforts such as recycling, smart technologies,
694 shared community resources and collective expectations of livability goals, such as the simplicity
695 movement. These steps demonstrate a stronger and more dynamic interface between a built community
696 and the natural environment – one that recognizes the interdependency between human systems and
697 natural systems. The health of one affects the overall health and functionality of the other.

698 Resilience comes into play when communities understand how their forbears' decisions resulted in their
699 level of risk (increased or diminished) from potential disasters as well as available opportunities to reduce
700 future losses, either by directly mitigating risk and/or planning to recover in a more risk-averse fashion
701 following a damaging event. Ideally, resilience, as a concept, should help communities demonstrate
702 credible investments toward improved livability during and after expected hazards. It should also expedite
703 recovery following extreme disaster events due to forward thinking, planning and prioritizing in advance,
704 to take advantage of recovery and reconstruction opportunities. This pursuit of resilience should provide a
705 competitive edge for potential business and residential prospects evaluating a location for investments.

706 Resilience, like sustainability, encourages a better understanding of interdependence between a
707 community and its geographical setting. This understanding can be viewed as a starting point for
708 community identity and belonging that relates to a sense of place and quality of life that starts with

709 community members feeling safer, more secure, and less likely to have their lives disrupted by hazards.
710 They share in the beliefs and values of resilience and that the investments in resilience are worthwhile for
711 their sense of growth and achievement.

712

3. Community Disaster Resilience for the Built Environment

3.1. Community Level Disaster Resilience

Communities come in varying sizes and with varying cultures; and they all face a wide range of opportunities, challenges, and hazards. A community can be defined in many ways, from a single neighborhood to a nation. For purposes of this framework, a community is defined as “people who live, work, learn, and/or play together under the jurisdiction of a governance structure, such as a town, city or county.”

Community disaster resilience is best addressed by plans based on the available social services, supported at the neighborhood level, organized around a well-orchestrated community effort, and functional physical infrastructure. As described in Chapter 2, community disaster resilience planning should begin by defining the needs of the community’s citizens, which are supported by a community’s social institutions, prior to hazard events and during recovery. Those needs provide the basis for establishing performance goals for the built environment. The built environment is an essential part of community disaster resilience. A strong foundation provides the building clusters (buildings of similar function) and infrastructure systems needed by the people, businesses and government to restore the neighborhoods, care for vulnerable populations, and restore the community’s economy. Chapter 2 defines how the social institutions are linked to and rely on building clusters and infrastructure systems during the recovery. To understand what is needed from the building clusters and infrastructure systems during recovery, desired performance levels (functionality) and associated restoration times need to be defined for each with the expectation that temporary measures will be provided in the interim. Those definitions, which become the metrics for resilience, are compared to the existing conditions to define gaps that represent opportunities for improvement.

Every community is different and will approach development of a community resilience plan from a different perspective, tolerance for risk, expectation of services to be provided, and planning process. The vitality and usability of the plan depends of its unique adaptation to its community. The plan development and implementation will require a broad base of support.

3.1.1. Community Disaster Resilience for the Built Environment

The term “resilience” means the ability to prepare for and adapt to changing conditions, and withstand and recover rapidly from disruptions. As related to the built environment, resilience means the ability of identified buildings and infrastructure systems to return to full occupancy and function, as soon as they are needed, to support a well-planned and expedited recovery. After identifying the social services to be provided and the necessary building clusters and infrastructure systems, the next step is to identify how soon each is required after a hazard event occurs. Timing will depend on both the type and intensity of the event, the age and composition of the community, and available assistance from neighboring communities, regions, and state.

Achieving and maintaining community resilience is an ongoing effort that involves planning and will benefit from mitigation before the hazard event, followed by emergency response, restoration and long-term reconstruction after the event. This framework defines a process for developing a community plan that will inform actions before, during, and after an expected hazard event occurs.

As outlined in Chapter 1, a variety of efforts were initiated in the past 15 years related to community resilience. Beginning in 2007, the San Francisco Planning and Research Association (SPUR) pioneered this style of resilience planning. Their work’s, focus was at the community level, specifically considering what San Francisco needed from policies and programs to become a Disaster Resilient City (www.spur.org). SPUR’s work produced multiple policy papers and recommendations covering broad issues of disaster resilience. Their policy recommendations focused on what is needed before the disaster, for disaster response, and after the disaster (see Table 3-1).

Community Disaster Resilience for the Built Environment, Community Level Disaster Resilience

47 The Oregon Seismic Safety Policy Advisory Commission led a planning effort in 2012 to 2013 that
 48 followed the SPUR concepts and defined actions from Oregon communities needed to survive and
 49 rebound from a magnitude 9.0 Cascadia earthquake and tsunami
 50 (<http://www.oregon.gov/OMD/OEM/osspac/docs>). The plan determined the impacts of the earthquake
 51 statewide, defined acceptable time frames to restore functions needed to accelerate statewide recovery,
 52 and recommended changes in practices and policies, that if implemented over the next 50 years, the plans
 53 will allow Oregon to reach desired resilience targets.

54 Communities benefit from determining the levels of disaster resilience required for their physical
 55 infrastructure. This is best done for several levels of each prevalent hazard. Accordingly, each individual
 56 building or system will derive its resilience goals and performance levels from those defined by the
 57 community for its cluster and function.

58 **Table 3-1: The SPUR Plan for San Francisco (SPUR 2009).**

SPUR's Resilient City Initiative	
Before the Disaster	Our Before the Disaster work has focused on key questions related to disaster planning. What do we need to be doing now to make sure that our built environment can recover quickly from a major earthquake? Which existing buildings need to be retrofitted, and to what standard of performance? How do we encourage better performance from new buildings? How do we strengthen our infrastructure so that our buildings are serviceable after an earthquake? SPUR addresses these and other questions in four Before the Disaster papers published in the February 2009 edition of the <i>Urbanist</i> .
Disaster Response	Disaster Response focuses on activities during the days and weeks following a catastrophic event, including damage assessment, ensuring the safety of responders, communications and control, evacuation, public health and safety and restoration of vital systems. SPUR has recently completed a paper on the culture of preparedness, which focuses on disaster planning and preparedness in San Francisco's neighborhoods.
After the Disaster	Our After the Disaster task force is asking several key questions: After a catastrophe, are we prepared to rebuild our city to a state even better than it was before? What plans and systems of governance does San Francisco need if it is to be effectively positioned to rebuild? What lessons can be learned from recovery experiences in lower Manhattan, New Orleans, Haiti, Chile, China, and beyond? This task force will be working to complete major papers on long-term recovery, covering the topics of transportation, governance, planning, and housing.

59 **3.1.2. Contributing Factors to Resilience**

60 Just as the prevalent hazards are different across the country, so are the communities with respect to their
 61 age, composition, capabilities, and values. The initial process of developing a community disaster
 62 resilience plan requires an estimation of how quickly a community needs to recover from each prevalent
 63 hazard to maintain its population, workforce, and economic viability given its current built environment
 64 and planned development. Hurricane Katrina demonstrated that New Orleans was not resilient for flood
 65 events because of the impact of flood damage on housing of the workforce. Other communities may be
 66 resilient for all but extreme events, because of their location, inherently resilient government, ability to
 67 meet social needs, and redundancy in their built environment. The impact of the 1994 Northridge
 68 earthquake on the cities in the San Fernando Valley was a good example of inherent resilience. Decades
 69 of good building codes prevented all but a few casualties, yielded a rapidly repairable physical
 70 infrastructure, and the availability of housing just outside the damage zone, which allowed the workforce
 71 to return quickly.

72 From among the many metrics that give communities their distinguishing characteristics, the following
 73 discussion illustrates how they may inform development of a resilience plan. Our discussion is organized
 74 around Social Systems, Political Systems, Economic Systems and the Built and Natural Environment.
 75 Each characteristic needs to be considered by community resilience planners as they seek to identify their
 76 strengths and adapt ideas from other communities.

77 **Social Systems**

78 • **Attitudes.** Communities that have experienced a disaster learn from the experience. If the resulting
 79 recovery effort is orderly and successful, they may develop a sense of contentment with their status

Community Disaster Resilience for the Built Environment, Community Level Disaster Resilience

80 quo, even if the experience was based on a moderate event. If the resulting recovery was challenging,
81 drawn out and less than successful in the short term, they may move more aggressively toward a
82 resilient state in the reconstruction process. A window of opportunity opens for 1 to 2 years, during
83 which people are interested in resilience activities and making big changes to their planning processes
84 and codes. Communities that have not experienced a damaging hazard event are unlikely to be
85 proactive and develop disaster resilience plans.

- 86 • ***Age of the Community.*** Age brings mature and sophisticated social institutions, efficient and
87 informed governance, historically significant landmarks, deep-rooted cultural values, and more. It
88 also brings an aging physical infrastructure that contributes to resilience gaps. With more and larger
89 gaps comes the challenging task of determining priorities for closing the gaps in an orderly manner.
- 90 • ***Social Vulnerability and Inequity.*** Not all people use and/or have access to a community's buildings
91 and infrastructure systems in the same ways. These systems typically reflect the people who created
92 them, and may not address the needs of everyone likely to be affected in a hazard event (or on a day-
93 to-day basis) such as the elderly, people living in poverty, racial and ethnic minority groups, people
94 with disabilities, and those suffering from chronic and/or mental illness. Others that may not be
95 adequately represented are renters, students, single-parent families, small business owners, culturally
96 diverse groups, and historic neighborhoods. Moreover, hazard events tend to create settings in which
97 populations on the margins of vulnerability become vulnerable, increasing the number of people in
98 this category.

99 ***Built and Natural Environment***

- 100 • ***Natural Capital.*** Each community has a unique location, topology and green infrastructure that
101 contribute to its culture, vitality, and vulnerability to hazards. For example, a dense tree canopy
102 increases the vulnerability to severe weather; hills and mountains contribute to landslide
103 vulnerability; flat ground or locations near rivers, lakes, or other bodies of water may be susceptible
104 to flooding and liquefaction vulnerability. Community resilience planning must take these features
105 into account in assessments and mitigation plans.
- 106 • ***Codes, Standards, Administration, and Enforcement.*** Local building codes and enforcement are key
107 tools for building physical infrastructure that performs as anticipated and for retrofitting at opportune
108 times. To achieve resilience, local codes may need to be more stringent than national model
109 standards. A community's history with adoption, administration, and enforcement of codes will
110 significantly influence the degree of inherent resilience present in the physical infrastructure. There
111 must be a commitment to funding these activities for the resilience plan to be effective.
- 112 • ***Architecture and Construction*** – Not all buildings and systems are built alike. Vulnerability to
113 damage depends on the construction materials and their combustibility, structural and non-structural
114 systems, quality of construction, size and shape of the building or systems, codes and practices in
115 place during construction, and the building's current condition. The hundreds of permutations of
116 architecture and construction styles vary by community and impact the communities' resilience. For
117 example, in San Francisco, the multi-family apartment buildings of the 1920s and 1930s are a unique
118 construction style particularly vulnerable to moderate and larger earthquakes. The over 6,000
119 buildings represent a significant amount of housing that will be uninhabitable after a moderate or
120 large seismic event and will create a demand for interim housing that cannot be provided within the
121 city limits. As a result, one of San Francisco's first resilience programs is a mandatory program to
122 retrofit these buildings to a shelter-in-place level.

123 ***Economic Systems***

- 124 • ***Economic Drivers.*** The financial health of a community depends largely on the availability of jobs
125 and a strong set of economic drivers. The vulnerability of the economy to a hazard event depends on
126 the transportability of its industries. Knowledge-based industries can relocate if the workforce or
127 needed physical infrastructure is not quickly restored; research and development industries are more

Community Disaster Resilience for the Built Environment, Community Level Disaster Resilience

128 rooted, because of the related laboratory and test facilities; manufacturing is deeply rooted and hard to
129 move; most tourism is permanent and only needs to be restored. The restoration times and priorities
130 built into a community's disaster resilience plan need to recognize the mobility of the key industries
131 that support their economy.

- 132 • **Financial Conditions.** Communities are typically faced with broad-ranging financial demands for
133 expanded governance and new programs aimed at addressing deficient conditions. Each program
134 requires staff support and funds to achieve the desired outcome. Disaster resilience, which is one of
135 many community needs, requires financial support for emergency responders, planners, and building
136 officials, and funds to develop and implement disaster resilience plans. The speed of recovery
137 depends on those plans and the ability to implement them under recovery conditions.
- 138 • **Resources.** Ongoing efforts to encourage development and achieve sustainability through energy
139 efficiency and alternate energy generation have created a variety of new funding mechanisms.
140 Community-backed bonds, locally-crafted loan programs, taxes, and FEMA mitigation grants are
141 being used to finance mitigation projects. Tax incentives can also be enacted as a means to underwrite
142 activities that are needed for community resilience. A lack of immediate funding should not overly
143 influence the content of the disaster resilience plan. The plan should point to the need for new funding
144 solutions.

145 Political Systems

- 146 • **Priorities for Emerging Public Policies.** Communities face multiple opportunities that bring new
147 public policies and priorities. A transparent and holistic community disaster resilience plan, with
148 informed recovery plans and prioritized mitigation options, offers the opportunity for a community to
149 balance the cost and benefit of becoming more resilient with other competing opportunities and
150 demands.
- 151 • **Governance Structure.** While resilience planning begins at the neighborhood level, the process and
152 structure needed to build up to a community-level resilience plan will depend on the community
153 governance structure. For a community that is an incorporated city, the plan will be self-contained
154 and represent the needs of multiple neighborhoods served by the city departments and agencies. If the
155 community is an unincorporated portion of a county, the plan will benefit from the capabilities of
156 multiple neighborhoods and the interaction, interdependence, and mutual assistance inherent in the
157 other communities that form the unincorporated areas of the county. In both cases, communities will
158 need to look outside their jurisdictions to understand and plan for their dependence on others in their
159 region.
- 160 • **Hazard Mitigation Planning.** The Disaster Mitigation Act of 2000 specifically addresses mitigation
161 planning and requires state and local governments to prepare multi-hazard mitigation plans as a
162 precondition for receiving FEMA mitigation project grants. Many communities have produced such
163 plans and update them every 5 years. This Community Disaster Resilience Framework can
164 significantly inform the Community Capabilities, Risk Assessment, and Mitigation Strategy included
165 in the FEMA Mitigation Plan. An existing Mitigation Plan can provide much of the planning
166 information needed for identifying assets, resources, and stakeholders. Hazard Mitigation Plans are
167 not regulatory, and if these plans are to have a measured impact to promote resilience activities, they
168 should be formally adopted into compliance with the community's land use, zoning, and building
169 code regulations (APA 2010).

170 3.1.3. Acceptable Risks

171 Acceptable risk can be defined "as the level of human and/or material injury or loss.... that is considered
172 to be tolerable by a society or authorities in view of the social, political, and economic cost-benefit
173 analysis" (Businessdictionary.com, 2015). Risk is often defined and interpreted differently by engineers,
174 laypeople, community leaders, and other stakeholders, based on their level of understanding and
175 expectations. Risks to the built environment are affected by land use planning, possible hazard events,
176 adoption and enforcement of codes and standards, and maintenance and operation of physical

Community Disaster Resilience for the Built Environment, Community Level Disaster Resilience

177 infrastructure. Risk levels currently embodied in the built environment can be inferred from the national
178 model building codes, standards, and guidelines. The consensus process of codes and standards provides
179 the best mechanism for defining minimum levels of acceptable risk for the built environment. The risks in
180 the codes and standards account for hazard levels, performance of various types of construction, and the
181 consequences of damage or failure. Standards and guideline writers bring their personal experiences to
182 the development process. They normalize the experience for application to other vulnerable regions via
183 various metrics and formulations, and develop guidance for designing to an equivalent acceptable level.
184 Codes, standards, and guidelines also provide minimum design criteria for many natural hazards and
185 building and infrastructure performance.

186 Each community's current land use policies and construction standards are an inherent measure of the risk
187 they have accepted with regard to the built environment. This decision is often influenced by other factors
188 such as costs, politics, and desire for growth. For this reason, construction practices and the degree of
189 compliance with current national standards varies dramatically across the nation. It is common for local
190 jurisdictions to amend the national standard and eliminate provisions they deem unnecessary. The lack of
191 personal experience with a damaging hazard event and the lack of understanding about the level of
192 damage expected when a significant hazard event occurs often lead to misconceptions of a community's
193 vulnerability. Communities should recognize their vulnerabilities based on national experience, not just
194 local events, by adopting and enforcing the current national land use policies (e.g., flood zones) and
195 model codes. The cost of compliance for new construction is minor compared to future savings.

196 The resilience planning process needs to consider the performance expectations embedded in adopted
197 design codes as an indicator for the community's existing physical infrastructure, as outlined in Chapters
198 5 through 9. Since the performance expectation is focused at the community level, the plan does not insist
199 that all buildings meet the same performance level. Instead, selected building clusters and infrastructure
200 systems with specific functions for community recovery should meet the needed performance. A
201 community's decisions for damage levels and required functionality in the built environment defines their
202 level of acceptable risk.

3.1.4. Implementing Community Resilience Planning

203 A community resilience plan should be developed through a collaborative arrangement between the Chief
204 Executive's office (e.g., Mayor), community departments and key stakeholders, including representatives
205 of the community's social institutions (e.g., community organizations, nongovernmental organizations,
206 business/industry groups, health care, education, etc.), representatives of the physical infrastructure
207 systems, and interested community members. Because of the holistic nature of the plan and the need to be
208 fully supported during implementation, a public-private partnership is the best mechanism to develop the
209 resilience plan. Guidance related to building a planning team is well documented in the FEMA Local
210 Mitigation Planning Handbook. FEMA suggest beginning with existing community organizations or
211 committees and involving all agencies and organizations involved in hazard response and mitigation
212 planning.

213 The Community Resilience Planning Team will vary in size and breadth depending on the community.
214 The following organizations that include elected officials, Departments, Businesses and Service
215 Professionals and volunteer organizations, are examples those that should be considered for inclusion in
216 the team depending on the size and makeup of the community.

Elected Officials

217

- 218 • ***The Office of the Chief Executive (e.g., Mayor)*** provides leadership, encourages collaboration
219 between departments, and serves as the link to the stakeholders in organizing, compiling, and vetting
220 the plan throughout the community. The office also serves as the point of contact for interactions with
221 neighboring communities within the region and the State. A Chief Resilience Officer or other leader
222 within the office should lead the effort.

224 • ***City Council or Board of Supervisors*** represents the diversity of community opinion, adopts the
225 needed plans, and enacts legislation for needed mandatory mitigation efforts.

226 ***Departments***

227 • The ***Department of Building and Safety*** identifies appropriate codes and standards for adoption;
228 provides plan check and inspection services as needed, to assure proper construction; provides post
229 event inspection services aimed at restoring functionality, as soon as possible. The department should
230 also develop and maintain a GIS-based mapping database of all community physical infrastructure,
231 and social institutions and their relationship to the physical infrastructure.

232 • The ***Department of Public Works*** is responsible for publicly owned buildings, roads, and
233 infrastructure, and identifies emergency response and recovery routes.

234 • ***Fire Departments/Districts*** are responsible for codes and enforcement of construction standards
235 related to fire safety and brings expertise related to urban fires, wild fires, and fire following hazard
236 events.

237 • ***Parks and Recreation*** identifies open spaces available for emergency or interim use for housing and
238 other neighborhood functions.

239 • The ***Public Utilities Commission*** is responsible for overseeing publicly owned utility systems and
240 assists in developing recovery goals.

241 • The ***Planning Department*** identifies pre-event land use and mitigation opportunities and post-event
242 recovery opportunities that will improve the city's layout and reduce vulnerabilities through repair
243 and reconstruction projects and future development.

244 • The ***Emergency Management Department*** identifies what is needed from the physical infrastructure
245 to streamline response and recovery of the social structure of the community, including defining a set
246 of standardized hashtags to facilitate community-wide information transfer

247 ***Business and Service Professionals***

248 • ***Chambers of Commerce, Community Business Districts, Building Owners, and Managers*** provide
249 the business perspective on resilience planning and recovery in terms of their needs for workforce,
250 buildings, utilities, and other infrastructure systems, as well as how their needs should influence the
251 performance levels selected.

252 • ***Service and Utility Providers*** hold the keys to rapid recovery of functionality and should work
253 together to understand the community needs and priorities for recovery, as well as the
254 interdependencies they share.

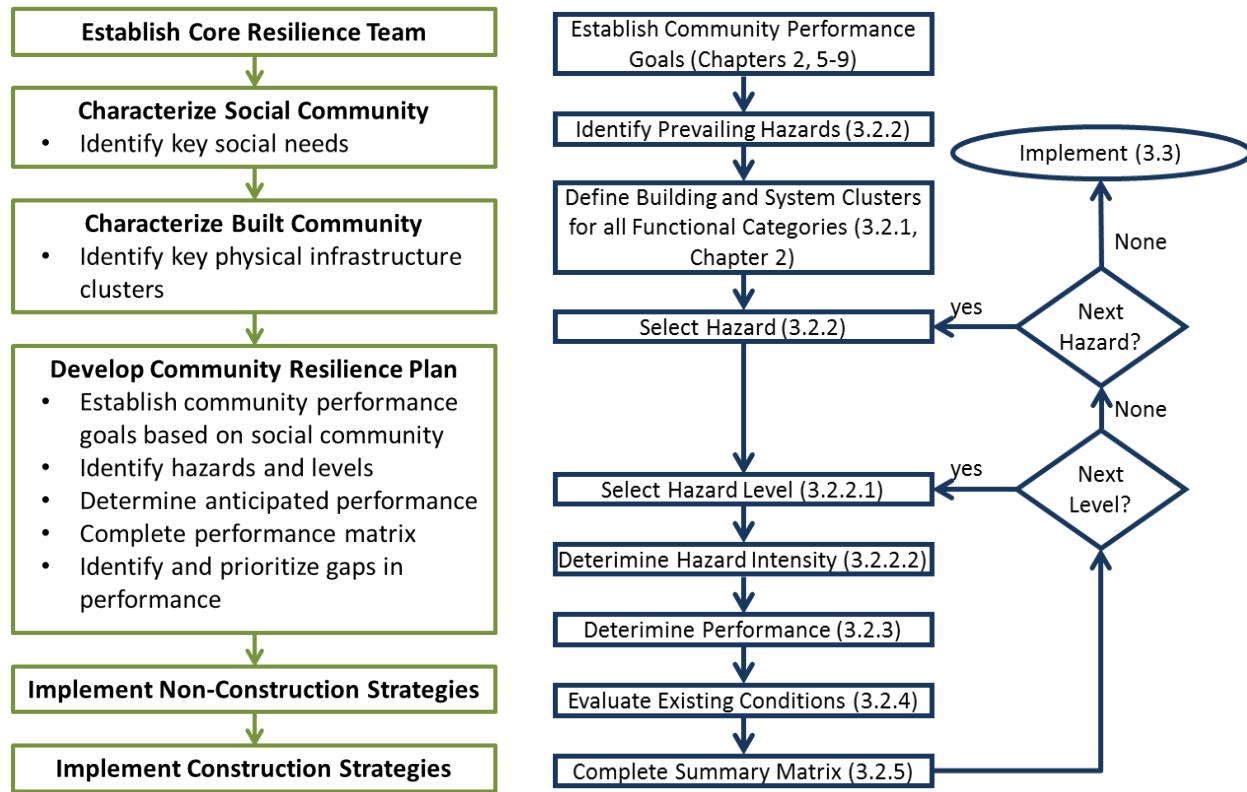
255 • ***Architects and Engineers*** help determine the design and performance capabilities for the physical
256 infrastructure and assist in the development of suitable standards and guidelines. They can help
257 establish desired performance goals and the actual performance anticipated for the existing built
258 environment.

259 ***Volunteer Organizations***

260 • ***Nongovernment Organizations*** (NGO) consist of any non-profit, voluntary citizens' groups that are
261 organized on a local, national or international level and is task-oriented. NGOs perform a variety of
262 service and humanitarian functions, bring citizen concerns to Governments, advocate and monitor
263 policies and encourage political participation through provision of information. Within the
264 Community Service social institution (See Chapter 2), NGOs provide support to other social
265 institutions, especially those that provide services to vulnerable and at-risk populations

266 • ***National Voluntary Organizations Active in Disaster*** (VOADS) is a nonprofit, nonpartisan,
267 membership-based organization that helps to build resiliency in communities nationwide. It serves as
268 the forum where organizations share knowledge and resources throughout the disaster cycle —
269 preparation, response, recovery and mitigation — to help disaster survivors and their communities.

270 • **Community Service Organizations (CSOs)** are volunteer, membership based groups that provide
271 service to the community's social institutions and will have a role in the post-disaster environment.


272 Implementing a resilience plan for the built environment is a long-term effort that requires constant
273 attention, monitoring, and evolution. Because of the cost and the need to transform the governance
274 systems, real estate, and construction cultures, it can easily take up to 50 years or more to fully
275 implement. Once the resilience performance goals for buildings and systems are adopted, all new
276 construction can be built in compliance at very little additional cost. Studies, such as FEMA 313 (1998),
277 show that the increased costs range from 0 to 5 %. Unfortunately, this alone will only have a long-term
278 impact, since the vast majority of buildings and systems will not conform until replaced or retrofitted.
279 Retrofitting existing facilities to achieve new performance goals are generally considered to be cost
280 prohibitive. However, the resilience plan allows resilience gaps related to clusters of buildings or
281 infrastructure systems to be judged in terms of relative importance to the community, mitigated as
282 appropriate, and can provide short-term interim, post recovery strategies.

283 **3.2. Pathway to Community Resilience**

284 Figure 3-1 shows a flow chart of the Community Resilience Planning process. First steps include
285 establishing the core resilience planning team, determining social assets and identifying key social needs
286 for community recovery, and determining physical infrastructure assets and natural resources that support
287 these key social needs. With this community information, the community resilience plan is developed
288 with the following steps: 1) establish community-level performance goals, 2) determine anticipated
289 performance of infrastructure clusters; 3) complete the performance matrix, and 4) identify and prioritize
290 gaps between the desired and anticipated performance for the clusters and each hazard. Once the gaps are
291 prioritized, the community can develop strategies to mitigate damage and improve recovery of functions
292 across the community. This path is compatible with the FEMA Mitigation Plan (FEMA 2013), which
293 many communities are using. However, the plan to community resilience goes a step farther to envision
294 and plan for recovery of functionality across the community.

295 When a hazard occurs, each building and infrastructure system should protect the occupants from serious
296 injury or death. This goal can be achieved by adopting and enforcing current building codes. In addition
297 to safety, communities need to determine how soon their buildings and infrastructure systems will need to
298 be functional to support community recovery. The desired recovery times will depend on the needs of the
299 social institutions, the size of the area affected during the hazard event, and the anticipated level of
300 disruption in terms of affected area (e.g., local vs. widespread) and loss of functionality. The outcome of
301 planning is summarized in a *Summary Resilience Matrix*, as defined in Section 3.2.5.

302 Given this set of performance goals organized around hazards, physical infrastructure system clusters, and
303 anticipated levels of disruption, communities can develop and implement a resilience plan and strategies
304 to improve the anticipated performance. Anticipated performance measures include safety, functionality,
305 and recovery times. Comparing the performance of the existing built environment to the performance
306 goals identifies opportunities for mitigation or other plans, such as relocation either before or after a
307 hazard event.

a. Core Activities for Developing a Resilient Community

b. Flow Chart for Developing a Community Resilience Plan

308

309

3.2.1. Identify Clusters of Buildings and Infrastructure Systems

310 Clusters of buildings and supporting infrastructure systems that support social needs and emergency
 311 response efforts after a hazard event need to be identified. The cluster ensures that all supporting systems
 312 are functional so that the buildings and infrastructure systems can operate as intended. Chapters 5 through
 313 9 provide specific guidance on how to define the clusters of facilities and support systems needed for each
 314 phase of recovery, short term, intermediate, and long term. Table 3-2 lists the buildings that are likely
 315 needed during each recovery phase within a cluster. Refer to Chapter 4 for guidance on considering the
 316 interdependencies between physical infrastructure systems.

317

Table 3-2: Buildings and Facilities in Clusters by Recovery Phase

Recovery Phase	Buildings in Clusters
1. Short Term	Critical Facilities <ol style="list-style-type: none"> 1. Hospitals and Essential healthcare facilities 2. Police and Fire Stations 3. Emergency Operations Centers 4. Disaster Debris and Recycling Centers
	Emergency Housing <ol style="list-style-type: none"> 1. Public Shelters 2. Residential Shelter-in-Place 3. Food Distribution Centers 4. Nursing Homes, Transitional Housing 5. Animal Shelters 6. Faith and Community-Based Organizations 7. Emergency Shelter for Emergency Response and Recovery Workers 8. Gas Stations (location known by community) 9. Banking Facilities (location known by community)
2. Intermediate	Housing/Neighborhoods/Business <ol style="list-style-type: none"> 1. Essential City Services Facilities 2. Schools 3. Medical Provider Offices 4. Neighborhood Retail Stores 5. Local Businesses 6. Daycare Centers 7. Houses of Worship, Meditation, and Exercise 8. Buildings or Space for Social Services (e.g., Child Services) and Prosecution Activities 9. Temporary Spaces for Worship 10. Temporary Space for Morgue 11. Temporary Spaces for Bath Houses 12. Temporary Spaces for Markets 13. Temporary Spaces for Banks 14. Temporary Spaces for Pharmacies 15. Local Grocery Stores (location known by community)
3. Long Term	Community Recovery <ol style="list-style-type: none"> 1. Residential Housing 2. Commercial and Industrial Businesses 3. Non-Emergency City Services 4. Resilient Landscape Repair, Redesign, Reconstruction, and Repairs to Domestic Environment

318

3.2.2. Hazard Events

319 This framework is based on resilience planning for three levels of a hazard events that are referred to as
 320 routine, expected, and extreme. The definition of each level depends on the characterization of the hazard
 321 and a community's tolerance for damage or loss of function.

322 Communities should select the prevailing hazards that may damage physical infrastructure, which may
 323 include:

- 324 • **Wind** – storms, hurricane, tornadoes
- 325 • **Earthquake** – ground shaking, faulting, landslides, liquefaction
- 326 • **Inundation** – riverine flooding, coastal flooding, tsunami
- 327 • **Fire** – urban/building, wildfire, and fire following a hazard event
- 328 • **Snow or Rain** – freeze or thaw
- 329 • **Human-caused** – blast, vehicular impact, toxic environmental contamination as a result of industrial
 330 or other accidents as well as due to clean-up/disposal methods after a hazard event

332

3.2.2.1. Hazard Levels for Resilience Planning

333 For each hazard selected, communities should determine the three levels of hazard intensity or magnitude
 334 for use in the framework. Each should be defined in the same terms that are used for design.

- 335 • **Routine** – Hazard level is below the expected (design) level and occurs more frequently. Buildings
 336 and infrastructure systems should remain fully functional and not experience any significant damage
 337 that would disrupt the flow of normal living.
- 338 • **Expected** – Design hazard level, where the design level is based on codes, may be greater than the
 339 minimum required by codes, or may be set for the building or infrastructure system based on other
 340 criteria. Buildings and systems should remain functional at a level sufficient to support the response
 341 and recovery of the community. This level is based on the design level normally used for buildings.
- 342 • **Extreme** – Hazard level is above the expected (design) level and may be referred to as the maximum
 343 considered occurrence based on the historic record and changes anticipated due to climate change.
 344 However, this hazard level should not need to be the largest possible hazard level that can be
 345 envisioned, but rather one that the community wants to be able to recover from, though it will take
 346 longer than for an expected hazard event. Critical facilities and infrastructure systems should remain
 347 functional at this level. Other building and infrastructure systems should perform at a level that
 348 protects the occupants and allows them to egress without assistance. In addition, emergency response
 349 plans should be based on scenarios that represent this hazard level.

350 As an example, Table 3-3 contains the definitions that SPUR used for the three levels of seismic hazard
 351 they recommended for San Francisco resilience planning.

352 **Table 3-3: Sample Hazard definition for earthquakes developed by SPUR for San Francisco**

Routine	<i>Earthquakes that are likely to occur routinely.</i> Routine earthquakes are defined as having a 70% probability of occurring in 50 years. In general, earthquakes of this size will have magnitudes equal to 5.0 – 5.5, should not cause any noticeable damage, and should only serve as a reminder of the inevitable. San Francisco's Department of Building Inspection (DBI) uses this earthquake level in their Administrative Bulletin AB 083 for purposes of defining the "service level" performance of tall buildings.
Expected	<i>An earthquake that can reasonably be expected to occur once during the useful life of a structure or system.</i> It is defined as having a 10% probability of occurrence in 50 years. San Francisco's Community Action Plan for Seismic Safety (CAPSS) assumed that a magnitude 7.2 earthquake located on the peninsula segment of the San Andreas Fault would produce this level of shaking in most of the city.
Extreme (Maximum Considered Earthquake)	<i>The extreme earthquake that can reasonably be expected to occur on a nearby fault.</i> It is defined as having a 2% probability of occurrence in 50 years. The CAPSS defined magnitude 7.9 earthquake located on the peninsula segment of the San Andreas Fault would produce this level of shaking in most of the city.

353 The American Society of Civil Engineers (ASCE) Standard 7-10 *Minimum Design Loads for Buildings
 354 and Other Structures* defines minimum hazard levels for design nationwide. Table 3-4 presents suggested
 355 design hazard levels for buildings and facilities based on ASCE 7-10. Communities may define the size of
 356 a hazard they wish to consider for each level, based on the table or based on other available information.
 357 It is important that hazard levels are selected and characterized in a manner that can be used by design
 358 professionals in design and retrofit of facilities.

359

Table 3-4: Design Loads for Buildings and Facilities (ASCE 7-10)

Hazard	Routine	Expected	Extreme
Ground Snow	50 year	300 to 500 year ¹	TBD
Rain	2	2	2
Wind – Extratropical	50 year	700 year	3,000 year ³
Wind – Hurricane	50 to 100 year	700 year	3,000 year ³
Wind – Tornado	3	3	3
Earthquake ⁴	50 year	500 year	2,500 year
Tsunami	50 year	500 year	2,500 year
Flood	100 year	100 to 500 year	TBD
Fire – Wildfire	4	4	4
Fire – Urban/Manmade	4	4	4
Blast / Terrorism	5	5	5

¹ For the northeast, 1.6 (the LRFD factor on snow load) times the 50-year ground snow load is equivalent to the 300 to 500 year snow load.

² Rain is designed by rainfall intensity of inches per hour or mm/h, as specified by the local code.

³ Tornado and tsunami loads are not addressed in ASCE 7-10. Tornadoes are presently classified by the EF scale. Tsunami loads are based on a proposal for ASCE 7-16.

⁴ Hazards to be determined in conjunction with design professionals based on deterministic scenarios.

⁵ Hazards to be determined based on deterministic scenarios. Reference UFC 03-020-01 for examples of deterministic scenarios.

360

3.2.2.2. Hazard Intensity

361 The impact of hazards depends on more than just size and frequency. The impact also depends on the size
 362 of the area affected, the extent of civilization in the affected area, the impact of the damage, and the
 363 community's ability to respond. The size of the affected area depends on the particular hazard, as does the
 364 geographic distribution of the intensity. A wildfire in the wilderness areas of the California Sierra Nevada
 365 Mountains, where there is little population, can burn many square miles of forest with little disruption. On
 366 the other hand, the 1992 Oakland Hills firestorm covered only 1520 acres, but killed 11, destroyed nearly
 367 4,000 homes and apartments, and caused \$1.5 billion in damage. The affected area was relatively small
 368 compared to other wildfires; but the disruption to the affected population and built environment was
 369 severe.

370 For purposes of this framework, the terms *affected area* and *anticipated disruption level* are defined in
 371 terms of the Community and the impacts of a hazard event at the present time.

372

Table 3-5: Affected Area and Anticipated Disruption Level

Category		Definition
Affected area	Localized	Damage and lost functionality is contained within an isolated area of the community. While the Emergency Operations Center (EOC) may open, it is able to organize needed actions within a few days and allow the community to return to normal operations and manage recovery. Economic impacts are localized
	Community	Significant damage and loss of functionality is contained within the community, such that assistance is available from neighboring areas that were not affected. The EOC opens, directs the response and turns recovery over to usual processes once the City governance structure takes over. Economic impacts extend to the region or state.
	Regional	Significant damage occurs beyond community boundaries. Area needing emergency response and recovery assistance covers multiple communities in a region, each activating their respective EOCs and seeking assistance in response and recovery from outside the region. Economic impacts may extend national and globally.
Anticipated Disruption Level	Minor	All required response and recovery assistance is handled within the normal operating procedures of the affected community agencies, departments, and local businesses with little to no disruption to the normal flow of living. Critical facilities and emergency housing are functional and community infrastructure systems are functional with local minor damage.
	Moderate	Community EOC activates and all response and recovery assistance is orchestrated locally, primarily using local resources. Critical facilities and emergency housing are functional and community infrastructure systems are partially functional.
	Severe	Response and recovery efforts are beyond the authority and capability of local communities that are affected and outside coordination is needed to meet the needs of the multiple jurisdictions affected. Professional services and physical resources are needed from outside of the region. Critical facilities and emergency housing have moderate damage but can be occupied with repairs, community infrastructure systems are not functional for most needs.

373

3.2.3. Community Performance Goals

374 Performance goals for buildings, building clusters and infrastructure systems are a combination of
 375 performance levels during the hazard event and recovery times. Standard definitions for performance
 376 levels that cover safety and functionality assure uniform development of community plans and the codes,
 377 guidelines, manuals of practice, and analytical tools that support them. Recovery times are needed to
 378 identify the extent of temporary facilities and systems that will be needed, as well as for prioritizing repair
 379 and reconstruction that recognizes local, regional, and possibly national and international implications of
 380 damage due to a hazard event. For instance, if a production plant in a community is the national supplier
 381 for a particular good, the impact of damage to the plant extends well beyond the community.

382

3.2.3.1. Performance Levels for Buildings

383 To assure that a community framework is compatible with codes and standards, and other guidance
 384 documents for physical infrastructure, common definitions of performance are needed for facilities and
 385 infrastructure systems. Setting performance goals for both safety and functionality informs plans for new
 386 construction and any needed retrofitting of existing buildings and infrastructure systems. For new
 387 construction, such performance goals help improve a community's resilience over time. For existing
 388 construction, performance goals help identify clusters of buildings and infrastructure systems that may
 389 benefit retrofitting or other measures to provide the needed performance. Table 3-6 provides standard
 390 definitions for building performance levels that are used for seismic performance of buildings, but are
 391 adopted here for general application to performance for all hazards.

392

393

Table 3-6: Performance Definitions for Buildings

Category	Performance Standard
A. Safe and operational	These are facilities that suffer only minor damage and have the ability to function without interruption. Essential facilities such as hospitals and emergency operations centers need to have this level of function.
B. Safe and usable during repair	These are facilities that experience moderate damage to their finishes, contents and support systems. They will receive green tags when inspected and will be safe to occupy after the hazard event. This level of performance is suitable for shelter-in-place residential buildings, neighborhood businesses and services, and other businesses or services deemed important to community recovery.
C. Safe and not usable	These facilities meet the minimum safety goals, but a significant number will remain closed until they are repaired. These facilities will receive yellow tags. This performance may be suitable for some of the facilities that support the community's economy. Demand for business and market factors will determine when they should be repaired or replaced.
D. Unsafe – partial or complete collapse	These facilities are dangerous because the extent of damage may lead to casualties.

394

3.2.3.2. Performance Recovery Levels for Building Clusters and Infrastructure Systems

395

Performance levels for building clusters and infrastructure systems are defined in terms of the time needed to restore the cluster or system to full functionality. Recovery times will vary with the hazard under consideration. Early in the planning process, generalized time frames such as days, weeks, and months are sufficient. Disaster response and recovery traditionally is organized around sequential recovery stages or phases. Recovery phases are defined in a variety of ways by different programs, but generally have common goals. The Department of Homeland Security (DHS) National Disaster Response Plan defines them as short, intermediate and long term as shown in Figure 3-2 with a series of activities defined in each. While each begins early in the recovery time frame, the bulk of effort follows sequential stages.

404

405

Figure 3-2: National Disaster Recovery Framework (NDEF) Recovery Continuum (NDRF 2014)

406

The three recovery phases use the terms in the NDRF and are defined in Table 3-7. While discrete time frames are designated, it is recognized and expected that there will be considerable overlap in their initiation and completion, and each recovery phase could conceivably start shortly after the hazard event. The time frames shown are suggestions related to expected hazard events and may not be applicable for all plans.

411

Table 3-7: Recover Phases

Phase	Name	Time Frame	Condition of the built environment
I	Short Term	0 to 3 days	Initial emergency response and staging for recovery
II	Intermediate	1 to 12 weeks	Housing restored and ongoing social needs met
III	Long Term	4 to 36+ months	Reconstruction in support of economic recovery

412

413

414

415

For Buildings in Clusters. While individual buildings are assigned performance levels that reflect their role in the community, as noted above, the performance of a cluster with multiple buildings depends on how many of the buildings are restored and functioning. For purposes of planning, it is helpful to set goals for three levels of cluster recovery for the percentage of buildings recovered.

416

Table 3-8: Building Performance Recovery Levels

Category	Performance Level
30% Restored	Minimum number needed to initiate the activities assigned to the cluster
60% Restored	Minimum number needed to initiate usual operations
90% Restored	Minimum number needed to declare cluster is operating at normal capacity

417 **For Infrastructure Systems.** The recovery of infrastructure systems needs to be measured in terms of its
 418 ability to restore service as a percentage of full capacity. While the components of the system are
 419 measured and rated in terms of the performance levels defined above, the overall performance of the
 420 system needs a system-wide categorization based on restoration of service.

421

Table 3-9: Infrastructure Performance Recovery Levels

Category	Performance Level
I	Resume 90% service within days and 100% within weeks
II	Resume 90% service within weeks and 100% within months
III	Resume 90% service within months and 100% within years

422 **3.2.4. Anticipated Performance of the Physical Infrastructure Clusters**

423 The majority of buildings and infrastructure systems in service today have been designed to serve their
 424 intended functions on a daily basis under the normal environmental conditions. Buildings and other
 425 structures are also designed to provide occupant safety during an expected (design) level hazard event, but
 426 they may not continue to be functional. The design of buildings and physical infrastructure systems are
 427 provided by experienced architects and engineers following their community codes and standards of
 428 practice. The codes and standards of practice are continually evolving due to changing technology,
 429 changing needs, and to address observed performance issues during hazard events. Current design
 430 practices related to predicting performance for the expected or extreme hazard event are uneven, and may
 431 be based on expert judgment or past experience of other communities. The technologies needed to
 432 estimate the anticipated performance of existing buildings and infrastructure systems are constantly being
 433 improved. Technologies related to building evaluation for seismic conditions is maturing and is in its
 434 third generation. On the other hand, methods are just emerging for estimating infrastructure system
 435 performance and restoration times. Chapters 5 through 9 provide guidance on how to estimate the
 436 performance of existing buildings and infrastructure systems.

437 Architects and engineers generally design or evaluate buildings and infrastructure systems one building or
 438 system at a time without considering community-level functions or dependencies on other systems. Under
 439 a community resilience plan, each design should be compatible with the goals of the community
 440 resilience plan.

441 While it would be ideal to retrofit or replace all buildings and systems that do not meet the community
 442 resilience goals, it is neither necessary nor practical. As a starting point, a community should focus on
 443 having a critical mass of buildings and infrastructure systems to support short term recovery

444 The next step is to evaluate each of its designated clusters of buildings and infrastructure systems and
 445 estimate its anticipated recovery time for its current condition for each level of the hazard. This
 446 information, when compared to the performance goals previously set, defines the gaps that need to be
 447 addressed.

448 **3.2.5. Summary Resilience Matrix**

449 A matrix-based presentation of the many facets of a community resilience plan has been developed for
 450 use with this framework. It includes a Detailed Resilience Matrix for buildings and infrastructure systems.
 451 Example detailed matrices for the fictional community Centerville, USA are developed and shown in
 452 each of the infrastructure system chapters that follow and they include the recovery times for each

453 recovery phase and estimated levels defined in Table 3-7 for each of the three hazard levels. The detailed
454 example matrices for Centerville, USA are summarized in three Resilience Matrices, as shown in Table
455 3-10 through Table 3-12, to provide an overview of the desired and anticipated recovery goals estimated
456 for the built environment. For purposes of providing a general overview, the summary matrix only shows
457 the 90% restoration time needed for all elements within each phase for each infrastructure system.

DISASTER RESILIENCE FRAMEWORK

75% Draft for San Diego, CA Workshop

11 February 2015

Community Disaster Resilience for the Built Environment, Pathway to Community Resilience

458

Table 3-10: Example Summary Resilience Matrix for a Routine Event in Centerville, USA

Disturbance			Restoration times		
(1)	Hazard	Any	(2)	30%	Restored
	Affected Area for Routine Event	Localized		60%	Restored
	Disruption Level	Minor		90%	Restored
			(3)	X	Current

459

Functional Category: Cluster	Overall Recovery Time for Hazard and Level Listed									
	Routine Hazard Level									
	Phase 1 – Short-Term			Phase 2 -- Intermediate			Phase 3 – Long-Term			
	Days	Days	Days	Wks	Wks	Wks	Mos	Mos	Mos	
	0	1	1-3	1-4	4-8	8-12	4	4-24	24+	
Critical Facilities										
Buildings	90%	X								
Transportation	90%	X								
Energy	90%	X								
Water	90%		X							
Waste Water		90%	X							
Communication	90%		X							
Emergency Housing										
Buildings	90%		X							
Transportation	90%	X								
Energy	90%	X								
Water	90%		X							
Waste Water		90%	X							
Communication	90%			X						
Housing/Neighborhoods										
Buildings	90%		X							
Transportation		90%	X							
Energy		90%	X							
Water		90%		X						
Waste Water			90%	X						
Communication		90%		X						
Community Recovery										
Buildings		90%	X							
Transportation			90%	X						
Energy		90%	X							
Water			90%	X						
Waste Water			90%	X						
Communication		90%		X						

460

Footnotes:

- 1 Specify hazard being considered
- Specify level – Routine, Expected, Extreme
- Specify the size of the area affected – localized, community, regional
- Specify severity of disruption – minor, moderate, severe
- 2 30% 60% 90% Restoration times relate to number of elements restored within the cluster
- 3 X Estimated 90% restoration time for current conditions based on design standards and current inventory

DISASTER RESILIENCE FRAMEWORK

75% Draft for San Diego, CA Workshop

11 February 2015

Community Disaster Resilience for the Built Environment, Pathway to Community Resilience

461

Table 3-11: Example Summary Resilience Matrix for an Expected Event in Centerville, USA

Disturbance			Restoration times		
(1)	Hazard	Any	(2)	30%	Restored
	Affected Area for Expected Event	Community		60%	Restored
	Disruption Level	Moderate		90%	Restored
(3)			X		Current

462

Functional Category: Cluster	Overall Recovery Time for Hazard and Level Listed								
	Expected Hazard Level								
	Phase 1 – Short-Term			Phase 1 – Short-Term			Phase 1 – Short-Term		
	Days	Days	Days	Wks	Wks	Wks	Mos	Mos	Mos
	0	1	1-3	1-4	4-8	8-12	4	4-24	24+
Critical Facilities									
Buildings	90%							X	
Transportation		90%	X						
Energy		90%	X						
Water			90%		X				
Waste Water				90%				X	
Communication		90%		X					
Emergency Housing									
Buildings				90%					X
Transportation			90%	X					
Energy			90%	X					
Water			90%		X				
Waste Water				90%				X	
Communication				90%	X				
Housing/Neighborhoods							90%		X
Buildings							90%		
Transportation			90%	X					
Energy			90%	X					
Water				90%				X	
Waste Water					90%			X	
Communication				90%				X	
Community Recovery								90%	X
Buildings								90%	
Transportation			90%	X					
Energy			90%	X					
Water				90%				X	
Waste Water					90%			X	
Communication				90%				X	

463

Footnotes: See Table 3-10, page 16

DISASTER RESILIENCE FRAMEWORK

75% Draft for San Diego, CA Workshop

11 February 2015

Community Disaster Resilience for the Built Environment, Pathway to Community Resilience

464

Table 3-12: Example Summary Resilience Matrix for an Extreme Event in Centerville, USA

Disturbance			Restoration times		
(1)	Hazard	Any	(2)	30%	Restored
	Affected Area for Extreme Event	Regional		60%	Restored
	Disruption Level	Severe		90%	Restored
			(3)	X	Current

465

Functional Category: Cluster	Overall Recovery Time for Hazard and Level Listed								
	Extreme Hazard Level								
	Phase 1 – Short-Term			Phase 1 – Short-Term			Phase 1 – Short-Term		
	Days	Days	Days	Wks	Wks	Wks	Mos	Mos	Mos
	0	1	1-3	1-4	4-8	8-12	4	4-36	36+
Critical Facilities									
Buildings						90%			X
Transportation			90%		X				
Energy				90%					
Water							90%	X	
Waste Water					90%			X	
Communication	90%			X					
Emergency Housing									
Buildings						90%			X
Transportation			90%		X				
Energy				90%					
Water					90%		X		
Waste Water					90%			X	
Communication			90%				X		
Housing/Neighborhoods							90%		X
Buildings									
Transportation			90%		X				
Energy				90%	X				
Water					90%			X	
Waste Water						90%		X	
Communication					90%		X		
Community Recovery							90%		X
Buildings									
Transportation			90%		X				
Energy				90%	X				
Water						90%		X	
Waste Water							90%		X
Communication					90%			X	

466

Footnotes: See Table 3-10, page 16

467

468 **3.3. Mitigation and Recovery Strategies**

469 Community disaster resilience planning provides a comprehensive picture of the gaps between desired
470 and anticipated performance of the physical infrastructure to support recovery for the hazards and hazard
471 levels considered. This information provides communities with the opportunity to develop short term
472 plans for covering the most urgent gaps with emergency/interim facilities and supporting infrastructure
473 systems as well as a comprehensive community-level basis for long term strategies that will eventually
474 close the gaps.

475 Mitigation to derive long term solutions before the event costs money, but reduces demands during
476 recovery and can speed up the overall recovery process. Streamlining recovery processes can also reduce
477 the need for mitigation.

478 Mitigating the gaps can be addressed in a number of ways, from altering the expectations to relying on
479 more external assistance, to adding redundancies, to retrofit and/or reconstruction programs that add
480 robustness. For some hazards, such as flooding, the threat can be redirected.

481 Mitigation also provides the opportunity to build-back better. When a hazard event occurs, there is
482 significant pressure to quickly restore the built environment to its pre-event condition. With advanced
483 planning, reconstruction can be done to a “new normal” that includes addressing the needs of the social
484 institutions and also improving sustainability, and resilience.

485 Cost is always an issue with regard to funding mitigation activities. While the initial planning is
486 comprehensive and requires the interaction of a large number of people, it is the first and most cost effect
487 step in the process, carrying out the needed retrofits before the hazard event occurs has significant long
488 term benefits. A study of grants awarded by FEMA indicates “a dollar spent on disaster mitigation saves
489 society an average of \$4.” (MMC 2005) It is noteworthy that this study is being revisited as the benefit
490 for investment is presumed to have increased dramatically since the study was last completed.

491 Unfortunately, most communities wait until after a hazard event occurs before they become serious about
492 mitigation planning. This is not the most appropriate time to implement criteria to achieve a more resilient
493 community. At this point the stressors on the community are overwhelming. Communities need to
494 implement criteria for enhanced resiliency prior to any hazard event to achieve effective change and to
495 achieve an acceptable level of community continuity should a hazard event occur. Fortunately, the FEMA
496 requirements for mitigation planning are an incentive to initiate the process and this NIST Disaster
497 Resilience Framework yield actionable information that can be implemented in the long term.

498 Once the plan is in place, a number of non-construction activities can be done at low cost for significant
499 long-term benefit. There is also a series of construction related activities that can significantly improve
500 community resilience in the long term.

501 **3.3.1. Non-Construction Strategies**

502 Implementing a community’s disaster resilience plan related to the physical infrastructure should begin
503 with evaluating and validating the following activities or initiating them as needed. Each is a low-cost
504 activity that is best done as an extensions to existing programs.

- 505 1. Organize and maintain a resilience office lead by a Chief Resilience Officer that collaborates with and
506 learns from the Rockefeller 100 Resilience Cities program. Orchestrate community engagement
507 through this office and solicit buy-in.
- 508 2. Incorporate the resilience plan in the Community Safety Element of the General Plan.
- 509 3. Incorporate the resilience plan in the communities FEMA Mitigation Plan
- 510 4. Adopting the latest national model building codes and standards for the physical infrastructure.
- 511 5. Insist on the development of codes and standards that are compatible with resilience planning and set
512 transparent performance goals.

513 6. Adopt appropriate land use planning regulations that manage the green infrastructure, limit urban
514 sprawl, and set design standards for construction in high hazard zones such as flood plains, coastal
515 areas, areas susceptible to liquefaction, etc.

516 7. Assure the effectiveness of the building department in enforcing current codes and standards during
517 permitting and construction inspection to assure that the latest processes are being followed.

518 8. Develop processes and guidelines to be deployed for post-event assessments and repairs.

519 9. Collaborate with adjacent communities to promote common understanding and opportunities for
520 mutual aid during response and recovery.

521 10. Elevate the level of inter-system communication between the infrastructure community's providers
522 and incorporating the interdependencies in their response and recovery plans.

523 11. Lobby for State and Federal owned and leased properties to be built and upgraded to resilient
524 standards.

525 12. Develop and implement education and awareness programs for all stakeholders in the community to
526 enhance understanding, preparedness, and opportunities for mitigation.

527 3.3.2. Construction-Related Strategies

528 1. Using the tools provided in Chapter 10, prioritize gaps identified between the desired and anticipated
529 performance of infrastructure clusters, as summarized in the Resilience Matrix for the prevailing
530 hazards.

531 2. Identify and implement opportunities for natural systems protection including sediment and erosion
532 control, stream corridor restoration, forest management, conservation easements, and wetland
533 restoration and preservation.

534 3. For each built environment gap, identify the guidelines and standards used to assess deficiencies in
535 individual public and private buildings and infrastructure systems. Define the gap in a transparent and
536 publicly available method and announce the result. This will trigger voluntary actions on the part of
537 building owners and infrastructure system operators.

538 4. Include retrofitting of public buildings to achieve the resilience goals in the capital planning process
539 and make it a part of the prioritization process.

540 5. Develop incentives to encourage new construction be built to the resilient standards and for deficient
541 existing construction to be retrofitted as needed.

542 6. Support national efforts to improve code-based design standards that match the resilience metrics
543 defined in this framework.

544 7. Identify building and infrastructure system clusters that need to be retrofitted under mandatory
545 programs and implement the retrofitting through local ordinances. Develop and announce viable
546 funding opportunities and include some level of public funding.

547 3.4. REFERENCES

548 APA (2014). *Planning for Post Disaster Recovery: Next Generation*. American Planning Association,
549 Washington, D.C.

550 FEMA (1998). *FEMA 313 – Promoting the Adoption and Enforcement of Seismic Building Codes: A
551 Guideline for State Earthquake and Mitigation Managers*. Washington, DC.

552 FEMA (2013). Local Mitigation Planning Handbook, Federal Emergency Management Agency,
553 Washington DC, March.

554 MMC (2005). *Natural Hazard Mitigation Saves: An Independent Study to Assess the Future Savings from
555 Mitigation Activities*. Multi-Hazard Mitigation Council, National Institute of Building Sciences,
556 Washington DC.

557 NDRF (2013). *National Disaster Recovery Framework*. Federal Emergency Management Agency,
558 Washington DC.

559 NRC (2006). *Facing Hazards and Disasters: Understanding the Human Dimensions*. Committee on
560 Disaster Research in the Social Sciences. National Research Council, Washington DC.

561 NRC (2012). *Disaster Resilience: A National Imperative*. National Research Council, The National
562 Academies Press, Washington D.C. www.map.edu.

563 OSSPAC (2013). *The Oregon Resilience Plan: Reducing Risk and Improving Recovery for the Next*
564 *Cascadia Earthquake and Tsunami*. Oregon Seismic Safety Policy Advisory Commission Salem,
565 OR.

566 SPUR (2009). *The Resilient City: What San Francisco Needs from its Seismic Mitigation Policies*, San
567 Francisco Planning and Urban Research Association. San Francisco, CA.

1 **4. Dependencies and Cascading Effects**

2 The development of a specific community disaster resilience plan requires an understanding of the
3 building and infrastructure system dependencies and the potential cascading effects that can occur. This
4 chapter provides an overview of aspects of the physical interconnectedness of buildings and infrastructure
5 systems to consider when setting performance goals for community recovery.

6 **4.1. Introduction**

7 To determine the performance needed for the selected clusters of the built environment and to protect a
8 community from significant and non-reversible deterioration, an orderly and rapid process for managing
9 recovery is needed that includes availability of a sufficient number of buildings in each of the designated
10 clusters and infrastructure systems that support them. Each cluster's performance depends not only on its
11 primary function, but also on the dependencies between clusters and the infrastructure systems that
12 support them. These dependencies need to be addressed when setting performance goals to avoid
13 potential cascading failures of multiple systems.

14 Cascading failures occur when a failure triggers failures of other components or systems. It can occur
15 within one system, such as a power grid, when one component failure causes an overload and subsequent
16 failure of other components in sequence. It can also occur between systems when the failure of one
17 system causes the failure of other systems. For example, a multiple-hour loss of power in a community
18 can cause failure in the cell phone system if there is no emergency power to maintain the cell towers.

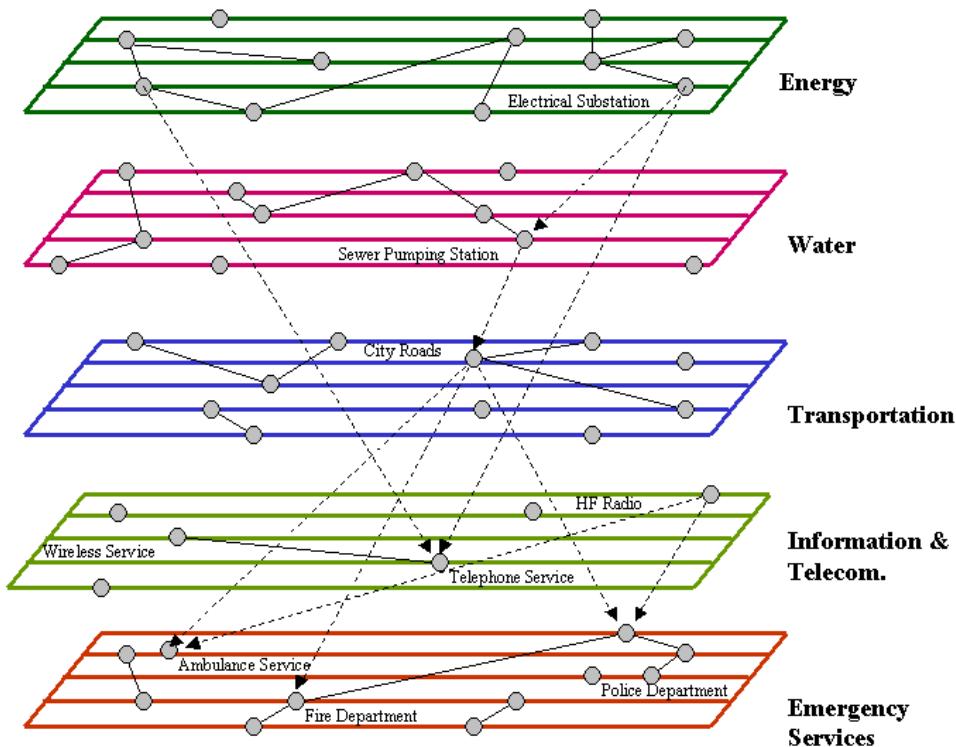
19 Identifying the dependencies and potential cascading failures is the first step. Reducing the effect of
20 dependencies and consequences, where possible, and setting performance goals that balance the role of
21 dependent systems in community recovery is achieved through multiple approaches. For example,
22 dependencies can be reduced by adding redundancy, increasing capacity, and installing weak links that
23 constructively isolate portions of a system that do not need to be interconnected. Governance processes
24 and public policies also play a key role in developing plans for mitigation, response, and recovery
25 management of dependencies.

26 **4.2. Dimensions of Dependency**

27 Interactions within and between infrastructure systems are dependent on a number of factors.
28 Traditionally, dependencies consider the physical and functional relationship between different systems
29 (i.e., drinking water systems require electricity to operate pumps). However, this is only one dimension
30 that illustrates system interaction. This section presents multiple dimensions of dependency considered in
31 community resilience planning: internal and external, time, space, and source dependencies. It should be
32 noted that due to the complex nature of infrastructure system interactions, these dimensions of
33 dependency are not completely decoupled.

34 **4.2.1. Internal and External Dependency**

35 Disruption to the normal operating state of the built environment reveals that infrastructure systems are
36 interconnected through a web of external dependencies. Additionally, within a given system (i.e., an
37 individual service provider) operations are dependent on a similar web of internal dependencies. Failure
38 of a single critical system component can result in cascading failures within an individual system, as in
39 the case of lost electrical power to an estimated 50 million people in the 2003 Northeast Blackout ([NERC 2004](#)). External dependencies can also lead to cascading failures of other infrastructure systems, as in the
41 shutdown of train service in and out of New York City and loss of cell sites after batteries were drained in
42 the 2003 Northeast Blackout.


43 ***Internal Dependency***

44 Within a given system, there are certain components that are critical to the successful operation of the
45 system. An example of a critical component in a water system is a pump that delivers water to a water

Dependencies and Cascading Effects, Dimensions of Dependency

46 tower to distribute onto customers by gravity feed. If the pump stops working, then customers in the
 47 pressure zone served by that pump are without water – unless there is redundancy built into the system to
 48 supply water in another way. This pump example represents an infrastructure-related dependency internal
 49 to a single water utility. The pump would also be an internal dependency that affects operations within a
 50 single infrastructure system if it was part of a system that provided water to numerous water utilities from
 51 a wholesale water supplier. In addition to physical infrastructure-related internal dependencies, each
 52 infrastructure system depends on a number of other factors to sustain normal operations.

53 An example of infrastructure system interdependencies is shown in Figure 4-1 for emergency services.
 54 The example illustrates the dependencies that may exist between the services and buildings at the
 55 ‘emergency services’ level with the other infrastructure systems. Understanding of dependencies and
 56 potential cascading effects provides an informed basis for setting performance goals for community
 57 response and recovery.

58 **Figure 4-1. Example of Infrastructure Interdependencies for Emergency Services (Pederson et al
 59 2006)**

60 **61 External Dependency**

62 Infrastructure systems are typically dependent on other external systems for continued successful
 63 operation. The water pump described above is dependent on electrical power for operation; therefore, it is
 64 dependent on the energy system that is external to the water system. The pump may be able to operate for
 65 a short period with an emergency generator, but the generator would be dependent on refueling during an
 66 extended power outage. Refueling is in turn dependent on an available supply of fuel and a transportation
 67 system to deliver the fuel.

68 Figure 4-2 illustrates other examples of dependent relationships among infrastructure systems. These
 69 relationships can be characterized by multiple connections among infrastructure systems. The behavior of
 70 a given infrastructure system may be initially evaluated in isolation from other infrastructure systems, but
 71 community resilience planning requires understanding of the integrated performance of the physical
 72 infrastructure.

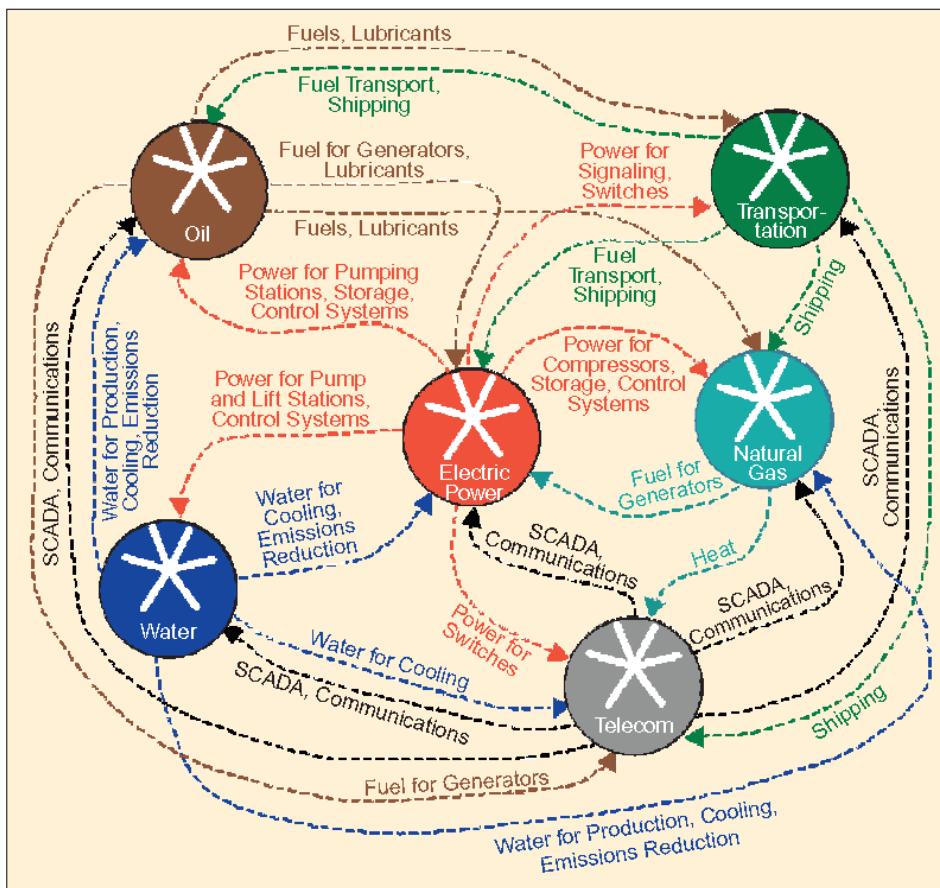
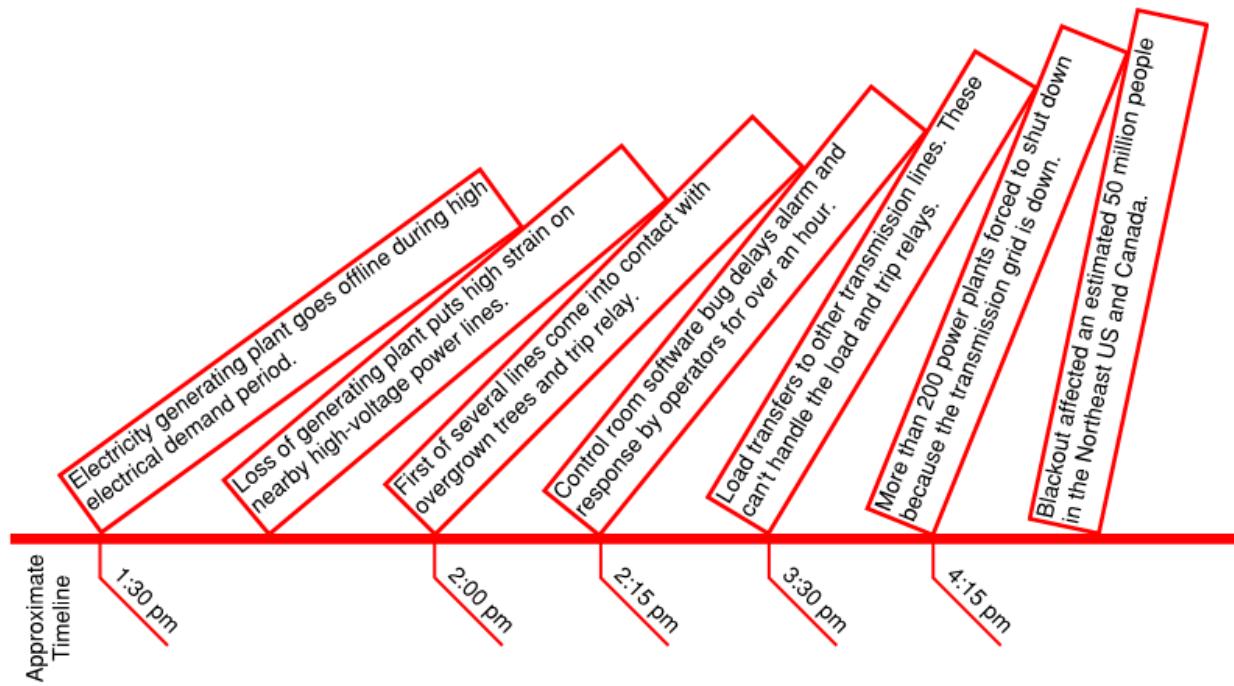



Figure 4-2. Example of External Dependency Relationship (Rinaldi et al 2001)

73
74 **Cascading Failures**

75 Internal dependency-related cascading failures can affect power transmission, computer networking,
76 mechanical and structural systems, and communication systems. External dependency-related cascading
77 failures can affect all buildings and systems. Figure 4-3 and Figure 4-4 illustrate how internal and external
78 dependencies resulted in cascading failures in the 2003 Northeast Blackout. Failures in physical
79 infrastructure can also have cascading impacts on social institutions. For example, prolonged loss of
80 critical services following a disaster may drive small businesses to relocate or go out of business entirely.
81

82
83 **Figure 4-3: Power System Internal Dependence Cascading Failure in the 2003 Northeast Blackout**
84

85
86 **Figure 4-4: External Dependence Cascading Failure in the 2003 Northeast Blackout**
87

4.2.2. Time Dependency

Recovery Phases

89 After a disaster, the time to restore critical services depends on how rapidly an infrastructure system and
90 other systems required for its functioning can recover. Light-rail transportation systems, such as the Bay
91 Area Rapid Transit (BART) system in the San Francisco Bay area, require electrical power for operation.
92 No matter how resilient the light-rail infrastructure system, recovery of service depends on the restoration
93 of electrical power.

Dependencies and Cascading Effects, Dimensions of Dependency

94 There may also be operational dependencies that impact a utility provider's ability to perform repairs.
95 Crews typically rely on the transportation network (roads and bridges) to access repair sites, liquid fuel
96 for trucks and equipment, cellular phones for communication, availability of repair supplies through the
97 supply chain, etc. Disruption in any one or a combination of these systems can increase delays in recovery
98 of service.

99 The resilience framework defined in Chapter 3 organizes the community resilience plan around three
100 phases of recovery using four categories of building clusters. The nature of the critical dependency issues
101 is different for each of these phases. The first phase, focused on immediate response and labeled as
102 "short-term", is expected to last for days and requires critical facilities and provisions for emergency
103 housing. The second, intermediate recovery phase, is expected to last for weeks to months and includes
104 restoration of housing and neighborhood-level services, such as schools. The third, the long-term recovery
105 phase, focuses on full recovery of the community's economic and social base. Each phase has a unique
106 set of dependencies, as is introduced below.

107 *Short-Term Recovery Phase*

108 During the short-term phase (days), the normal operation of infrastructure systems may be impaired.
109 Individual system operators will activate their emergency response plans. Internal dependencies (such as
110 staff, operations center, data, repair supplies, etc.) and key external dependencies (such as transportation)
111 will be critical in defining the pace of the initial response. A well-defined governance process, between
112 and among government emergency managers and system providers, will be essential to coordinate system
113 restoration priorities that are best for the community, especially when the recommended restoration
114 sequence might not be optimal for an individual system provider. A report by the City and County of San
115 Francisco Lifelines Council indicated that a top planning and preparedness priority for system providers is
116 to develop communication and employ priority decision-making strategies to aid in post-disaster response
117 (CCSF Lifelines Council 2014).

118 Critical facilities, as defined in Chapter 3, are a small number of building clusters and supporting
119 infrastructure systems that need to be functional immediately after an event to organize and direct the
120 emergency response and provide a safe environment for emergency responders. During this early phase,
121 the degree of dependence on other infrastructure systems depends on their ability to operate with
122 emergency power, an independent communication network, and possibly onsite housing and subsistence
123 for the staff. Critical transportation routes need to be established prior to the event and made a high
124 priority in post-event cleanup and debris removal. Critical routes enable replenishment of onsite supplies
125 including fuel, water, food, medical supplies, etc. Performance goals for recovery need to represent an
126 appropriate balance between having the needed supplies on hand to operate independently for a short
127 period and defining achievable restoration times.

128 For example, the stored water at some hospitals can only supply drinking water for three to four days.
129 This supply may only represent about 5% of the total water usage, whereby some hospitals' total water
130 usage may exceed 300,000 gal/day. Many hospitals do not currently have onsite storage capacity for
131 wastewater and have limited storage capacity for medical waste. These dependencies would likely impair
132 hospital functionality after a hazard event. In California, the Office of Statewide Health Planning and
133 Development is implementing requirements to provide three days of an operational supply of water
134 (including water for drinking, food preparation, sterilization, HVAC cooling towers, etc.), wastewater
135 storage, and fuel for emergency generators (CBC 2013).

136 The timing of a disaster may also impact the resources available for response. Availability of hospital
137 beds is often seasonally dependent. During the winter respiratory season, many hospitals operate at or
138 near capacity, limiting the number of patient beds available for disaster response (even after discharge of
139 less critical patients and canceling elective procedures).

Dependencies and Cascading Effects, Dimensions of Dependency

140 The need for temporary housing for emergency responders and displaced individuals and animals, as
141 discussed in Chapter 2, is often met by using schools, shelters, hotels, conference centers, residences that
142 are safe to shelter-in-place, etc.. Food, water, security, and sanitation needed to protect public health are
143 usually provided at centralized locations. During the short-term recovery phase, there is a limited need for
144 transportation, power, and communication. For example, current thinking for earthquake resilience says
145 that it is best for residents to shelter in their homes, neighborhoods, or within their community. Recovery
146 performance goals should consider such options.

147 The inability to provide sufficient temporary housing can lead to a mass exodus from the community that
148 could cascade into a loss of residents and ability to restore the economic base of the community.
149 Performance goals need to realistically estimate the number of displaced residents and emergency
150 responders that need to be accommodated, and the availability of adequate facilities within or adjacent to
151 the community.

152 *Intermediate Recovery Phase*

153 In the intermediate recovery phase (weeks), the dependency focus is expected to shift more to external
154 dependencies (electricity, liquid fuel, transportation, etc.) along with key internal dependencies (funding
155 for payroll and repair supplies, contractors, etc.).

156 Restoring fully-functional neighborhoods is key to maintaining the workforce needed to restore the
157 economic vitality of the community after a hazard event. During this period, special attention must be
158 paid to the needs of the disadvantaged and at-risk populations who require a higher level of assistance.
159 Functioning residences, schools, and businesses are needed rapidly enough to give the population
160 confidence to stay and help to support community recovery. If people are unable to shelter in their
161 neighborhoods, the small neighborhood businesses they depend on will likely lose their client base and
162 have to be relocated or close. This, in turn, may cascade into delays for recovering the community's
163 economy.

164 The needs of commercial services, such as banking, are critical to recovery of a community. If the
165 primary economic engine of a region is based on a manufacturing plant that requires water, wastewater,
166 and power operating within two weeks after an expected hazard, then the intermediate recovery phase
167 must address these dependent systems. The intermediate recovery plans should consider other factors,
168 such as for parents to return to their jobs, schools and daycare facilities will need to be back in operation.

169 The condition of the built environment that supports residences, neighborhoods, and businesses is one key
170 factor that determines recovery time. Significant structural damage to buildings and infrastructure systems
171 cannot be repaired within a few weeks; it takes months or longer, depending on the damage. Buildings
172 need to be safe to use while being repaired for minor damage or temporary facilities will need to be
173 provided, especially for damaged residences. The transportation, energy, water, wastewater, and
174 communication systems that support these facilities need to be restored within the same timeframe.

175 *Long-Term Recovery Phase*

176 In the long-term recovery phase (months), it is anticipated that utility services will be restored (at least
177 with temporary fixes). If a community is in the early stages of developing its resilience, the recovery time
178 may take longer due to needed repairs or rebuilding. As a community develops a 'mature' resilience, a
179 similar event should cause less damage and have shorter, less costly recovery times. The key
180 dependencies at this point are related to supplies, equipment, and resource availability for repairs and
181 reconstruction.

182 Restoring a community after a major event will provide a significant, short-term stimulus to the economy
183 from the accelerated construction activity and provide an opportunity to improve the built environment
184 according to a community's resilience plan, financed by government, insurance companies, large
185 businesses, private savings and developers. In order for the recovery process to successfully improve

Dependencies and Cascading Effects, Dimensions of Dependency

186 community resilience, a governance structure needs to be in place that approves reconstruction rapidly
187 and in accordance with the community's interests. Any stall or stalemate in the decision-making process
188 will delay the construction activities needed to restart the economy.

189 It is important that communities develop a plan before a disaster on how to manage the logistics of
190 recovery. For example, logistics include an expedited building permit process and adequate resources for
191 building inspections during a post-disaster construction boom. They also include land use planning
192 decisions that will guide rebuilding. If the process is delayed, then people and businesses may move out
193 of the region and the opportunity to build back a better, more resilient community is lost. The Oregon
194 Resilience Plan indicated that businesses are only able to accommodate approximately two to four weeks
195 of business interruption before they would need to relocate or go out of business. This is particularly
196 troubling to a state like Oregon where a large portion of the economy relies on small businesses and
197 where the current expected level of resilience for a Cascadia Subduction Zone earthquake does not meet
198 this four-week time window. Japan experienced small business losses because of delayed decisions in
199 land use planning to rebuild in the tsunami-impacted region after the 2011 Tohoku earthquake
200 (Mochizuki 2014).

201 **4.2.3. Space Dependency**

202 ***Disaster Impact Region***

203 Different types of disasters result in variation in the geographic area of impact. Hurricanes or a Cascadia
204 Subduction Zone earthquake may impact a large multi-state region, while tornados may only impact a
205 portion of a community. Communities need to consider the potential geographic area of impact for their
206 expected hazards as part of the planning process. The Oregon Resilience Plan (OSSPAC 2013) was
207 developed for a scenario Cascadia Subduction Zone earthquake that would likely impact a region
208 including Northern California, Oregon, Washington, and British Columbia. The plan discusses a strategy
209 where the central and eastern portions of the state would provide assistance to the Willamette Valley/I-5
210 Corridor region (area including the state's largest population centers) and then the Willamette Valley/I-5
211 Corridor would provide assistance to the coastal region. Other mutual aid assistance would likely be
212 mobilized from Idaho, Montana, and other adjacent states. This is in contrast to a Midwest tornado, which
213 may cause significant devastation to a particular community, but assistance in response and recovery is
214 available from the surrounding communities.

215 ***Location of Critical Infrastructure***

216 The physical location of infrastructure within a community impacts how it is expected to perform in a
217 disaster. For example, wastewater treatment plants are often located close to rivers or the ocean for
218 system operation reasons, but this makes them particularly vulnerable to flooding, sea level rise, and
219 tsunami hazards. In the resilience planning process, communities need to consider how the expected
220 hazard and location of existing infrastructure impacts expected system performance. Communities should
221 also adopt land use planning policies that consider the dependence between physical location and system
222 performance, when evaluating upgrades to existing facilities, construction of new infrastructure, and
223 rebuilding after a disaster.

224 ***Co-location***

225 Infrastructure systems are often co-located along transportation or other utility corridors. The close
226 proximity of these different systems can lead to unintended damage to these co-located systems.
227 Infrastructure system pipelines and conduits are often co-located on bridges at river or other crossings and
228 can be significantly impacted by earthquake and inundation (flood and tsunami) hazards. Figure 4-5
229 shows an example of where bridge support settlement during the 2011 Christchurch New Zealand
230 earthquake caused a sewer pipeline, supported by the bridge, to break and spill raw sewage into the river
231 below. Telecommunications wires are often supported by electrical power poles, so if the pole breaks,
232 both systems are impacted. Water and wastewater pipelines are often co-located near other buried

Dependencies and Cascading Effects, Planning for Infrastructure System Dependencies

233 infrastructure under or adjacent to roadways. Failure of pipelines may result in damage to the roadway
234 (i.e. sinkhole from water main break or collapsed sewer pipeline) and impacts to traffic when repairs are
235 being made. Co-located infrastructure not only results in potential damage to multiple systems, but also
236 often requires significantly more coordination between service providers during repair.

237

238
239

Figure 4-5: Example of Infrastructure Co-location (Source: Eidinger & Tang, 2014)

4.2.4. Source Dependency

241 Communities depend on goods and services that may or may not be available locally. Disasters that
242 impact the source of these goods and services can have far-reaching downstream impacts.

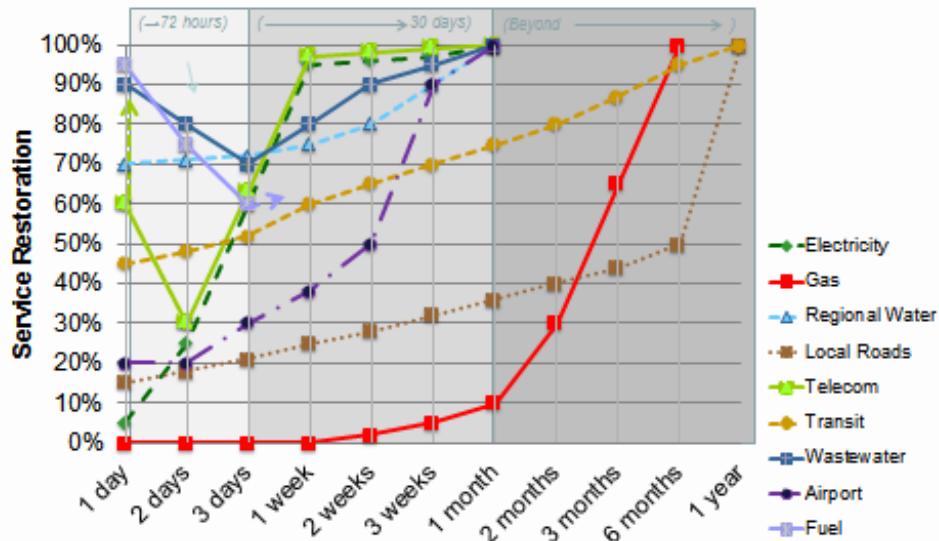
243 In the Pacific Northwest, Oregon is dependent on refineries in the State of Washington for a supply of
244 liquid fuel. A Cascadia Subduction Zone earthquake would likely disrupt refinery operation and limit
245 available liquid fuel supplies in Washington and Oregon. Similarly, a Gulf Coast hurricane could damage
246 offshore drilling platforms and oil refinery facilities, disrupting the liquid fuel supply for the hurricane-
247 impacted region and larger portions of the US.

248 Regional utility systems provide another example of source dependency. The Tennessee Valley Authority
249 (TVA) supplies power to over 150 municipal utility companies and several large industrial users in
250 Alabama, Kentucky, Mississippi, and Tennessee. A disaster, such as an ice storm, impacting one or more
251 TVA power generation facilities or transmission lines, has the potential to disrupt electricity over a large
252 geographic area.

253 A disaster, such as a wildfire, can impact the drinking water supply due to high post-fire sediment loads.
254 These sediment loads can cause damage to reservoirs and treatment plants that result in higher treatment
255 costs to remove suspended solids from drinking water. The impact of sediment is highest in the burned
256 area, but data from the Southern California wildfires in the fall of 2003 indicated increased sediment
257 loads at treatment plants up to 100 miles from the fire (Meixner and Wohlgemuth 2004).

4.3. Planning for Infrastructure System Dependencies

259 As part of the community resilience planning process, utility providers, businesses, and others should be
260 encouraged to refresh or develop their own emergency and continuity of operations plans and identify
261 internal dependencies. As organizations are conducting internal resilience planning activities, they should
262 also compile a list of external dependencies and they impact their operations. After each infrastructure
263 system identifies their external dependencies, the next step is to engage all infrastructure systems along
264 with community and business leaders to discuss the current expected performance of infrastructure for the


Dependencies and Cascading Effects, Planning for Infrastructure System Dependencies

265 range of disasters expected, external dependencies, and expected service restoration times for each
 266 infrastructure system.

267 It is critical that all stakeholders are in these discussions, including elected officials, emergency managers,
 268 first responders, service providers, business leaders, civic organizations, and disaster services
 269 organizations, etc. For discussion of external dependencies, the definition of community might need to be
 270 broadened, as utilities often serve a larger area than just one local population.

271 Understanding the dependencies within and between physical infrastructure systems is a new and
 272 developing area of planning related to resilience and recovery from significant disruptions. However,
 273 there is an immediate need for a process to identify the interdependencies for a resilience framework and
 274 an empirical method based on historical data seems to be the most achievable at this point. Such a method
 275 was used by the City and County of San Francisco Lifelines Council in 2013 and it can be applied to
 276 other communities. San Francisco reported their findings and recommendations in February 2014 ([CCSF](#)
 277 [Lifelines Council 2014](#)). Their process followed these steps:

- 278 1. Form a service provider council of private and public infrastructure owners and provide a
 279 quarterly forum for them to meet, share current planning activities, and discuss response and
 280 recovery issues, their interdependencies, and methods to improve the existing conditions.
- 281 2. For the extreme level of all prevailing hazards, characterize the expected level of damage in terms
 282 related to infrastructure system performance from the view of the infrastructure provider. Figure
 283 4-6 illustrates the restoration times estimated by the providers in the San Francisco study.
- 284 3. For each infrastructure system, document the planned response and restoration process, likely
 285 dependencies on other systems, and the understanding of other system dependencies on them.
- 286 4. Process the information and determine overall interactions between systems and the related
 287 dependencies. Identify areas with potential for cascading effects, occurrences of co-location,
 288 overlaps, and hindrances related to restoration and recovery plans. Table 4-1 illustrates the
 289 dependencies identified in the San Francisco Study.
- 290 5. Develop a series of recommendations related to the next steps needed to better define the needs,
 291 advance collaborative planning where needed, prioritize the needed mitigation projects and
 292 identify funding sources for pre- and post-event needs.

293
 294 **Figure 4-6: Potential Service Restoration Timeframes following a Scenario M 7.9 Earthquake on the**
 295 **San Andreas Fault. (CCSF Lifelines Council, 2014)**

DISASTER RESILIENCE FRAMEWORK

75% Draft for San Diego, CA Workshop

11 February 2015

Dependencies and Cascading Effects, Planning for Infrastructure System Dependencies

296
297

Table 4-1: Infrastructure System Dependencies following a scenario M7.9 earthquake on the San Andreas Fault. (CCSF Lifelines Council, 2014)

Infrastructure System Operators' dependency on other Infrastructure systems
(read across each row)

	Regional Roads	City Streets	Electric Power	Natural Gas	Telecom	Water	Auxiliary Water	Waste-Water	Transit	Port	Airport	Fuel
Regional Roads	General	Restoration Substitute	Restoration	Restoration	Restoration	Restoration		Restoration	Substitute		Restoration	Restoration
City Streets	Substitute Restoration	General	Co-location, Restoration		Restoration							
Electric Power	Restoration	Co-location, Restoration	General		Restoration	Co-location, Restoration	Co-location, Restoration	Co-location, Restoration		Co-location	Restoration	Restoration
Natural Gas	Restoration	Functional, Co-location, Restoration	Substitute	General	Restoration	Co-location, Restoration	Co-location, Restoration	Co-location, Restoration		Co-location	Restoration	Restoration
Telecom	Restoration	Co-location, Restoration	Functional, Restoration	Restoration	General	Co-location, Restoration	Co-location, Restoration	Co-location, Restoration			Restoration	Restoration
Water	Restoration	Restoration	Restoration		Restoration	General				Co-location		Restoration
Auxiliary Water	Restoration	Functional, Restoration	Restoration		Restoration	Functional, Restoration	General			Co-location, Restoration		Restoration
Waste-Water	Restoration	Co-location, Restoration	Functional, Restoration		Restoration	Functional, Restoration		General		Co-location, Restoration		Restoration
Transit	Substitute, Restoration	Functional, Substitute, Co-location, Restoration	Functional, Restoration		Restoration	Co-location, Restoration	Co-location, Restoration	Co-location, General	Co-location, Restoration			Functional, Restoration
Port	Restoration	Co-location, Restoration	Co-location, Restoration		Co-location, Restoration	Co-location, Restoration	Co-location	Co-location	Co-location	General		Restoration
Airport	Restoration		Restoration		Restoration	Restoration		Restoration	Co-location, Restoration		General	Functional, Restoration
Fuel	Restoration	Restoration	Functional, Restoration		Restoration	Restoration				Restoration	Restoration	General

298

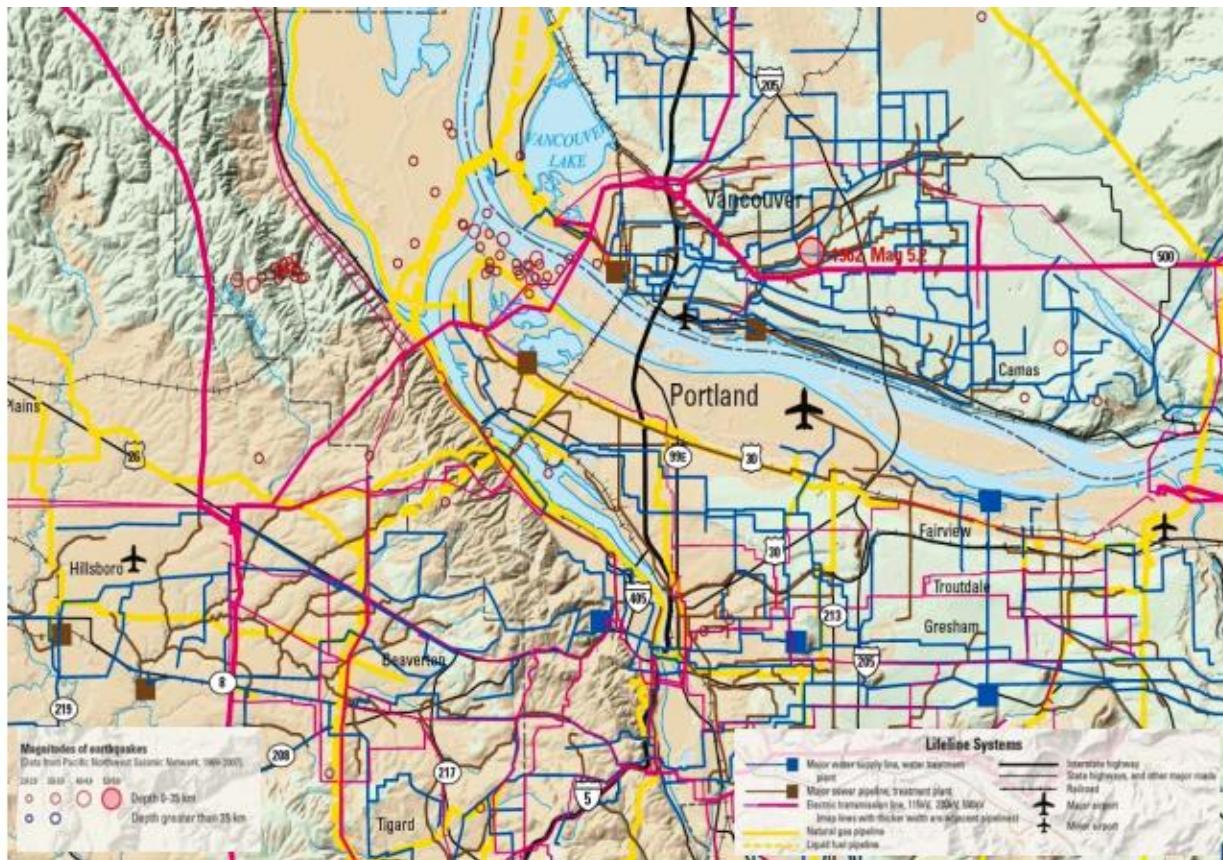
Legend:

Significant interaction and dependency on this infrastructure system for service delivery and restoration efforts
Moderate interaction and dependency on this infrastructure system for service delivery and restoration efforts
Limited interaction and dependency on this infrastructure system for service delivery and restoration efforts

Key to terms used in the matrix:

Functional disaster propagation and cascading interactions from one system to another due to interdependence

Co-location interaction, physical disaster propagation among infrastructure systems


Restoration interaction, various hindrances in the restoration and recovery stages

Substitute interaction, one system's disruption influences dependencies on alternative systems

General interaction between components of the same system. (All systems would have general interaction issues, but some issues are more crucial for the system's potential disruption and restoration.)

299 Figure 4-7 shows a map of Portland, Oregon with a GIS overlay of infrastructure systems that are
 300 contained in the Earthquake Response Appendix to the City's Basic Emergency Operations Plan (City of
 301 Portland 2012). The city used this information to coordinate the potential spatial dependencies of the
 302 city's infrastructure. Eventually these tools may include systems modeling functionality that could enable
 303 scenario-based assessment of infrastructure system dependencies or be used as a tool to prioritize post-
 304 disaster infrastructure repairs and optimize restoration of all infrastructure systems.

305

306

307 **Figure 4-7: GIS Map of Infrastructure Systems around Portland, Oregon (City of Portland, 2012)**

308 **4.4. References**

309 Rinaldi, S.M., J.P. Peerenboom, and T.K. Kelly (2001) Identifying, Understanding, and Analyzing
 310 Critical Infrastructure Interdependencies, IEEE Control Systems Magazine, December

311 CBC (2013). California Building Code. California Building Standards Commission, Sacramento, CA.

312 CCSF Lifelines Council (2014). Lifelines Interdependency Study/Report. San Francisco, CA: City and
 313 County of San Francisco Lifelines Council.

314 City of Portland (2012). City of Portland Basic Emergency Operations Plan, Earthquake Response
 315 Appendix. Portland, OR.

316 Eidinger, J., and Tang, A. (2014). Christchurch, New Zealand Earthquake Sequence of Mw 7.1 September
 317 04, 2010 Mw 6.3 February 22, 2011 Mw 6.0 June 13, 2011: Lifeline Performance. Reston, VA:
 318 American Society of Civil Engineers.

DISASTER RESILIENCE FRAMEWORK

75% Draft for San Diego, CA Workshop

11 February 2015

Dependencies and Cascading Effects, References

319 Pederson, P., D. Dudenhoeffer, S. Hartley, and M. Permann (2006) Critical Infrastructure
320 Interdependency Modeling: A Survey of U.S. and International Research, INL/EXT-06-11464,
321 Idaho National Laboratory.

322 Mexiner, T., and Wohlgemuth, P. (2004). Wildfire Impacts on Water Quality. Southwest Hydrology,
323 September/October.

324 Mochizuki, J. (2014). Decision-Making, Policy Choices and Community Rebuilding after the Tohoku
325 Disaster. Journal of Integrated Disaster Risk Management, 4 (2): 11-26.

326 NERC (2004). Technical Analysis of the August 14, 2003, Blackout: What Happened, Why, and What
327 Did We Learn?. Princeton, NJ: North American Electric Reliability Council.

328 OSSPAC (2013). The Oregon Resilience Plan, Reducing Risk and Improving Recovery for the Next
329 Cascadia Earthquake and Tsunami. Salem, OR: Oregon Seismic Safety Policy Advisory
330 Commission.

1 **5. Buildings**

2 **5.1. Introduction**

3 This chapter presents guidance for setting performance goals for buildings in a community resilience
4 plan. Building stock within a community varies widely, in terms of use, occupancy, ownership, age,
5 construction type and condition. The variability in occupancy and use leads to different performance
6 goals between buildings; variability in age and condition results in different performance levels, even
7 within the same class of building; and variability in ownership, such as public or private, can present
8 challenges in implementing minimum performance goals, particularly for existing buildings. This chapter
9 discusses the various classes and uses of buildings, performance goals, and past and current codes and
10 standards that support community resilience.

11 **5.1.1. Social Needs and Systems Performance Goals**

12 Buildings fulfill a multitude of social needs from the most basic, such as providing shelter, to housing
13 necessary services like medical care and food. Many buildings also house goods or businesses that can be
14 closed following a hazard event; but such buildings will hopefully require only modest repairs. Therefore,
15 performance goals for buildings depend specifically on what each individual building houses or the
16 function it serves. Some buildings must be functional immediately, or soon after, the disaster, while other
17 buildings need to be stable so they do not collapse or place the life safety of the occupants at risk. Because
18 buildings fulfill a wide variety of social needs, the recovery time and sequence of recovery must be
19 evaluated at the community level. Section 5.2 discusses building classes and uses; Section 5.3 provides
20 guidance for developing performance goals based on the methodology in Chapter 3.

21 **5.1.2. Reliability v. Resilience**

22 Buildings are an integrated set of systems – structural, architectural, utilities, etc. – that perform together
23 to serve the intended function of the building. When discussing building performance, each of these
24 systems must perform adequately because each system supports the building function in different ways.
25 Structural systems provide a stable system that carries gravity loads based on building construction and
26 contents and must resist forces imposed by hazard events. Architectural systems supply protection from
27 outside elements through the cladding systems (e.g., roof, exterior walls or panels, doors, windows, etc.)
28 and interior finishes. Utility systems deliver needed services that support the building function.

29 Buildings designs focus on the building's intended purpose and on occupant safety for fires and natural
30 hazard events. Building designs are based on provisions in building codes and standards, though some
31 designs are performance-based and allow alternative solutions. Structural systems for buildings are
32 typically designed for a minimum required level of hazard intensity, based on a target reliability level for
33 building performance. For buildings, structural reliability refers to the probability that a structural
34 member or system will not fail. For gravity, wind, snow, and flood loads, structures are designed for
35 member reliability, with a low probability of failure, so that structural members are not expected to fail
36 during a design event. For seismic events, structures are designed for system reliability conditional on the
37 design seismic event, where the structural system is not expected to fail or collapse, but individual
38 members may fail. Thus, for wind, snow, and flood events, the structural system is expected to sustain
39 little or no damage under a design hazard event. For seismic hazard events, the structure is expected to
40 afford life safety to the occupants, such that while structural damage may occur, the building will not
41 collapse. Therefore, while a building is expected to protect its occupants during a seismic event, it may
42 not be functional afterwards and may even need to be demolished.

43 Wind, floods and winter storm events may also disrupt services, such as water supply, and create power
44 outages, which also affect building functionality. If water pressure cannot be maintained, then fire
45 hydrants and fire suppression systems are out of service, and buildings cannot be occupied. If fuel for
46 generators is depleted during long term power outages, buildings are not functional.

47 While structural reliability is important, it is not synonymous with resilience. If a building has sustained
48 damage such that, following a hazard event, it cannot perform its pre-disaster function, that may
49 negatively affect a community's resilience. An example is a fire station where the building itself has
50 sustained little or no structural damage, but the doors cannot open, preventing fire trucks from exiting to
51 fight fires. Some buildings may need to be functional sooner than others. Providing a minimum level of
52 reliability ensures buildings do not collapse, but does not ensure they will remain functional after a
53 design-level hazard event.

54 Designing a resilient building requires understanding the functions that building supports in the
55 community, and the performance required to ensure those functions during or after a hazard event. Some
56 requirements may actually exceed those required by model building codes and standards.

5.1.3. Interdependencies

58 A community's resilience depends on the performance of its buildings. The functionality of most
59 buildings depends, in turn, on the utilities that supply power, communication, water/wastewater, and the
60 local transportation system. Alternatively, some buildings support the utility systems. Buildings and
61 supporting infrastructure systems must have compatible performance goals to support community
62 resilience. Refer to other chapters of this framework for infrastructure system resilience
63 recommendations.

64 In many instances, infrastructure systems are unavailable immediately after a hazard event to support
65 specific buildings when they must be operational. For example, emergency operation centers and
66 hospitals must function immediately after a hazard event. However, power and water infrastructure
67 systems may be damaged. Therefore, during short-term recovery, critical facilities should plan to operate
68 without external power and water until those services are expected to be recovered.

69 In many instances, the functionality of specific buildings depends on the occupants as well as the physical
70 building. First responders need to reach the buildings where equipment is housed to provide emergency
71 services. Therefore, community resilience requires the buildings and supporting infrastructure systems
72 consider dependencies that must be addressed to be functional.

5.2. Buildings Classes and Uses

5.2.1. Government

75 In most communities, the emergency operations centers, first responder facilities, airports, penitentiaries,
76 and water and wastewater treatment facilities are government-owned buildings. These buildings provide
77 essential services and shelter occupants and equipment that must remain operational during and after a
78 major disaster event. Therefore, essential buildings should remain operational, as defined by Category A
79 (safe and operational) in Chapter 3 and Table 5-1.

80 Other government buildings may not need to be functional immediately following a hazard event (e.g.,
81 City Hall or county administrative building, public schools, mass transit stations and garages, judicial
82 courts, and community centers). However, these buildings may be needed during the intermediate
83 recovery phase following the hazard event. A performance goal for these types of buildings might be
84 either Category A or Category B, safe and usable during repair, depending on their role in the community
85 recovery plan.

86 Categories C and D are provided to help communities evaluate the anticipated performance of their
87 existing buildings for a hazard event. Older construction that is poorly maintained, or has features known
88 to be prone to failure, such as unreinforced masonry walls and a lack of continuous load path to the
89 foundation, need to be documented as part of the community resilience plan.

90 Typically, buildings are designed according to risk categories in the *American Society of Civil Engineers*
91 *Standard 7* (ASCE 7) and *International Building Code*. Risk categories relate the criteria for design loads
92 or resulting deformations to the consequence of failure for the structure and its occupants. Risk categories

93 are distinct from *occupancy category*, which relates primarily to issues associated with fire and life safety
 94 protection, as opposed to risks associated with structural failure. Risk categories rank building
 95 performance with a progression of the anticipated seriousness of the consequence of failure from lowest
 96 risk to human life (Risk Category I) to the highest (Risk Category IV).

97 Essential buildings fall under Risk Category IV, which has the highest level of reliability, and provisions
 98 for seismic events that require nonstructural systems to remain operable. Some buildings that may be
 99 deemed essential are classified as Risk Category III, which includes buildings and structures that house a
 100 large number of people in one place or those having limited mobility or ability to escape to a safe haven
 101 in the event of failure, including elementary schools, prisons, and healthcare facilities. This category has
 102 also includes structures associated with utilities required to protect the health and safety of a community,
 103 including power-generating stations and water treatment and sewage treatment plants. Risk Category III
 104 requires a higher level of reliability than a typical building associated with Risk Category II, but there are
 105 fewer nonstructural system requirements for seismic events than a Risk Category IV building.

106

Table 5-1. Building Performance Categories

Category	Performance Standard
A. Safe and operational	These are facilities that suffer only minor damage and have the ability to function without interruption. Essential facilities such as hospitals and emergency operations centers need to have this level of function.
B. Safe and usable during repair	These are facilities that experience moderate damage to their finishes, contents and support systems. They will receive green tags when inspected and will be safe to occupy after the hazard event. This level of performance is suitable for shelter-in-place residential buildings, neighborhood businesses and services, and other businesses or services deemed important to community recovery.
C. Safe and not usable	These facilities meet the minimum safety goals, but a significant number will remain closed until they are repaired. These facilities will receive yellow tags. This performance may be suitable for some of the facilities that support the community's economy. Demand for business and market factors will determine when they should be repaired or replaced.
D. Unsafe – partial or complete collapse	These facilities are dangerous because the extent of damage may lead to casualties.

107 **5.2.2. Healthcare**
 108 Emergency medical facilities are critical to response and recovery efforts following a major disaster.
 109 Therefore hospitals, essential healthcare facilities, and their supporting infrastructure, must be functional
 110 (Category A) during and following a hazard event. This does not mean the entire facility has to be fully
 111 operational, but critical functions, such as the emergency room and life support systems, should be
 112 operational until other functions can be restored. Currently, hospitals are designed to Risk Category IV
 113 requirements, with some local communities or federal agencies imposing additional requirements. For
 114 example, California requires that all hospital designs, regardless of location or ownership (municipal or
 115 private), be reviewed and construction overseen by a state agency.

116 Nursing homes and residential treatment facilities that house patients who cannot care for themselves may
 117 also need to be immediately functional after a hazard event. Other healthcare facilities, such as doctors'
 118 offices, pharmacies, and outpatient clinics, may not all need to be immediately available. Communities
 119 should determine if a subset of these buildings will be needed shortly after the event. Medical office
 120 buildings and pharmacies may need to be designed to suffer limited damage that can be repaired in a
 121 reasonable period of time, either Category A or Category B, depending on their role in community
 122 recovery and resilience. In most cases, buildings for these types of medical offices are currently designed
 123 as Risk Category II buildings.

124 **5.2.3. Schools and Daycare Centers**
 125 Many communities have primary (K-12) schools that are designed to a higher performance level (Risk
 126 Category III) because they have large assemblies of children. Often, school gymnasiums or entire school

127 buildings are designated to serve as emergency shelters during the hazard event and as emergency staging
128 areas after the event. Additionally, the research that went into the SPUR Resilience City Initiative found a
129 perception that when children can return to school, things are returning to normal and parents can return
130 to work. Thus, expeditious resumption of function is important for primary schools across a community.

131 There can be a dichotomy of performance requirements for a school. On the one hand, providing
132 enhanced performance and returning to operation quickly places a school in Category B, stable with
133 moderate damage. However, if the school or some portion of the school is used as an emergency shelter,
134 that requires Category A, stable with minor damage. Depending on the hazard, the Risk Category III
135 provisions to which most primary schools are designed may provide Category A or B performance.
136 Therefore, any school that will be designated as an emergency shelter should be evaluated to determine its
137 intended role in the community and that it is appropriately designed for Category A or B performance.
138 Evaluation would determine which schools are anticipated to perform adequately and which may need to
139 be upgraded to a higher performance level.

140 Higher education facilities are generally regulated as business or assembly occupancies with exceptions
141 for specific uses, such as laboratory and other research uses. Research universities are also often
142 concerned with protecting their research facilities, long-term experiments, associated specimens and data.

143 Daycare centers house young children that require mobility assistance and are unable to make decisions;
144 but daycare populations may not meet assembly requirements. Therefore, such centers may be located in
145 buildings that meet either Risk Category II or III performance requirements and code requirements for
146 these types of facilities vary. In some cases there are heightened requirements; and in other instances
147 there are few constraints beyond basic code requirements for Risk Category II buildings. Communities
148 may require daycare centers to be designed to a higher level of performance, similar to school buildings.

149 5.2.4. Religious and Spiritual Centers

150 Religious and spiritual centers play a special role in many communities. They can offer a safe haven for
151 people with emotional distress following a hazard event. Logistically, these buildings are often critical
152 nodes in the post-disaster recovery network. Many religious organizations operate charity networks that
153 provide supplies to people following a hazard event. In past disasters, many religious institutions opened
154 their doors to provide temporary housing. In most cases, however, these buildings are designed as typical
155 Risk Category II buildings. Compounding the issue, these buildings are often among the oldest in a
156 community and are built with materials and construction methods that perform poorly in hazard events.

157 If these facilities fill an important role in the community recovery plan, Category B would be a desired
158 performance. However, a number of factors could influence a community to accept a lesser performance
159 goal. First, most of these institutions are nonprofit entities, with little funding for infrastructure
160 improvement. Second, many historic buildings would have to be modified, unacceptably disrupting their
161 historic fabric to meet this higher performance category. Therefore, a community should understand the
162 anticipated performance of its churches and spiritual centers and their role in community recovery.

163 5.2.5. Residential and Hospitality

164 Communities should consider whether residential buildings and neighborhoods will shelter a significant
165 portion of the population following a hazard event. Houses, apartment buildings, and condominiums need
166 not be fully functional, like a hospital or emergency operation center, but they should safely house
167 occupants to support recovery and re-opening of businesses and schools. Not being fully functional could
168 mean that a house or apartment is without power or water for a reasonable period of time, but can safely
169 shelter its inhabitants. The significant destruction of housing stock led to the migration of a significant
170 portion of the population following Hurricane Katrina's impact on New Orleans. Such a shelter-in-place
171 performance level is - key to the SPUR Resilient City initiative and prompted the City of San Francisco to
172 mandate a retrofit ordinance for vulnerable multi-family housing.

173 Currently multi-unit residential structures are designed to Risk Category II provisions, except where the
174 number of occupants is quite large (e.g., > 5,000 people); then they designs meet Risk Category III
175 criteria. For multi-family residential structures, there are two dominant construction types: light frame
176 (wood and cold formed steel light frame) construction and steel or reinforced concrete construction. Light
177 frame residential structures have different performance issues than steel or reinforced concrete structures,
178 which are typically larger.

179 Most one and two-family dwellings are constructed based on pre-engineered standards using the
180 prescriptive requirements of the *International Residential Code*. There has been debate as to whether the
181 IRC provides comparable performance to the *International Building Code*. In some cases, such as the
182 Loma Prieta and Northridge earthquakes, one and two-family dwellings performed as well as or better
183 than engineered buildings. Further investigation regarding a possible discrepancy in requirements
184 between the IBC and the IRC is essential, because of the importance of residential housing.

185 In addition, an effective response to most hazard events may require supplemental first responders and
186 personnel from outside the community. If most residential buildings are not functional or safe to occupy,
187 demand for temporary shelter may compete with the need to temporarily house response and recovery
188 workers. Hotels and motels can support response and recovery efforts if they are back in operation shortly
189 after the event. Typically these buildings are designed to meet Risk Category II criteria, like multi-family
190 residential structures.

191 **5.2.6. Business and Services**

192 While it would be ideal to have all community businesses open shortly after a hazard event, such an
193 outcome is not economically practicable. Many business offices, retail stores, and manufacturing plants
194 are located in older buildings that may not perform well during a hazard event or, if constructed more
195 recently, are designed to Risk Category II criteria. Not all commercial buildings are designed to the code
196 minimum requirements, and they may have higher performance capabilities.

197 Each community should select design and recovery performance goals for its businesses and services,
198 depending on their role in the community during recovery. Certain types of commercial buildings may be
199 critical to the recovery effort. The community needs to designate businesses and their buildings that are
200 critical retail and able to meet a higher performance level. Some businesses and services are commonly
201 essential to recovery:

- 202 • ***Grocery stores and pharmacies.*** People need food, water, medication, and first aid supplies following
203 a hazard event. Regional or national grocery stores and pharmacies typically have robust distribution
204 networks outside the affected area that can bring supplies immediately after the hazard event.
205 Although the common preparedness recommendation is for people to have 72 hours of food and water
206 on hand, the potential for disruption beyond the first three days should be evaluated for a
207 community's hazards. For example, the Oregon Resilience Plan recommends two weeks of food and
208 water for a Cascadia earthquake event.
- 209 • ***Banks or financial institutions.*** Banks or structures that house automated teller machines provide
210 access to money.
- 211 • ***Hardware and home improvement stores.*** These businesses provide building materials for repairs,
212 reconstruction, and emergency shoring of damaged buildings.
- 213 • ***Gas stations and petroleum refineries.*** Many communities are arranged so residents need
214 automobiles to carryout basic functions, like shopping and commuting to work. A disruptive event
215 may impact fuel delivery systems and gasoline may be difficult to obtain for a period of time.
- 216 • ***Buildings that house industrial and hazardous materials or processes.*** Buildings and other
217 structures containing toxic, highly toxic, or explosive substances may be classified as Risk Category
218 II structures if it can be demonstrated that the risk to the public from a release of these materials is
219 minimal. However, communities need to verify that the risk management plan address community
220 hazards, and any potential releases that may occur during or after a hazard event.

221 The resilience needs of other types of businesses and the buildings that house them depend to a large
222 extent on the business and community's tolerance for those businesses to be delayed in reopening or
223 closed. Many professional service businesses rely on employees working remotely from home or alternate
224 office spaces. Conversely, manufacturing businesses, retail, and food service businesses do not have that
225 luxury. Their location is critical to the ability of the business to function. If a restaurant or store cannot
226 serve the public or a factory is unable to manufacture its product, then the business may fail. Losing these
227 businesses can adversely impact the community's recovery and long-term resilience because of lost jobs
228 and other economic impacts.

229 *5.2.7. Conference and Event Venues*

230 Convention centers, stadiums, and other large even venues are important for the long term recovery of
231 many communities because of the revenue that these types of events typically generate. Additionally, a
232 venue hosting major events following a hazard event can uplift morale for a community, like hosting the
233 Super Bowl in New Orleans following Hurricane Katrina. Typically these venues are designed to Risk
234 Category III because of the large number of occupants, so they have a greater performance capability than
235 typical buildings.

236 *5.2.8. Detention and Correctional Facilities*

237 Many communities have standalone detention and correctional facilities (prisons). Building codes
238 typically require some higher design requirements on these types of facilities because the people housed
239 in them cannot evacuate without supervision. The level of enhanced design requirements varies based on
240 the facility requirements and state or local jurisdiction. Within this framework, it is suggested that these
241 types of facilities be designed to Category A or B.

242 *5.3. Performance Goals*

243 The resilience matrices in Chapter 3 provide examples of performance goals for buildings and
244 infrastructure systems at the community level for fictional community, Centerville, USA. The example
245 matrices provide a visual method communities can use to determine their desired performance goals in

246 Table 5-2 through Table 5-4 address each of the three hazard levels discussed in Chapter 3 – routine,
247 expected, and extreme – for Centerville, USA. An individual community may start with one or more of
248 the hazard levels. Some communities may decide that for routine events the infrastructure should have
249 little to no disruption and the extreme event is too much to plan for, so they base their planning on the
250 expected event. However, examining the response of the physical infrastructure to three levels of a hazard
251 can provide insight and understanding regarding system performance. One or more systems may not
252 perform well at the routine level, and cause cascading effects. Such performance indicates that frequent
253 repairs may be required for that system. Alternatively, if there are substantial differences between the
254 desired and anticipated performance of one or more systems, the performance at several hazard levels
255 may help a community prioritize retrofit or mitigation strategies.

256 A community first needs to identify clusters, or groupings, of buildings for which the same performance
257 goals are desired. The cluster groups and assignment of buildings within each cluster may be unique to
258 each community. The types of buildings selected by Centerville are listed in the left column, and are
259 categorized under critical facilities, emergency housing, housing/neighborhoods, and community
260 recovery. The categories also reflect the sequence of building types that need to be functional following a
261 hazard event. Each building cluster then needs to be evaluated for its role in the community recovery. The
262 rate of recovery is indicated by percentages, 30 %, 60%, and 90%, to show how many buildings within
263 the cluster are recovered and functioning during the three recovery phases in the top row of the table.

264 The examples in Table 5-2 through Table 5-4 illustrate a large urban/suburban community. Smaller or
265 more distributed communities may elect to create different clusters, while major metropolitan areas may
266 create even finer clusters of buildings. The Centerville example shows that, for a routine hazard in Table

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015
Buildings, Performance Goals

267 5-2, almost all buildings are desired to be functioning within one to two days, and anticipated to be fully
268 functional within one to three days. For the expected hazard in Table 5-3, only critical buildings and
269 emergency housing are desired to be functioning within one day of the event, but these facilities are not
270 anticipated to be functional for more than four months to two years. For the extreme hazard in Table 5-4,
271 only emergency operation centers and first responder facilities are desired to be functional within a day,
272 but the anticipated performance is that they will not be functional for more than three years.

273 Recovery of function may not initially be full recovery of function, but a minimum or interim level
274 necessary to perform the essential tasks of that specific building to start the recovery process. For
275 example, a city hall that has an emergency operation center may only provide for enough power to
276 support lighting, phones, and computers for the EOC room, but not the entire building. The building's
277 structure and exterior cladding would also need to be stable and intact to provide a safe environment and
278 allow the EOC to be occupied.

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015
Buildings, Performance Goals

279

Table 5-2. Example Building Performance Goals for Routine Event in Centerville, USA

Disturbance			Restoration times		
(1)	Hazard	Any	(2)	30%	Restored
	Affected Area for Routine Event	Localized		60%	Restored
	Disruption Level	Minor		90%	Restored
			(3)	X	Current

280

Functional Category: Cluster	(4) Support Needed	(5) Target Goal	Routine Hazard Level								
			Phase 1 – Short-Term			Phase 2 -- Intermediate			Phase 3 – Long-Term		
			Days	Wks	Mos	Days	Wks	Mos	Days	Wks	Mos
Critical Facilities	A									
Emergency Operation Centers			90%	X							
First Responder Facilities			90%	X							
Acute Care Hospitals			90%	X							
Non-ambulatory Occupants (prisons, nursing homes, etc.)			90%	X							
Emergency Housing		B									
Temporary Emergency Shelters			90%		X						
Single and Multi-family Housing (Shelter in place)			90%		X						
Housing/Neighborhoods		B									
Critical Retail			90%		X						
Religious and Spiritual Centers			90%		X						
Single and Multi-family Housing (Full Function)			90%		X						
Schools			90%		X						
Hotels & Motels			90%		X						
Community Recovery		C									
Businesses - Manufacturing			60%	90%	X						
Businesses - Commodity Services			60%	90%	X						
Businesses - Service Professions			60%	90%	X						
Conference & Event Venues			60%	90%	X						

281

Footnotes:

- 1 Specify hazard being considered
Specify level – Routine, Expected, Extreme
Specify the size of the area affected – localized, community, regional
Specify severity of disruption – minor, moderate, severe
- 2

30%	60%	90%
-----	-----	-----

 Restoration times relate to number of elements restored within the cluster
- 3

X

 Estimated 90% restoration time for current conditions based on design standards and current inventory
Relates to each cluster or category and represents the level of restoration of service to that cluster or category
Listing for each category should represent the full range for the related clusters
Category recovery times will be shown on the Summary Matrix
"X" represents the recovery time anticipated to achieve a 90% recovery level for the current conditions
- 4 Indicate levels of support anticipated by plan
R Regional
S State
MS Multi-state
C Civil Corporate Citizenship
- 5 Indicate minimum performance category for all new construction.
See Section 3.2.6

282

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015
Buildings, Performance Goals

283

Table 5-3. Example Building Performance Goals for Expected Event in Centerville, USA

Disturbance			Restoration times		
(1)	Hazard	Any	(2)	30%	Restored
	Affected Area for Expected Event	Community		60%	Restored
	Disruption Level	Moderate		90%	Restored
			(3)	X	Current

284

Functional Category: Cluster	(4) Support Needed	(5) Target Goal	Expected Hazard Level										
			Phase 1 – Short-Term			Phase 2 -- Intermediate			Phase 3 – Long-Term				
			Days	Wks	Mos	0	1	1-3	1-4	4-8	8-12	4	4-24
Critical Facilities	A										X	
Emergency Operation Centers			90%									X	
First Responder Facilities			90%									X	
Acute Care Hospitals			90%									X	
Non-ambulatory Occupants (prisons, nursing homes, etc.)			90%									X	
Emergency Housing		B										X	
Temporary Emergency Shelters			30%	90%								X	
Single and Multi-family Housing (Shelter in place)			60%			90%						X	
Housing/Neighborhoods		B										X	
Critical Retail				30%	60%	90%						X	
Religious and Spiritual Centers					30%	60%	90%					X	
Single and Multi-family Housing (Full Function)					30%		60%		90%			X	
Schools					30%	60%	90%					X	
Hotels & Motels					30%		60%	90%				X	
Community Recovery		C										X	
Businesses - Manufacturing						30%	60%	90%				X	
Businesses - Commodity Services						30%	60%			90%		X	
Businesses - Service Professions						30%		60%			90%	X	
Conference & Event Venues						30%		60%			90%	X	

285

Footnotes: See Table 5-2, page 8.

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015
Buildings, Performance Goals

286

Table 5-4. Example Building Performance Goals for Extreme Event in Centerville, USA

Disturbance			Restoration times		
(1)	Hazard	Any	(2)	30%	Restored
	Affected Area for Extreme Event	Regional		60%	Restored
	Disruption Level	Severe		90%	Restored
			(3)	X	Current

287

Functional Category: Cluster	(4) Support Needed	(5) Target Goal	Extreme Hazard Level									
			Phase 1 – Short-Term			Phase 2 -- Intermediate			Phase 3 – Long-Term			
			Days	Wks	Mos	0	1	1-3	1-4	4-8	8-12	4
Critical Facilities	A										X
Emergency Operation Centers			90%									X
First Responder Facilities			90%									X
Acute Care Hospitals			30%	60%		90%						X
Non-ambulatory Occupants (prisons, nursing homes, etc.)			30%		60%		90%					X
Emergency Housing		B										X
Temporary Emergency Shelters			30%	60%	90%							X
Single and Multi-family Housing (Shelter in place)			30%		60%	90%						X
Housing/Neighborhoods		B										X
Critical Retail				30%	60%	90%						X
Religious and Spiritual Centers				30%		60%	90%					X
Single and Multi-family Housing (Full Function)					30%		60%	90%				X
Schools					30%	60%	90%					X
Hotels & Motels					30%		60%	90%				X
Community Recovery		C										X
Businesses - Manufacturing					30%		60%		90%			X
Businesses - Commodity Services					30%		60%		90%			X
Businesses - Service Professions						30%		60%	90%			X
Conference & Event Venues						30%		60%	90%			X

288

Footnotes: See Table 5-2, page 8.

289 It is difficult for designers to specifically target an amount of damage that can be repaired in a given
290 timeframe, as there are numerous sources of uncertainty. However, it is possible to design for estimated
291 levels of damage and based on that, assign a likelihood that the buildings within a cluster will be
292 functional.

293 Communities primarily consist of existing buildings that have been designed and constructed under the
294 building code at that time, potentially creating a range of expected performance levels for the same
295 category of buildings. Sometimes, older buildings were designed using provisions that were later found to
296 be inadequate, but rarely were the new provisions retroactively applied. Figure 5-1 shows a partially
297 collapsed unreinforced masonry building following a major earthquake. This type of construction is
298 unsafe in earthquakes, but many communities have not mandated retrofitting these types of buildings to
299 avoid damage or collapse.

300 As part of developing performance goals for building clusters, the community should identify if any types
301 of buildings or construction pose a significant safety hazard to occupants or the public. Mitigation or
302 retrofit programs can be developed to address buildings that pose a significant safety hazard, such as
303 unreinforced masonry building retrofit ordinances that have been adopted by many California cities,
304 requirements for elevated construction in a flood plan, or requiring storm shelters in new homes.

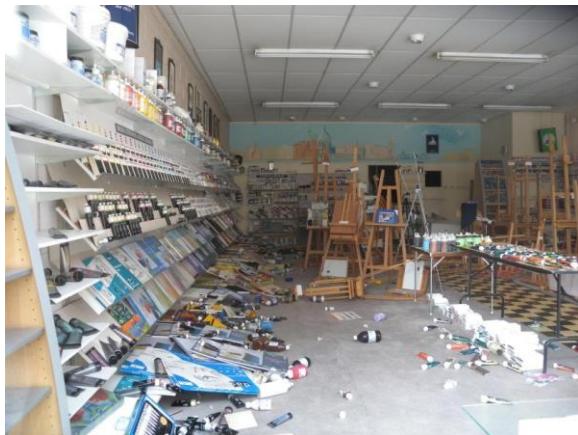
305 When selecting recovery goals, a community must decide which performance category is appropriate for
306 buildings within each cluster.

307 **Category A buildings** should require little repair to return to function. Often recovery is limited by
308 outside factors such as power or water not being available, which is why onsite power and water is often
309 required by communities for essential facilities. There may be some damage to a Category A building, but
310 the damage can easily be cleaned up (i.e., toppled shelves or cosmetic damage to the structure) as shown
311 in Figure 5-2.

Figure 5-1: Failure of unreinforced masonry wall during an earthquake event. (Photo courtesy of Degenkolb Engineers)

Figure 5-2: Non-structural damage to interior finishes following an earthquake event. (Photo Courtesy of Degenkolb Engineers)

312 Similarly, for flood events, buildings that sustain minor damage and thus fall into Category A are
313 expected to have damage limited primarily to the exposed portions of the building exterior. If buildings
314 are properly elevated, floodwaters may
315 reach subflooring and building
316 infrastructure systems but should not
317 overtop the first floor or wet the interior.
318 However, if the building has a basement,
319 there could be damage to power sources,
320 utilities and appliances located there.
321 Buildings subject even to low flood depths
322 may need some drying to remove residual
323 moisture and cleaning to prevent mold
324 growth and may not be safe for occupants
325 until this process has occurred. Figure 5-3
326 shows an example of minor flood damage.


Figure 5-3: Floodwaters reached just under the first floor on this building (photo courtesy of AECOM)

327 Buildings that have experienced minor
328 damage as the result of wind will generally
329 have some roof covering damage, a limited amount of damage to openings (e.g., less than 10 % of doors
330 and windows broken) and minimal exterior finish damage. Figure 5-4 illustrates minor damage as the
331 result of wind.

332 **Category B buildings** are expected to sustain damage, but the damage should not affect the building's
333 structural stability. There may be significant nonstructural damage, but the building can be used while the
334 repairs are made. Figure 5-5 shows pictures of significant nonstructural damage inside a building that is
335 structurally stable following an earthquake event. In such cases, the amount of work required to clean up
336 the fallen contents or fix the damaged to the walls may take a couple days to a couple weeks.

Figure 5-4: Damage to roof covering, vinyl siding and fascia as the result of wind (courtesy AECOM)

Figure 5-5: Significant nonstructural damage inside a building that is structurally stable after an earthquake event. (Photo Courtesy of Degenkolb Engineers)

337 Buildings that have been damaged by flooding and sustained moderate damage may experience a limited
338 depth of flooding over the first floor; the foundation may be inundated or have minor undermining or
339 scour; exterior and interior walls may have water stains and possible contamination that requires
340 replacement. Subflooring and floor finishes may also require replacement along with some electrical
341 wiring. While the building may be structurally stable, it may not be safe for habitants until properly dried
342 and cleaned due to the potential for mold blooms and growth. Figure 5-6 show examples of moderate
343 damage as the result of flooding.

344 Moderate damage sustained as the result of wind events may include moderate to major roof covering
345 damage, some minor instances of roof sheathing failure, and some interior water damage, and damage to
346 the exterior finish. Figure 5-7 shows moderate damage as the result of wind.

Figure 5-6: As a result of an estimated 3-4 feet of flooding, interior walls had to be replaced in this building as well as an exterior door and window (photo courtesy of FEMA) [getting a better quality version]

Figure 5-7: Siding loss and minor envelope damage on low-rise building from a wind event. (photo courtesy of FEMA) [getting a better quality version]

347 **Category C buildings** are expected to have significant nonstructural and some structural damage. The
348 structural damage should not cause a loss of structural stability, but may require shoring while repairs are
349 conducted. It is assumed that damage such as this would take weeks to months to repair. Figure 5-8 shows
350 structural damage, but the global structure is stable. Figure 5-9 shows a fractured brace connection in a
351 building damaged in an earthquake. There were about ten of these damaged braces on one story of a four
352 story building and it took over three months from the disaster until the repairs were completed and the
353 building could be reoccupied.

Figure 5-8: Apartment building with damaged structural members that is globally stable. (courtesy of Degenkolb Engineers)

Figure 5-9: Fractured brace connection in a building damaged in an earthquake (courtesy of Degenkolb Engineers)

354 For buildings severely damaged by flooding, flood depths will likely be several feet above the first floor
355 and may result in foundation damage that could include settlement and severe scour and undermining.

356 Exterior walls may be severely damaged with large missing sections. Interior floor and wall finishes
357 will need replacement. Limited deformation of the structural frame may be evident. As with less severely
358 flood damaged buildings, proper drying and cleaning is necessary prior to re-occupation of the building
359 due to the potential for mold growth. Figure 5-10 shows severe damage as the result of flooding.

360 Severe damage incurred due to a wind event may include major roof sheathing loss, extensive interior
361 water damage, and minor to major envelope damage. Additionally, roof uplift damage may be evident. In
362 instances where significant water intrusion damage has occurred, buildings may not be safe for use until
363 adequate drying and cleaning has occurred due to the potential for mold bloom. Figure 5-11 demonstrates
364 severe wind damage to buildings.

Figure 5-10: Foundation wall collapse due to hydrostatic pressure from floodwaters (courtesy of FEMA) [getting a better quality version]

Figure 5-11: Wind and wind-borne debris resulted in considerable damage to glazing on this building (courtesy of FEMA) [getting a better quality version]

365
366 **Category D buildings** cannot be used or occupied
367 after a hazard event. Destruction or collapse of
368 buildings may occur because the building was not
369 designed and constructed to withstand the severity
370 of a particular event, or because a building was
371 constructed to older building codes, or no codes at
372 all, or because the codes were not properly
373 followed or enforced. Figure 5-12 shows examples
374 of destruction and collapse as the result of flood
375 and wind events.

376 **5.4. Regulatory Environment**

377 Model building codes are developed at the
378 national level for adoption across the country, and
379 adopted by states or local jurisdictions. However,
380 federal buildings are designed and constructed to
381 federal government standards. In the U.S., two organizations publish model building codes for adoption
382 by federal agencies or state and local governments. One is published by the International Code Council,
383 which formed as a merger of three organizations that published regional model building codes. The other
384 code is published by the National Fire Protection Association. The ICC's *International Building Code* is
385 the most widely adopted model building codes; and the *National Fire Protection Code* is the most widely
386 adopted model fire code in the U.S. Most federal agencies also use these codes, with agency-specific
387 amendments, as the basis for their building requirements. These codes contain many reference standards

Figure 5-12: Collapse of 5-story building due to undermining (from flooding) of shallow foundation (courtesy of FEMA)

388 that are typically published by not-for-profit standards development organizations, professional societies,
389 and industry groups. Model building codes and the referenced standards are typically modified by federal,
390 state, and local agencies for their specific purposes.

391 While the model building codes specify minimum requirements that are applicable throughout the
392 country, states and local municipalities may modify the model building codes to achieve specific goals for
393 local or regional hazards. For example, in areas of Florida, building codes were changed to require more
394 hurricane-resilient construction following Hurricane Andrew, requiring certain types of roofing materials,
395 stronger windows and doors, and greater inspection and enforcement.

396 Some states and localities adopt, but remove requirements in model building codes, to make them less
397 stringent. Some jurisdictions only adopt the model code for government owned or specific occupancy
398 buildings, but not for all buildings in their community. Some communities do not adopt or enforce any
399 building code.

400 Enforcing building codes and construction standards is as important as adopting building codes and
401 standards. The level of enforcement can significantly impact resilience. Even if the most up-to-date
402 building code and standards are in effect, buildings designed and constructed in a substandard manner
403 negatively impact community resilience. Therefore, having a properly trained building department to
404 review designs for code conformance and inspect construction for conformance with the approved plans,
405 is an essential component of community resilience.

406 **5.5. Standards and Codes**

407 The *International Building Code*, a commonly adopted model building code, was developed to provide
408 design requirements that “safeguard public health, safety and general welfare through structural strength,
409 means of egress facilities, stability, sanitation, adequate light and ventilation, energy conservation, safety
410 to life and property from fire and other hazards attributed to the building environment, and to provide
411 safety to fire fighters and emergency responders during emergency operations.”

412 The expected performance of each building depends upon the codes and standards in-force at the time of
413 construction, as well as the level of enforcement and maintenance. Building codes and standards are
414 dynamic and ever-changing. Many changes come in response to disasters, while others come from a
415 perceived weakness to natural disasters brought about by research on the subject. The evolving nature of
416 building codes and enforcement, combined with the degradation that occurs over time, results in a
417 building stock with variable capacities to resist hazard events.

418 Building codes and standards primarily regulate new construction and are based on the current consensus
419 of best practices and design methods at the time they are written. After a significant hazard event, the
420 building code may be modified based on observed damage or failures. Some provisions, when changed,
421 become retroactive or are enforced during renovations. Examples of these are egress protection,
422 accessibility for differently abled persons, and fire suppression system requirements.

423 Communities primarily consist of existing buildings, and most do not conform to current code standards.
424 The mix of building types, construction, and age can create significant challenges when developing plans
425 for a resilient community. Construction materials, construction quality, structural configuration,
426 architectural finishes, redundancy of the mechanical and electrical systems can all affect the resilience of
427 one building compared to another.

428 **5.5.1. New Construction**

429 Design criteria for new construction form the foundation for future resilience planning. Additions to the
430 model codes may be desired to support a community’s performance goals for resilience. Such changes
431 typically add modest, incremental costs, whereas trying to require retrofit of existing construction after an
432 event can be prohibitively expensive.

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015
Buildings, Standards and Codes

433 Building codes and standards have primarily focused on life safety of occupants during major natural
 434 hazard events, specifically in their structural design criteria. Early building codes addressed routine
 435 environmental design loads for frequent hazards such as wind and snow. The hazard design load and self-
 436 weight and occupancy live loads were used to design a structure. This approach produced structures that
 437 withstood routine, moderate hazards. However, the 1906 San Francisco Earthquake demonstrated that in
 438 particular seismic hazards induced large forces that were difficult to resist without any structural damage.
 439 This realization led to a philosophy of designing buildings for seismic hazards so buildings remained
 440 stable during the event with some structural damage, but did not collapse. The same concept applies to
 441 fire safety. By limiting fire spread with passive compartmentation, areas of the building outside the area
 442 of fire origin and adjacent buildings can often be saved from damage. Reduced fire damage allows more
 443 rapid recovery of functionality in the building.

444 Building codes provide design loads based on return periods for various hazards. In addition to design
 445 loads, there are often design provisions associated with the specific hazard. Table 5-5 (copied from
 446 Chapter 3) lists the various return periods for the routine, expected (design level), and extreme hazards.

447 **Table 5-5: Design Loads for Buildings and Facilities (ASCE 7-10)**

Hazard	Routine	Expected	Extreme
Ground Snow	50 year	300 to 500 year ¹	TBD
Rain	2	2	2
Wind – Extratropical	50 year	700 year	3,000 year ³
Wind – Hurricane	50 to 100 year	700 year	3,000 year ³
Wind – Tornado	3	3	3
Earthquake ⁴	50 year	500 year	2,500 year
Tsunami	50 year	500 year	2,500 year
Flood	100 year	100 to 500 year	TBD
Fire – Wildfire	4	4	4
Fire –Urban/Manmade	4	4	4
Blast / Terrorism	5	5	5

¹ For the northeast, 1.6 (the LRFD factor on snow load) times the 50-year ground snow load is equivalent to the 300 to 500 year snow load.

² Rain is designed by rainfall intensity of inches per hour or mm/h, as specified by the local code.

³ Tornado and tsunami loads are not addressed in ASCE 7-10. Tornadoes are presently classified by the EF scale. Tsunami loads are based on a proposal for ASCE 7-16.

⁴ Hazards to be determined in conjunction with design professionals based on deterministic scenarios.

⁵ Hazards to be determined based on deterministic scenarios. Reference UFC 03-020-01 for examples of deterministic scenarios.

448 **Wind hazards.** ASCE 7-10 prescribes design wind speeds for each Risk Category with different return
 449 periods. For Risk Category I, the mean return period is 300 years for facilities that have a low risk to
 450 human life and are typically unoccupied buildings. For Risk Category II facilities, that include typical
 451 buildings and other structures, the return period is 700 years. For Risk Category III and IV facilities, the
 452 return period is 1,300 years. The wind speeds derived from these return periods are based on extratropical
 453 winds and hurricane winds. Tornadic wind speeds are not currently addressed.

454 The majority of the wind design requirements are for the structural frame and the cladding. There are
 455 some requirements for attachment strength of nonstructural components. Requirements for serviceability
 456 and functionality are not explicitly codified, but are indirectly addressed through elastic design methods at
 457 specified wind speeds for desired performance levels. The International Building Code requires
 458 consideration of a drift limit under a reduced wind load (the factor used intends to approximate the 100-
 459 year return period wind). There are no explicit structural design requirements to preserve the building
 460 envelope so post-disaster function is not impacted, but there are some prescriptive requirements on the
 461 requirements of doors and windows. Nor are there requirements that exterior equipment, fire pumps, or
 462 generators must be functional following the design windstorm.

463 **Snow hazards.** Snow design uses a 50-year mean recurrence interval for ground snow loads. It is
464 increased with an importance factor for higher Risk Category structures.

465 **Rain hazards.** Rain design uses a 100-year rain storm as the design hazard, with loads increased by 60%
466 to account for uncertainty in predicting rainfall in a major event. However, the majority of rain design
467 provisions relate to providing proper drainage and stiffness to the roof to prevent ponding. There are no
468 code requirements in a design rain event that the building envelope must maintain its ability to keep water
469 out. In many instances this is accomplished without explicit code requirements because of the liability
470 seen with water intrusion and its adverse effects, such as mold.

471 **Flood hazards.** Flood design provisions for all buildings are typically based on a 100-year mean
472 recurrence interval for flood elevation, though 500-year flood elevations are recommended for design of
473 critical facilities. Recommended practice is to locate buildings out of the 100-year flood zone. If they
474 must be within this flood zone, floodplain management provisions and building codes require that they be
475 elevated to or above the design flood elevation which is, at a minimum, the elevation of the 100-year
476 flood. Buildings with nonresidential uses may also be dry flood-proofed up to the design flood elevation
477 if they are not subject to coastal flood forces or high velocity flooding. For structures subject to flood
478 forces, the current provisions provide methods to avoid or resist flood forces, but are not necessarily
479 meant to preserve functionality of the building during a flood event. Evacuation of flood prone areas
480 during flood events is expected especially with days or even weeks of warning.

481 Flood design provisions are neither fully prescriptive or performance based. Instead, they are a mixture of
482 the two. Elevation requirements are considered prescriptive because they elevation is mandated by flood
483 maps and local codes. Other requirements that require design and vary between structures are considered
484 performance based, such as building designs that resist flotation, collapse, and lateral movement.

485 **Seismic hazards.** Since the beginning of earthquake design, it has been recognized that designing for the
486 hazard in the same way as other hazards would not be practical or economical. Therefore, the approach
487 adopted prescribes forces and design requirements that allow buildings to be damaged, but not collapse.
488 Following the 1971 San Fernando earthquake, hospitals were required to be designed to a higher
489 standard, significantly improving their likelihood of remaining functional following the design
490 earthquake.

491 The emphasis placed on the design of nonstructural systems is a very important distinction between
492 seismic design provisions and design provisions for other hazards. All nonstructural systems have bracing
493 requirements. In addition to the bracing requirements, nonstructural systems in essential facilities or those
494 systems that relate to the life-safety system of the facility are required to maintain function or return to
495 function following the design earthquake shaking hazard. The design earthquake shaking level is
496 currently defined as 67% of the Risk Targeted Maximum Considered Earthquake shaking level.

497 **Fire hazards.** The performance of new and existing buildings during fires is addressed specifically
498 through fire codes and in a complementary manner by building codes. Typically, fire prevention officers
499 within local fire departments enforce the fire code, in conjunction with building inspectors. A fire code is
500 primarily intended for preventing and containing fires and making certain that necessary training and
501 equipment is on hand if a fire occurs. Fire codes also address inspection and maintenance requirements of
502 passive and active fire protection systems.

503 The codes originated as life safety documents; but after the WTC disaster, many requirements establish
504 additional redundancy, robustness and resilience. The (IBC) building code has been expanded to include
505 protection for emergency responders following a major event.

506 Another key requirement is for automatic sprinkler systems in residential, healthcare, and assembly
507 buildings as well as most other types of structures. Sprinklers limit the fire to the area of origin and can
508 significantly reduce the level of smoke and fire damage.

509 There are currently very few, if any, code requirements for design of buildings in wild fire hazard areas.
510 Some methods of construction could provide greater resilience than conventional construction in those
511 regions, but nothing has been mandated.

512 **Man-made hazards.** Codes and standards do not have explicit structural design requirements for man-
513 made hazards (e.g., arson, explosions or impact events), although some nominal provisions attempt to
514 provide robustness to arrest the spread of damage so disproportionate collapse does not occur. Many
515 requirements in the IBC require facility layout and hazard mitigation measures to prevent explosions of
516 building contents. Guidelines for design of man-made hazards do exist for specific classes of buildings,
517 like federal buildings and industrial facilities. Often these guidelines are restricted because they contain
518 proprietary or security-sensitive information.

519 **5.5.2. Existing Buildings**

520 Existing buildings pose an even greater challenge than new buildings. For new buildings, codes can be
521 amended or re-written. Although construction costs may increase, new buildings would be designed for
522 the state-of-the-practice. Retrofit of existing buildings to the state-of-the-practice level of resilience, in
523 contrast, can require significant financial commitment and necessitate major disruption to the building's
524 function, which tends to dissuade building owners from retrofit.

525 The cost and disruption associated with retrofit has made mandating retrofit measures a politically
526 unpopular decision. In California, only the class of building deemed most prone to collapse in an
527 earthquake – Unreinforced Masonry Buildings – has had widespread, albeit not universal, acceptance as
528 something that should be mandated for retrofit.

529 For buildings constructed prior to development of flood provisions or a community's adoption of flood
530 provisions, there is a trigger for requiring that they be retrofit to meet current flood provisions. Buildings
531 within designated flood hazard areas (generally the 100-year floodplain) that sustain damage of any
532 origin, for which the cost to repair the building to its pre-damage conditions equals or exceeds 50 percent
533 of the market value of the building, must be brought into compliance with current flood provisions. The
534 same is true for improvements or rehabilitation of buildings when the cost equals or exceeds this
535 threshold. However, enforcement of this requirement can be challenging, particularly in a post-disaster
536 environment when communities are anxious to support building owners in reconstruction.

537 When existing buildings are evaluated for expected performance relative to resilience goals and required
538 retrofit actions, standards for new construction are typically applied to the structural design. This
539 application often leads to excessive requirements for improvements to obtain the desired performance.
540 However, recent advancement in performance-based engineering has led to development of specific
541 standards for existing buildings with regards to evaluation and retrofit.

542 One of the biggest impediments to retrofit of existing buildings lies in the conservatism embedded in
543 current engineering codes and standards. Under-predicting a building's performance in a given hazard
544 because the standards are conservative can lead to significant retrofit requirements. Those requirements
545 can make the retrofit economically unappealing to building owners.

546 **5.6. Strategies for Implementing Community Resilience Plans**

547 **5.6.1. Available Guidance**

548 Current engineering standards provide tools to support assessment of the structural safety of buildings.
549 ASCE 41, the existing building seismic standard, provides a methodology to assess the performance of
550 buildings for both safety and the ability to be reoccupied following an earthquake. ATC 45 provides an
551 assessment methodology for flood and wind events. Similar standards do not exist for other hazards.

552 Building code provisions can be used to determine whether a building has sufficient fire resistance,
553 egress, and other occupant safety-related issues. These methodologies are useful for individual buildings
554 safety, but do not address damage versus recovery time to function.

555 HAZUS provides a platform for communities to assess vulnerabilities to earthquakes, hurricanes, and
556 other hazards. HAZUS is useful for assessing effects of a disaster on a community. However, the existing
557 building stock must be adequately reflected in the model, which can require significant data gathering.

558 Several existing resources exist for property owners, designers and communities to use to better
559 understand best practices for flood resistant design and construction including:

- 560 • FEMA P-55 (Volume I and II), Coastal Construction Manual: Principles and Practices of Planning,
561 Siting, Designing, Constructing, and Maintaining Residential Buildings in Coastal Areas
- 562 • FEMA P-499, Home Builder's Guide to Coastal Construction: Technical Fact Sheet Series
- 563 • FEMA P-550, Recommended Residential Construction for Coastal Areas: Building on Strong and
564 Safe Foundations

565 Existing resources addressing wind include the ATC Design Guide 2, Basic Wind Engineering for Low-
566 Rise Buildings.

567 5.6.2. Strategies for New/Future Construction

568 For new and future construction, desired performance goals and anticipated performance for adopted
569 building codes needs to be evaluated to determine if additional local requirements are required. Risk
570 categories currently in the building codes can support the desired levels of performance and resilience
571 goals. By clearly defining the desired building performance for a hazard event in terms of performance
572 and recovery time for return of function, communities can tailor local building codes and standards to
573 support specific resilience goals.

574 For flood-resistant design and construction, best practices exist for communities or individuals to
575 implement in addition to code minimum requirements. One basic but effective practice is locating all new
576 construction outside of flood zones. Additionally, using additional height, or freeboard, in building design
577 is also effective.

578 Stronger design and construction practices for wind resistance are encouraged through a variety of
579 existing resources with primary goals of improving continuous load path connections, strengthening
580 building envelopes, and protecting openings.

581 For fire hazards, sole reliance on active fire protection through automatic extinguishing systems (AES) to
582 provide property protection in combustible construction is not appropriate for communities with hazards
583 that compromise the performance of the AES, such as seismic events.

584 5.6.3. Strategies for Existing Construction

585 Building codes and standards evolve, but little retroactive compliance is required. This is a major issue in
586 communities because the cost of retrofit exceeds, by orders of magnitude, the cost of adding resilience to
587 a new building. A strong resistance to building retrofit because of cost, inconvenience to the building
588 occupants, and disruption of operations creates a significant challenge for community resilience planning.

589 A strategy to prioritize retrofit requirements is to identify the most significant hazards posed by potential
590 failures by various types of buildings and to mandate retrofit or demolition of those buildings. There have
591 also been programs specifically aimed at critical facilities (e.g., hospitals and fire stations), where those
592 buildings must be retrofit or replaced.

593 Given the aforementioned challenges with existing construction, community resilience planning should
594 take a long-term view to achieve resilience. For example, the City of Los Angeles just instituted an
595 ordinance requiring older concrete buildings that present significant collapse hazard in major earthquake
596 be retrofit within the next 30 years.

597 The risk associated with existing flood-prone construction can be addressed primarily through retrofitting:

598 • ***Elevation*** – Elevation is one of the most common flood retrofitting techniques because it provides a
599 high level of protection and does not require the owner to relocate. Elevation involves raising an
600 existing building so the lowest floor or lowest horizontal structural member is at or above the
601 regulated flood level. Common elevation techniques include elevation on piles, piers or columns, and
602 elevation on extended foundation walls. Other elevation techniques involve leaving the home in place
603 and building a new elevated floor system within the building or adding a new upper story and wet
604 floodproofing the ground level.

605 • ***Relocation*** – Relocation offers the greatest security from flooding. It involves moving an existing
606 building to an area that is less vulnerable to flooding or completely outside the floodplain. The
607 building owner usually selects the new site, often in consultation with a designer to ensure factors
608 such as accessibility, utility service, cost, and owner preferences meet engineering and local
609 regulatory requirements. Relocation includes lifting a building off its foundation, placing it on heavy-
610 duty moving dollies, hauling it to a new site, and lowering it onto a pre-constructed foundation.

611 • ***Floodproofing*** – There are two types of floodproofing: wet floodproofing and dry floodproofing. Wet
612 floodproofing allows floodwaters to enter the building and quickly reach the same level as the
613 floodwaters on the building exterior. Equalizing the water level greatly reduces the effects of
614 hydrostatic pressure and buoyancy. Wet floodproofing is generally used to limit damage to enclosures
615 below elevated buildings, basements, crawlspaces, or garages. Wet floodproofing is not practical for
616 areas used as habitable space. Dry floodproofing involves completely sealing the exterior of a
617 building to prevent entry of floodwaters. All openings below the flood level are sealed and the walls
618 of the building are relied on to keep water out. Internal drainage systems, such as sump pumps,
619 remove any seepage. Due to large hydrostatic pressures, dry floodproofing is practical only for
620 buildings with reinforced concrete or masonry walls; it is typically not practical for residential
621 buildings or for buildings where flood depths exceed 2 to 3 feet.

622 Additional information on these techniques is found in FEMA P-259, Engineering Principles and
623 Practices for Retrofitting Flood-Prone Residential Structures and FEMA P-936, Floodproofing Non-
624 Residential Buildings.

625 For buildings subject to a wind hazard, the following strategies are widely accepted as among the
626 most effective to address potential damage.

627 • ***Improving roof and wall coverings*** – Roof and wall coverings are important components of the
628 building envelope. If the building envelope is breached during a storm, wind pressures can drastically
629 increase internal pressures and fail the structural system of the building. Wind driven rain may cause
630 extensive water damage to interior contents. Improving roof coverings may involve reinforcing the
631 roof deck or removing the existing covering, securing the roof deck, and installing a new roof
632 covering. Improving wall coverings may involve installing moisture barriers and ensuring proper
633 fastener spacing is used or removing the existing covering and installing a new wall covering that is
634 rated for high winds.

635 • ***Protecting openings*** – Openings (e.g., windows, doors, skylights, soffits, and vents) are an important
636 component of the building envelope. Glazed openings, such as windows, are often vulnerable to
637 debris impact and wind driven rain intrusion. Protecting openings usually involves installing an
638 impact-resistant covering (such as a storm shutter) over an existing unprotected opening or installing
639 impact-resistant products (such as a new window or door assembly).

640 • ***Continuous load path*** – The term “continuous load path” refers to the structural condition required to
641 resist all loads – such as lateral and uplift wind pressures – applied to a building. A continuous load
642 path starts at the point or surface where loads are applied, moves through the building, continues
643 through the foundation, and terminates where the loads are transferred to the soils that support the
644 building. To be effective, each link in the load path – from the roof to the foundation – must be strong
645 enough to transfer loads without breaking. An existing building may be retrofitted if load paths are
646 incomplete or if the load path connections are not adequate. Continuous load path design or retrofit

647 considerations typically involve several connections such as the roof sheathing to roof framing; roof
648 framing to wall; wall to floor; and floor to foundation.

649 In some states, existing programs reward wind retrofit measures via homeowners' insurance discounts.
650 FEMA P-804, Wind Retrofit Guide for Residential Buildings provides additional information on specific
651 techniques for wind retrofitting residential buildings. Additionally, the Insurance Institute for Business
652 and Home Safety developed a program called "Fortified" that encourages wind retrofits for both new and
653 existing construction.

654 Many resources are available that describe seismic retrofit methods and performance-based methods.
655 Examples are:

- 656 • **ASCE 41-13:** Seismic Evaluation and Retrofit of Existing Buildings. This is a consensus standard
657 that allows users to perform and evaluate and retrofit using performance-based provisions which
658 match a selected earthquake shaking intensity with a specific performance level. It is referenced by
659 many building codes and jurisdictions.
- 660 • **FEMA 549:** Techniques for Seismic Retrofit. This publication provides examples of methods to
661 seismically retrofit various types of construction materials and structural configurations. It contains
662 example retrofit strategies and details to address identified deficiencies based on structural material.

663 **5.7. References**

664 ASCE/SEI 41 (2013) Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil
665 Engineers, Structural Engineering Institute, Reston, VA

666 ASCE/SEI (2010) Minimum Design Loads for Buildings and Other Structures, American Society of Civil
667 Engineers, Structural Engineering Institute, Reston, VA

668 ASCE 24 (2014) Flood Resistant Design and Construction, American Society of Civil Engineers,
669 Structural Engineering Institute, Reston, VA

670 IBC (2015) International Building Code, International Code Council, <http://shop.iccsafe.org/codes/2015-international-codes-and-references/2015-international-building-code-and-references.html>

672 IRC (2015) International Residential Code, International Code Council,
673 <http://shop.iccsafe.org/codes/2015-international-codes-and-references/2015-international-residential-code-and-references.html>

675 FEMA 549 (2006) Hurricane Katrina in the Gulf Coast: Mitigation Assessment Team Report, Building
676 Performance Observations, Recommendations, and Technical Guidance, Federal Emergency
677 Management Agency, Washington DC

678 FEMA P-55 (Volume I and II), Coastal Construction Manual: Principles and Practices of Planning,
679 Siting, Designing, Constructing, and Maintaining Residential Buildings in Coastal Areas, Federal
680 Emergency Management Agency, Washington DC

681 FEMA P-499, Home Builder's Guide to Coastal Construction: Technical Fact Sheet Series, Federal
682 Emergency Management Agency, Washington DC

683 FEMA P-550, Recommended Residential Construction for Coastal Areas: Building on Strong and Safe
684 Foundations, Federal Emergency Management Agency, Washington DC

685 SPUR (2009). *The Resilient City: What San Francisco Needs from its Seismic Mitigation Policies*, San
686 Francisco Planning and Urban Research Association. San Francisco, CA.

687 Oregon (2013) The Oregon Resilience Plan, Reducing Risk and Improving Recovery for the Next
688 Cascadia Earthquake and Tsunami, Report to the 77th Legislative Assembly from the Oregon Seismic
689 Safety Policy Advisory Commission, Salem, OR,
690 http://www.oregon.gov/OMD/OEM/ospac/docs/Oregon_Resilience_Plan_draft_Executive_Summary.pdf

1 **6. Transportation Systems**

2 **6.1. Introduction**

3 Transportation systems are critical to our daily lives. People use various systems of transportation on a
4 daily basis to travel to and from work, school, visits to family and friends, attend business meetings, and
5 medical emergency sites. However, the transportation network meets much more than just an individual's
6 needs. Businesses use trucks, ships, trains, and airplanes to transport goods from their point of production
7 to their point of use or consumption. For example, food is often transported from the producer (e.g., a
8 farm) to a processing and packing plant, then a regional or national distribution center, and finally to the
9 local stores where it can be purchased by consumers. All of these steps in this example of product
10 distribution rely heavily on the transportation system.

11 Traditionally, people think about the transportation system as using roads and bridges to move both goods
12 and people. While roads and bridges are a critical part of the transportation network, communities¹ also
13 rely upon other systems of transportation, including:

- 14 • Airports to transport people and goods long distances in a short period of time
- 15 • Passenger and freight rail lines to transport people and goods regionally/nationally
- 16 • Subway lines or light rail corridors in large urban centers (e.g., New York, DC, Chicago, Los
17 Angeles) to transport people to/from work and entertainment/leisure activities
- 18 • Harbors and ports to import/export goods from/to the globally and distribute them on inland
19 waterways
- 20 • Ferry terminals and waterways to transport the workforce to/from work (e.g., San Francisco, New
21 York)
- 22 • Pipelines² to transport natural gas and petroleum nationally and regionally to utilities and
23 refineries

24 The transportation system is a very complex system with multiple modes each with their own
25 complexities that make coordinating activities to build resilience of the system and the communities they
26 support very challenging. Examples of the complexity include:

- 27 • Within a small geographical area (i.e., a community) there may be many stakeholders responsible
28 for the design, operation, maintenance and funding of the road network including federal, state,
29 and local public agencies, as well as private operators of toll ways.
- 30 • The rail system includes private freight networks that are key to supporting economic activity and
31 passenger rail services operating within cities and across states with multiple stakeholders.
- 32 • Marine transportation includes domestic and international movement of passengers and goods
33 across regions that may have their own standards and guidelines for design, operation and
34 maintenance. In the case of passenger ferries, a lack of standardization limits the transferability of
35 vessels to support recovery from hazard events.
- 36 • The aviation system includes public and private airports of varying sizes that support air freight
37 and commercial air passenger services.

38 Many people rely on multiple modes of transportation (i.e., intermodal transportation) every day.
39 Businesses use multiple systems of transportation to move goods efficiently and cost effectively.

¹ For the purposes of this framework, a community is defined as an area under the jurisdiction of a local governance structure, such as incorporated cities and counties.

² Pipelines are included in the transportation chapter because they are regulated by the Department of Transportation. Water pipelines are discussed in Chapter 9.

40 Similarly, goods may be imported using ships; however, to get the goods from the ship to the next step in
41 the supply chain requires trucks or rail. More discussion on intermodal transportation is in Section 6.1.2.

42 This chapter addresses disaster resilience of the transportation system. To address resilience of their
43 infrastructure, communities need to first identify the regulatory bodies, parties responsible for the
44 condition and maintenance of the infrastructure, and other key stakeholders. Communities should work
45 with the stakeholders to determine the performance goals of the transportation infrastructure, evaluate the
46 existing infrastructure, identify weak nodes and links in the network, and prioritize upgrades to improve
47 resilience of individual network components and, consequently, the transportation network as a whole.
48 This chapter provides an exemplary performance goal table. Communities can also use the performance
49 goals table to identify the anticipated performance of existing infrastructure and their largest resilience
50 gaps, and prioritize improvements.

51 **6.1.1. Societal Needs and System Performance Goals**

52 As discussed in Chapters 2 and 3, the social needs of the community drive the performance goals to be
53 defined by each community, infrastructure owner, and its stakeholders. The social needs of the
54 community include those of citizens, local businesses, supply chains of large national and multi-national
55 businesses, industry, and government. Each community should define its own performance goals by the
56 time needed for its critical infrastructure to be restored following a hazard event for three levels of hazard:
57 routine, expected, and extreme, as defined in Chapter 3.

58 Transportation systems are a large part of our daily lives in the United States and are often taken for
59 granted. While not all natural hazard events can be forecasted, the transportation system is even more
60 important when a natural hazard event has advanced warning (i.e., hurricane) and after of a natural hazard
61 event. When a hazard event is forecast, transportation systems permit:

- 62 1. Parents to convey their children home from school or daycare
- 63 2. Residents in evacuation zones to travel to shelters or distant safe communities
- 64 3. State officials to close transportation systems that pose a danger to travelers during a hazard event

65 Following a hazard event, the community has short-term (0-3 days), intermediate (1-12 weeks), and long
66 term (4-36+ months) recovery needs. Currently, communities think about recovery in terms of emergency
67 response and management goals. For transportation these include:

- 68 1. Access for emergency responders (firefighters, paramedics, police) to reach people in need
- 69 2. Access for those that restore critical infrastructure (energy, communications, water/wastewater)
- 70 3. Access to facilities for shelter, medical care, banks/commerce, and food
- 71 4. Egress/evacuation from a community immediately after a hazard event, if needed
- 72 5. Ingress of goods and supplies immediately after event to provide aid

73 However, when addressing resilience, communities must also consider any inherent vulnerability in the
74 transportation network that may seriously affect the ability of the community to achieve full recovery in
75 the longer term and also consider improving the level of transportation network performance in the next
76 hazard event. The intermediate and longer term needs of communities for the transportation infrastructure
77 include:

- 78 1. Ability of public sector employees who run government, direct traffic, respond to emergencies,
79 run transit systems, and teach/work in schools to get to their posts
- 80 2. Ability for citizens to get to work, school, and sports/entertainment facilities
- 81 3. Ability to re-establish access to businesses (both small and large), banks, retail, manufacturing,
82 etc., so they can serve their customers
- 83 4. Ability to re-establish access to key transportation facilities (airports, ports/harbors, railway
84 stations), so goods can be transported and supply chain disruption is limited

85 5. Need to restore, retrofit, and improve transportation infrastructure and rolling stock, so they will
86 not be damaged or fail in the same way in a future event

87 6. Strengthen mass transportation, such as airports, passenger and freight rail, subways, light rail,
88 and ferry systems to relieve stress on the roads and bridges components of the transportation
89 network

90 In the long term, communities should strive to go beyond simply recovering by prioritizing and making
91 improvements to parts of the transportation network that failed in the disaster or were the source of stress
92 on the network (e.g., failure of the subway system in New York City puts millions more people on the
93 already-congested road network, or worse, at home).

94 **6.1.2. Interdependencies**

95 Chapter 4 details the interdependencies of all critical infrastructure systems in a community. As the built
96 environment within communities grows more complex and different systems become (more) dependent
97 on one another to provide services, addressing the issue of interdependencies becomes an increasingly
98 critical aspect of resilience.

99 Transportation systems play a critical role in supporting each other, as well as critical services and other
100 infrastructure systems. Hospitals, fire stations, police, and other emergency response systems depend on
101 transportation before, during, and after a hazard event. Evacuation depends on the capacity of roads,
102 waterways, airports, and rail, as well as the government's ability to manage them. Relief efforts are
103 hindered until damage to transportation systems is repaired.

104 Specific dependencies on the transportation system include:

- 105 1. **Power Energy** – A significant number of power plants rely on bulk shipments of coal or fuel via
106 barge and freight rail for their operation. Gas fired plants rely on natural gas pipelines. Resource
107 recovery plants rely on bulk shipments of refuse via truck. Interruption to barge, freight rail, and
108 truck routes from a hazard event can affect power generation if fuel at these power plants is not
109 stockpiled in advance.
- 110 2. **Communication and Information** – As fiber networks are expanded, many are routed through
111 leased conduits over bridges and through tunnels to cross waterways or other geographic features.
112 This makes them vulnerable to damage of those transportation assets in a hazard event from
113 flooding, earthquakes, or storm surge, which can knock out portions of the fiber communications
114 network. Postal services delivering letters, documents, and packages are also entirely reliant on
115 the transportation network.
- 116 3. **Buildings/Facilities** – Large transportation terminals or stations, airline terminals, and port cargo
117 facilities cease to function when transportation systems are shut down by a hazard event. Mixed
118 use transportation facilities that are integrated with retail, businesses, and hotels are also impacted
119 when transportation stops.
- 120 4. **Water/Wastewater** – The pipelines used by these systems are considered part of the transportation
121 system.

122 Specific interdependencies of transportation systems with the other infrastructure systems addressed in
123 this framework include:

- 124 1. **Power/Energy** – The transportation system depends on the power and energy grid. Gas stations
125 need electricity for vehicle owners to access fuel. As seen in Hurricane Sandy, without power, gas
126 stations, utilities, and other entities that fuel transportation vehicles could not operate, which
127 hindered both evacuation and recovery. Electric energy is also needed for traffic signals to
128 function. As seen during the northeast blackout of 2003, New York City's 11,600 traffic signals
129 were inoperable due to the loss of power, resulting in mass gridlock (DeBlasio et al. 2004).
130 Airports, rail stations, moveable bridges, vehicular tunnels and ports rely on electric energy for

131 lighting, functionality of mechanical components (e.g., loading equipment at a port), fire/life
132 safety and for functionality of the buildings themselves (see Chapter 5). Regional passenger rail,
133 subways, and light rail rely on electric energy to function as well as for fire/life safety inside the
134 tunnels. However, the energy industry also relies on transportation systems, so repair crews can
135 reach areas where failures have occurred and bring services online quickly. The logistics of
136 deploying repair crews after disasters often starts with filling in washouts and clearing debris and
137 fallen trees from roads to provide access to utility repair crews.

138 Transportation systems also include natural gas and petroleum pipelines that feed the
139 power/energy fuel storage, generation, and distribution systems. Pipelines also transport jet fuel
140 to major airports. Most pipelines in the continental United States are buried beneath the ground
141 and can rupture from earthquakes or wash out by flooding.

- 142 2. **Communication** – The communications system relies on roads and bridges so repair crews can
143 get into areas with failures of telephone and cable lines, cell towers, and fiber optic networks to
144 repair services. Conversely, transportation systems depend on communications to relay
145 information. Airports use communications for instrument-controlled aircraft operations to relay
146 logistical and scheduling information to passengers (e.g., flight status times, gate changes, etc.)
147 and to communicate with other air traffic via air traffic control. Light rail, train, and bus stations
148 rely on communication systems to coordinate and schedule inbound/outbound times for users.
149 Highways depend on Intelligent Transportation Systems (ITS) to monitor traffic levels, direct
150 traffic around areas of congestion, and respond to accidents and emergencies. ITS cameras,
151 sensors, and variable message signs are supported on fiber networks, some owned and some
152 leased by DOTs. Tolled highways and bridges rely on communication systems for electronic toll
153 collection.
- 154 3. **Building/Facilities** – Buildings are rendered useless if people cannot reach them. Transportation
155 systems allow people to travel to critical facilities, businesses, and to other homes/facilities to
156 check on the safety of friends, family and vulnerable populations. When transportation systems
157 are not available to get citizens to buildings and facilities, such structures cannot also contribute
158 to the recovery.
- 159 4. **Water and Wastewater** – Water and wastewater lines are often buried beneath roads (i.e., below
160 grade). Consequently, access to roads is needed to access points of failure. Moreover, leaks and
161 failure of waterlines under roads can damage road foundations and sinkholes may form.
162 Conversely, critical facilities in the transportation system (e.g., airports, bus, train, subway, and
163 light rail stations) require water and wastewater for maintenance, sanitation, disposal, and
164 emergency services (e.g., firefighting).

165 **Intermodal Transportation.** Due to the nature of our large, diverse transportation network and how it is
166 used today, intermodal transportation is a key consideration for communities. Intermodal transportation
167 varies by community, depending on the community's size, needs, structure, and complexity. Individual
168 citizens in some communities may function well using only the road network on a daily basis. However,
169 the community needs access to the larger transportation network, and thus other methods of transportation
170 are needed to get food and supplies to local retailers in these communities.

171 In today's global environment, goods are often imported via airplane, ship, truck, or train. If goods are
172 imported by airplane or ship, they are then loaded onto either trains or trucks. Depending on the goods
173 being transported, the next stop in the supply chain may be a manufacturing or processing plant,
174 national/regional distribution center, or a warehouse. Retailers often use warehouses or regional
175 distribution centers to manage their products and provide goods to local stores via truck in a short time
176 period. Therefore, coordination is needed between the different methods of transportation used by
177 businesses to ensure that their products can be delivered to the customer. If one of the systems fails, there
178 may not be a need for the others (e.g., if ships can't import goods, there will not be any goods for the rail
179 system to transfer to the next stop in the supply chain).

180 People also use multiple methods of transportation on a daily basis, particularly in large urban centers, to
181 get to/from work, school, entertainment facilities, homes, banks, etc. People who work in large cities
182 often rely on mass rapid transit, such as bus transit for most of their commutes. However, to get to their
183 bus stop or rail station, or final destination, individuals may rely on the roadway system, including buses,
184 taxis, bicycles or walking.

185 Although several methods of transportation are available to citizens and businesses, hence, providing
186 redundancy to the overall network, failures in one of the systems can put significant stress on other
187 transportation systems. For example, even partial loss of use of the subway system in Chicago, New
188 York, or DC would cause significant congestion and gridlock in the roadway network.

189 Freight transportation systems in the U.S. have less redundancy than systems that transport people. The
190 freight rail lines currently have little redundancy with detours of hundreds of miles around certain critical
191 routes that follow river beds and cross large rivers. With the reduced number of freight trains and the high
192 costs for maintaining the right of way of freight tracks, railroads have abandoned redundant lines and
193 many have been converted to recreational paths for pedestrians and cyclists.

194 Freight transportation by barge moves very large volumes at relatively low energy costs but has very
195 limited system redundancy since it is dependent on navigable waterways. River flooding or a damaged or
196 collapsed river crossing can lead to major delays of large volumes of freight.

197 Freight transported by truck has more redundancy than rail or barge freight; however, the national
198 highway system has certain critical river crossings, which if damaged in a hazard event, can lead to long
199 detours and heavily congested highway bottlenecks.

200 **6.2. Transportation Infrastructure**

201 Transportation systems in the United States are extremely large and complex. This section is divided into
202 five main categories:

- 203 • Section 6.2.1 – Roads, Bridges, Highways, and Road Tunnels
- 204 • Section 6.2.2 – Rail
- 205 • Section 6.2.3 – Air
- 206 • Section 6.2.4 – Ports, Harbors, and Waterways
- 207 • Section 6.2.5 – Pipelines

208 These sections discuss the components of their network, potential vulnerabilities, and strategies used in
209 the past to successfully mitigate failures. The first four sections deal with systems of the larger
210 transportation network used to move both people and goods. The fifth section, Pipelines, discusses a
211 system used to move resources alone (e.g., natural gas).

212 **6.2.1. Roads, Bridges, Highways, and Road Tunnels**

213 **Roads and Highways.** Roads and highways are vital to the nation's transportation infrastructure. The
214 nation's four million miles of public roadways endured three trillion miles of vehicle travel in 2011
215 (ASCE 2013). The large network of roads and highways serves as the primary transportation
216 infrastructure used by most people and businesses. Although other methods of transportation, such as
217 subways and airplanes, which are discussed later in this chapter, are used to move mass amount of people
218 and goods to specific hubs (i.e., nodes in the transportation network), roads and highways are used to get
219 people and goods to their final destinations. A loss of a road, bridge, or tunnel can dramatically increase
220 the time it takes for emergency responders to get to the disaster area or reduce the ability for citizens to
221 evacuate immediately following a disaster.

222 When considering the road network, communities need to think about not only cars and trucks, but other
223 methods of transportation, including buses, bicycles, and pedestrians. Locally, communities (particularly

224 large communities with a stressed road system) should develop a long-term transportation plan that
 225 encourages citizens to use other methods of transportation (e.g., bicycles and buses) in addition to
 226 personal vehicles. Bicycle lanes, for example, can be added by widening the road in a planned
 227 construction project by approximately 4 feet. It is noted; however, that the usefulness of making such
 228 changes will vary by community based on average commute time and accessibility to alternative methods
 229 of transportation. Regardless, the goal of a road system for a community should be to encourage and
 230 support as many methods of transportation as possible to make it more efficient, rather than relying on
 231 just cars and trucks.

232 In addition to moving people and goods on roads and
 233 highways, essential utilities distribute services either
 234 along-side, above, or below the grade of roads.
 235 Therefore, when roads and highways fail, it not only
 236 disrupts the ability to move people and goods, it can
 237 leave the necessary utility services vulnerable to both
 238 initial and secondary hazards (e.g., uprooting of a
 239 tree or other debris falling on a power or
 240 communication line). For example, flooding can
 241 result in undercutting road beds. In Figure 6-1, a pipe
 242 (an example of interdependency) that lay directly
 243 underneath the road shoulder was vulnerable to
 244 damage as a result of road failure.

Figure 6-1: Road undercutting in the aftermath of Hurricane Irene (FEMA, Photo by Elissa Jun, 2011)

245 Roads are also susceptible to damage from
 246 earthquakes. The force of earthquakes can cause
 247 roads to split, as seen after the Loma Prieta earthquake (FHWA 2010). Moreover, secondary effects of
 248 earthquakes, such as landslides and fires can also damage roadways. In fact, liquefaction is a major
 249 vulnerability for all transportation infrastructure (tunnels, bridges, railways, etc.), whereas roads are
 250 especially susceptible to landslides (Meyer et al. 2014).

251 Failure or loss of service of individual roads does not typically cause a major disruption for a community,
 252 because redundancy is built into the road network. Major disruptions occur when a significant portion or
 253 critical component of the road/highway network fails, such that people and goods cannot get to their
 254 destination. Flash flooding in mountain communities where roads typically follow river beds with
 255 multiple bridge crossings have left entire communities cut off when roads and bridges collapsed from
 256 scour. For example, a dozen towns in Vermont were completely cut off from emergency aid in 2011 when
 257 Hurricane Irene dumped 11 inches of rain
 258 over a weekend that washed out roads and
 259 bridges. Similarly, in Boulder, Colorado
 260 search and rescue teams were prevented
 261 from reaching stranded communities after 6
 262 inches of rain fell over 12 hours in
 263 September 2013, cutting off mountain towns
 264 after recent wildfires depleted the terrain of
 265 vegetation. Large areas of the road/highway
 266 system can be impacted by debris from high
 267 wind events (hurricanes, extra-tropical
 268 storms, tornadoes), flooding, as was seen in
 269 Hurricane Sandy, earthquakes, and ice
 270 storms. In the short term, tree fall (see
 271 Figure 6-2) on roads slows-down emergency
 272 response and repair crews from getting to

Figure 6-2: Local Road Blocked by Fallen Trees after Remnants of Extra-tropical Storm Struck Kentucky (Kentucky Public Service Commission 2009)

273 locations where their assistance is needed.

274 Ice storms, as previously discussed, can also cause road blocks by tree fall, as seen after the January 2009
275 ice storm in Kentucky (Kentucky Public Service Commission 2009). However, ice itself can also shut
276 down the road network because even relatively small amounts of ice make driving conditions dangerous,
277 particularly in areas of the United States where communities are not well prepared for snow and ice
278 storms due to their infrequent occurrence. In states that are well prepared for these events and experience
279 them regularly, ice storms or large snowfall events do not typically cause significant disruptions to
280 transportation.

281 **Bridges.** Bridges are important components of the road/highway and railway networks, because they
282 traverse significant geological features such as canyons, rivers, and bodies of water that interrupt the
283 roadway path. Bridge structures are the most costly part of a roadway or railway system to build and
284 maintain, so they are strategically placed and the temporary closure of one may lead to significant detour
285 travel distances. The number of bridges, their length, and their location within a community depends on
286 the local geography and social needs of the community. Bridges, like roads, are impacted by the
287 harshness of their respective environmental conditions (e.g., freeze thaw cycles). Traditionally bridges
288 include expansion joints, which allow rainwater, ice, snow, and other debris to get beneath the road
289 surface. Though this is a maintenance issue, water and debris infiltration leads to corrosion and
290 deterioration of both the superstructure (i.e., beams and deck) and substructure (e.g., piers, bearings, and
291 abutments), which can impact bridge performance when a hazard event occurs. However, some short
292 bridges (i.e., less than 300 feet) are now being designed using integral abutments so expansion joints are
293 eliminated, reducing this deterioration in the future (Johnson 2012).

294 Scour (i.e., erosion of bank material around bridge
295 foundations) is a leading cause of bridge failures
296 (FHWA 2011). Scour is most often caused by
297 flooding and wave action. Flooding and wave action
298 from hurricane storm surge (or tsunamis) can also
299 damage bridges in other ways. For example, during
300 Hurricane Katrina, wave-induced forces pushed
301 multiple spans of the I-10 twin bridges over Lake
302 Pontchartrain off their bearings (Figure 6-3) (FHWA
303 2010). Earthquakes in San Fernando Valley, Loma
304 Prieta, and Northridge, CA showed that bridges can
305 collapse due to failure of piers and decks (FHWA
306 2010).

307 Longer bridges tend to have relatively lightweight
308 superstructures (decks and girders), so they can span
309 long distances. Historically, their relatively low natural frequencies made some of these bridges
310 susceptible to high winds, because their low natural frequencies could be matched by the high winds.
311 Thus resonance of the bridge could occur, producing large oscillations and failure in some cases.
312 However, modern long span bridges are mostly subjected to aeroelastic wind tunnel testing to understand
313 the dynamics of the structure and make changes in design (e.g., adding dampers or changing aerodynamic
314 properties) to avoid failure during high wind events (FHWA 2011). Moreover, some older long span
315 bridges were tested and retrofitted to ensure that they were not vulnerable to wind failures.

316 Similar to roads, failure of an individual bridge causes a disruption to the local road network, but does not
317 always cause a major disruption of an entire community's road network. Because there are often
318 alternative routes, the driver's commute time might increase. Failure of a bridge puts additional stress on
319 other parts of the road network locally, because the bridge is a choke point, which could cause people to
320 avoid certain areas and thus businesses. Therefore, when communities consider the design and

Figure 6-3: Bridge sections slid off their supports during Hurricane Katrina due to wave action (FEMA, 2005)

321 functionality of their bridges, they should consider the purpose of the structure and redundancy of the
322 surrounding road network. For example, if the bridge is the only way commuters and goods can access,
323 via the road network, an area of the community that has many businesses and critical facilities, the bridge
324 should be designed for the “extreme” event, as defined in Chapter 3. However, given that bridge failures
325 are not common even in hazard events; most bridges should be designed and built for the “expected”
326 event.

327 **Road Tunnels.** Road tunnels serve a similar purpose to bridges in the road network. They connect links of
328 the road network by passing under water, through mountains, or under other roads/highways. In general,
329 tunnels present more risk to life safety when failures occur than other transportation systems, which have
330 easily accessible methods of egress. Fires in tunnels are the most deadly hazards because the enclosed
331 space causes decreased oxygen levels, contains toxic gasses, and channels heat like a furnace (Meng and
332 Qu 2010). Precipitation is another threat: flooding in surrounding areas can lead to dangerously high soil
333 moisture levels that compromise structural integrity of tunnels through mountains (Meyer et al. 2014).
334 Tunnels beneath rivers are not affected by moisture through the walls but by surrounding flooding
335 through the tunnel portal. During long-term inundation inside a tunnel, corrosion is a major mode of
336 damage, especially to any ventilation, electrical, or communications systems within in the tunnel
337 structure. More resilient designs and different protection measures, such as inflatable tunnel plugs, may
338 need to be employed to adequately mitigate the individual risk associated with tunnels (U.S. DHS 2013).

339 6.2.2. Rail

340 Rail systems consist of mass transit systems, such as subways, that operate within large high-density
341 cities, regional commuter rail systems, which connect suburban communities to the city core, intercity
342 passenger rail systems, like Amtrak, and freight rail systems that transport cargo both regionally and
343 across the nation. Also included are light rail systems that operate within cities and airports.

344 Rail systems, which typically carry bulk commodities and assist in commuter services, have seen a boom
345 in recent years. Amtrak reported more than 31.2 million passengers in 2012, double the reported figure
346 from 2000. Freight railroads transport almost half the nation’s intercity freight and approximately a third
347 of its exports with both numbers projected to increase. Freight and passenger railroads increased investing
348 in their infrastructure, even in the face of the recent recession, putting \$75 billion back into the tracks
349 since 2009. In 2010, freight railroads renewed enough miles of track to go from coast to coast. This
350 aggressive investment policy gives the rail system the capacity to meet future needs and represents an
351 opportune time to build resilience into the system (ASCE 2013).

352 Since rail systems tend to be less interconnected than roadway systems, more key points serve as
353 bottlenecks to different areas that could be severely affected by a failure (Lazo 2013). One example is the
354 failing Virginia Avenue tunnel in Washington D.C., through which 20 to 30 cargo trains travel each day.
355 The tunnel, now 110 years old and facing structural issues that would cost \$200 million to repair, has a
356 single rail line, forcing many freight trains to wait while others pass through. Bottlenecks like this cost the
357 U.S. about \$200 billion annually, or 1.6% of GDP, and are projected to cost more without adding capacity
358 along nationally significant corridors (ASCE 2013). Any disruption to these points in the system could
359 cause significant economic disruptions, indicating a need to build in alternate routes that would increase
360 redundancy in the system.

361 Another example of the lack of redundancy of the national freight rail system was the replacement of the
362 critical 120-year-old Burlington Bridge in Iowa. It was determined that the two-track bridge – which had
363 loading restrictions – was one of the three most important freight rail bridges spanning the Upper
364 Mississippi River, based on train volume. The bridge is also part of Amtrak’s national intercity passenger
365 rail network and a key route for major coal traffic that brings low sulfur coal to the east, enough to supply
366 electricity to nine million households annually.

367 Freight rail systems in the U.S. also play an important role in the intermodal transportation of
368 containerized cargo and imported automobiles from ports on both coasts to points in the Midwest.
369 Containers are double stacked on rail cars and transported to interior distribution hubs that then transfer
370 cargo to trucks and taken to their final destinations.

371 Railways do face similar natural hazards as roads
372 (e.g., flood and earthquake). Moreover, the railway
373 network has similar infrastructure, including bridges
374 and tunnels. However, the railway network is not
375 nearly as redundant as local road networks. Thus
376 disruptions in the railway network can have a
377 significant impact. During Hurricane Katrina,
378 flooding caused railway tracks to be impassable and
379 some railway bridges failed, as shown in Figure 6-4.
380 Careful planning can ensure that tracks are placed
381 along high elevations and away from potential
382 natural hazards. Relocating transit lines to newer
383 tracks that are placed with more consideration of
384 natural hazard risks reduces vulnerability, as does
385 keeping older tracks in good repair for redundancy.
386 Since railways, like roadways, are replaced every 20 years on average, resilience can be built into the
387 system (Field et al. 2012).

388 Rail systems have other vulnerabilities. Most regional and intercity passenger rail systems either rely on
389 electrified overhead catenaries or on third-rail traction power. While overhead catenary systems are more
390 vulnerable to damage in storms from winds, falling trees, and branches, both are vulnerable to flooding,
391 ice storms, and blizzards. Passenger rail in rural areas is powered by diesel locomotives and is more
392 resilient. Some railroads have invested in hybrid locomotives that can be powered by diesel or electricity
393 and be redeployed to restore limited service to lines where there may be loss of electric power. Freight
394 rail cargo is transported by diesel powered locomotives that are not dependent on the energy grid and are
395 less affected by storms, ice and flooding. Freight trains are more dependent on moveable bridges, which
396 require electric power and are used for freight rail lines, because fixed bridges require elevated
397 approaches to achieve higher under clearances.

398 A focus on early warning systems prior to a
399 hazard event, whether that system is
400 implemented by the weather service or by the
401 rail companies, is essential if trains are to be
402 moved to safer locations to protect train cars
403 from flooding, which damages electrical
404 components. As with other forms of
405 transportation, adding forms of damage
406 assessment will enable better prioritization of
407 resources and lead to faster recovery in a post-
408 disaster environment (The World Bank 2012).

409 **Subway Systems.** Subway systems move mass
410 amounts of people for work, school,
411 entertainment events, or other leisure activities.
412 Because subways are underground, flooding is
413 especially problematic. During Hurricane Sandy,
414 the New York City subway system experienced
415 heavy flooding; some tunnels filled up entirely.

Figure 6-4: A railroad bridge in New Orleans is washed out by flooding (Photo by Marvin Nauman)

RESILIENCE EXAMPLE: The New York City Transit (NYCT) subway system, despite being one of the oldest transportation infrastructures in the city, showcased adaptability in its response to the 9/11 attacks. Decision making was dispersed throughout the system; station managers were used to closing down their stations and rerouting trains due to police action. As a result of empowered leadership throughout the system, critical decision making was fast and unhindered by a chain of command. Trains were rerouted around the disrupted area, and when the nature of the event became clear, the subway was able to bring more trains onto outgoing tracks for evacuation. During the recovery, the system once again adapted to provide a means of transporting emergency personnel and supplies into and around the city (PWC 2013).

416 The subway's pumps were overwhelmed by the combined rainfall and storm surge. When power went
417 out, the lack of redundancy in power supply stopped the pumps completely and left the subways unable to
418 recover. The lack of protective measures leaves the system vulnerable to water and the lack of pump
419 capacity, combined with a frail power supply, makes it unable to recover quickly. These problems
420 severely inhibit the resilience of the subway system to the point that it will still take years for every
421 station to reopen (City of New York 2013). Therefore, when attempting to achieve the performance goals
422 set by the community's stakeholders, it is imperative to involve representatives of the energy industry in
423 decision making, because of subways' strong dependence on the power supply

424 **6.2.3. Air**

425 The nation's air infrastructure provides the fastest way for freight and people to travel long distances. The
426 airport system moves \$562 billion in cargo each year, in addition to providing 728 million passenger
427 flights. Use of commercial planes increased by 33 million passengers from 2000 to 2011. By 2040, it is
428 projected that cargo will triple and over a billion passenger flights will traverse the nation's skies. Studies
429 already show that negative impacts to this massive system cause significant damage. The estimated cost
430 of congestion and delays was almost \$22 billion in 2012 and is projected to rise to \$63 billion by 2040, if
431 national spending levels on air infrastructure are stagnant (ASCE 2013). Only with additional investment
432 can the aviation infrastructure rise to meet the demands being placed upon it.

433 Airports are a key component of supply chain for e-commerce activities. Internet purchases result in tons
434 of overnight air cargo transferred to trucks at airports and delivered to communities. There is a great
435 interdependency between airports and roadway systems for timely delivery of high priority and perishable
436 goods. Airport closures cause re-routing to other airports with longer truck travel times, delaying goods.

437 Large airports are communities in themselves; there are many people employed there, significant retail
438 business and real-estate development, such as hotels. When an airport is closed, it does not just impact air
439 travelers. People employed there are significantly affected and may be out of work until it reopens.

440 There are many dependencies between airports and other modes of transport. Passengers access airports
441 via roadways or rail. Freight services and the provision of fuel to airports are reliant on roadways. In
442 addition, when airports are disrupted, people and cargo are typically re-routed to road and rail networks.

443 Military airbases support the use of aircraft for operations by branches of the armed forces. An airbase
444 typically has facilities similar to those of a civilian airport, such as traffic control and firefighting.
445 Airbases are widespread throughout the U.S. and its territories and they provide a variety of services for
446 the military such as refueling, storage and maintenance, training centers, and mission launch points. As
447 with civilian air infrastructure, military air infrastructure provides the fastest way to transport personnel,
448 cargo, arms, supplies, and other physical assets. As such, airbases play a critical role in supporting
449 national security.

450 Disaster response is not a primary role of the armed forces; however, after major disasters, military
451 airbases may double as launch points and staging areas for disaster recovery operations. As federal, state,
452 and local agencies respond to disasters, the military is often called on for air support. Increased air
453 transportation capabilities are particularly needed after hazard events that hinder ground transportation,
454 such as floods, earthquakes, and major snow storms, or after hazard events in areas with prohibitive
455 terrain. Common disaster response-related uses for military aircraft, include evacuation, search and
456 rescue, supply delivery, and personnel mobilization. Airbases are governed by the branch of the military
457 they serve, though assets may be provided to civilian governments under civilian control after a disaster.

458 Unfortunately, airports are more sensitive to disruptions than other forms of transportation infrastructure.
459 Seventy percent of airport delays are due to severe weather events, which are expected to become more
460 frequent (ACRP 2012). This sensitivity is partly attributed to system complexity, which incorporates
461 more opportunities to fail and more risks than are immediately obvious (PWC 2013). Thus, completely

462 assessing all vulnerabilities in an airport is difficult. Nevertheless, valuable lessons can be learned from
463 past disasters.

464 Flooding, debris, snow, lightning strikes, wind, and ice can all force airport closure. In 2011, the area
465 around the Dallas Fort Worth airport received 2.6 inches of snow before the Super Bowl. The airport was
466 underprepared and suffered significant disruptions. Their equipment could only clear a runway one hour
467 after de-icer was applied, leading to cancellation of over 300 flights. In response, the airport invested over
468 \$13 million in equipment to clear three runways of 2 inches of snow in 14 minutes. Although this is a
469 great example of an aggressive response to creating a more resilient airport, it also showcases how easy it
470 is for an unexpected weather event to cause disruptions (TRB 2014).

471 Runways are vulnerable to the same hazards as
472 roads, although typically they have a lower degree of
473 tolerance regarding safe condition for use. Runways
474 can be shut down by flooding (Figure 6-5), ice, and
475 snow. Additionally, runways are exceptionally
476 vulnerable to soil liquefaction during seismic events
477 (ACRP 2012). Apart from storm events, heat waves
478 can cause the tarmac to buckle under the heavy
479 loading caused by takeoff and landing.

480 The airport terminals are vulnerable to the same
481 hazards as other buildings, as discussed in Chapter 5.
482 Energy, fuel, communications, water, and wastewater
483 services are all critical to the safe operation of
484 airports. Refer to Chapters 7, 8 and 9, respectively,
485 for discussion on the resiliency of these infrastructure
486 systems.

487 Airports play an integral role in moving people and supplies before and after a hazard event. Any major
488 disaster is likely to lead to increased traffic from evacuation. Additionally, if airports in an area close,
489 other airports must deal with redirected flights and increased loads (ACRP 2012). After a disaster, federal
490 and state aid is most quickly administered by air. These factors mean that airports are most needed when
491 they are most vulnerable – directly before and after a hazard event. Therefore, increasing disaster
492 resilience in airports is essential to increasing overall community resilience.

493 **6.2.4. Ports, Harbors, and Waterways**

494 Ports, harbors, and waterways are used largely for import/export of goods and materials. The U.S. Army
495 Corps of Engineers estimates that over 95% of our trade, by volume, moves through our ports. In 2010,
496 the ports helped export \$460 billion worth of goods and import \$940 billion. The U.S. has over 300
497 commercial harbors that process over 2.3 billion tons of cargo per year and over 600 additional smaller
498 harbors. Although most ports are in good condition, the terminals need further investment due to the
499 scheduled 2015 Panama Canal expansion. Due to the increasing size of commercial ships, many ports
500 with shallow waterways are already inaccessible. Once the canal expansion is complete, even more ports
501 will be unable to take advantage of the commerce boom from servicing new, larger ships that will be
502 double the size of large cargo ships in use today (NOAA 2014). The need for further investment, as with
503 the other transportation systems, means that this is the perfect time to make sustainable, resilient
504 improvements to this critical infrastructure (ASCE 2013).

505 Maritime infrastructure also allows for waterborne transportation of passengers and vehicles, which is
506 another important component of domestic trade (MARAD 2015). Ferries provide a safe and reliable link
507 across bodies of water for commuters in major metropolitan areas where tunnels and bridges are not
508 available or are less reliable and more congested. Additionally, ferries can serve in emergency

Figure 6-5: Flooding closed the Chester County Airport and moved planes (FEMA, Photo by Andrea Booher, 1993)

509 evacuations of metropolitan areas when other transportation networks are inundated, gridlocked, or
510 otherwise non-functional. According to the Bureau of Transportation Statistics, there were 23 ferry
511 operators across 37 states and territories in 2009. It is estimated that U.S. ferries carried close to 103
512 million passengers and over 37 million vehicles in 2009 (RITA 2015). In New York City, the Staten
513 Island Ferry carries approximately 70,000 passengers on a typical weekday (NYC DOT 2015).

514 The very nature of water transportation systems demands that critical infrastructure be located in
515 vulnerable areas. Although planning port placement will not generally avoid earthquakes, storms,
516 landslides, and tsunamis, placing ports by shallow undersea slopes helps reduce the risk of storm surge
517 damage. Strengthening the structures themselves and strengthening the ground adjacent to the water,
518 where soil may be weak, can be beneficial. Early warning systems for ship owners and port authorities
519 also give facilities and watercraft time to prepare or evacuate (The World Bank 2012).

520 Hurricanes, storms, and other heavy precipitation
521 events can lead to extreme flooding and
522 overtopping via precipitation and storm surge.
523 These damage structures, dislodge containers (see
524 Figure 6-6), undermine foundations, and destroy
525 buildings outright. When hazardous chemicals are
526 transported, there is a risk of hazardous spills in
527 addition to the risk of oil spills. Flooding can also
528 deposit silt and debris, which may restrict or
529 disable navigable channels. Overwhelmed or
530 failed drainage systems can cause flooding in areas
531 that would otherwise be unaffected by a storm
532 surge or riverine flooding. This represents a
533 vulnerability caused by existing infrastructure.
534 High winds associated with these types of events
535 can damage critical equipment, such as cranes
536 contributing to reduced levels in waterways may affect the ability to move goods and people.

537 An interview with port managers after Hurricane Sandy revealed that storm surge was the biggest issue
538 the ports faced. The storm surge, combined with debris, slammed facilities and equipment and made road
539 and rail access impossible, even after the storm. Flooding was a major issue, because all administrative
540 offices were located on the first floors of buildings, so the water shut down the port management. In
541 addition, flooding damaged new technology. The port had recently installed electric motors to move
542 cranes in an effort to be more environmentally friendly, but these were all rendered inoperable. The loss
543 of electric power shut down night lighting, nuclear detection for incoming and outgoing cargo, and traffic
544 signals around the port. When power did slowly return, the presence of generators, running a few critical
545 systems, combined with the grid voltage and repeatedly tripped circuit breakers. In parking lots,
546 approximately 16,000 cars belonging to cruise passengers were flooded because there was nowhere and
547 no one to move them. Piers and wharves performed well, because they are designed to withstand a ship
548 impact laterally and the weight of a shipping container vertically, which are both forces that far exceed
549 loads imposed by the storm. Although there was no loss of life during the storm, this interview illustrated
550 the sheer number of things that can go wrong during or after a hazard event. Details like moving offices to
551 the second floor, raising crane motors up or constructing housing for them, and having a system for
552 recovery coordination with key utilities are easily overlooked, yet can make a huge difference (Wakeman
553 2013).

554 Drought can also stress shipping routes and maritime infrastructure. Inland waterways are particularly
555 susceptible to drought; as water recedes during a drought, the navigable portion of a waterway may be
556 restricted or completely cut off. Shriving waterways create bottlenecks for shipping traffic, which
557 creates congestion (U.S. FTA 2013). Even when drought-affected waterways remain navigable, reduced

Figure 6-6: Shipping containers are displaced by high winds and storm surge.

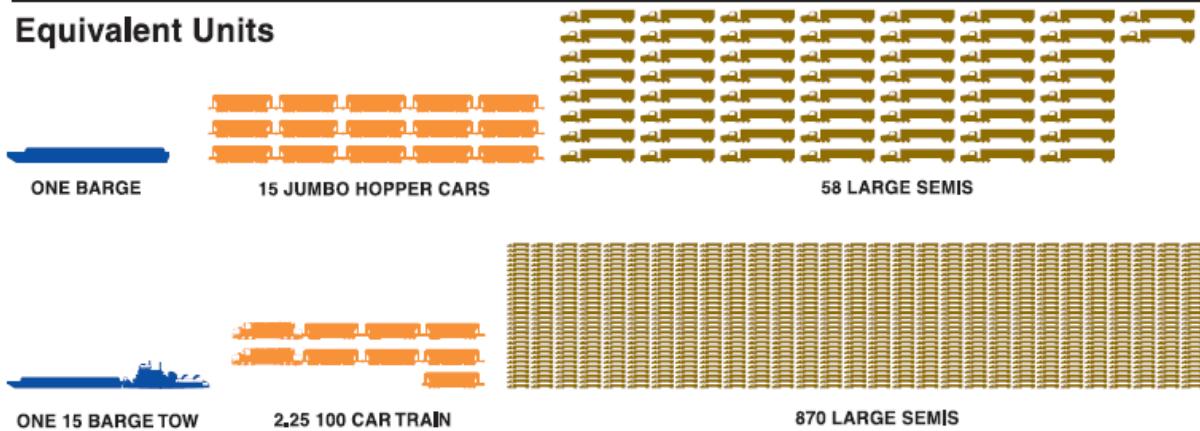
and structures (URS 2012). Drought conditions
and structures (URS 2012). Drought conditions

558 depth may require shipping vessels to reduce loads and speed, which hampers efficiency and increases
559 shipping costs. Drought can also threaten commercial and municipal infrastructure that is specifically
560 designed for fresh water. As freshwater discharge from a river's mouth decreases, coastal salt water can
561 encroach on upstream areas that are typically freshwater (NPR 2013).

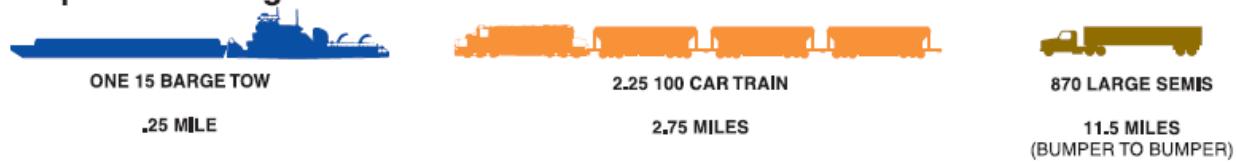
562 A unique vulnerability of maritime infrastructure is associated with sea level rise (SLR). Globally, the sea
563 level is expected to rise by 7 to 23 inches by 2099. When combined with high tides and storm surges, this
564 is the most probable threat to port infrastructure. Resulting changes in sediment movement lead to
565 siltation along channel entrances, affecting accessibility for some ships. The risk of corrosion increases as
566 more surface area comes in contact with the water. Some susceptibility to scour and flooding is ever
567 present and is exacerbated by SLR, though it is usually accounted for in port design. This climate change
568 impact has the potential to exact disaster-like tolls from the maritime infrastructure (Wakeman 2013).

569 As with other transportation modes there are many interdependencies. For example, road and rail
570 infrastructure is used to transport goods and people to and from ports and harbors to their final
571 destination. Ferries can also be used as a temporary replacement for bridge infrastructure that may fail as
572 a result of a hazard event. However, the lack of standardization across the industry can limit the
573 transferability of vessels and infrastructure to support efforts following a hazard event.

574 ***Inland navigable waterways*** are crucial to the health of the U.S. trade economy. Shallow draft navigation
575 (e.g., barges) serves 87% of all major U.S. cities, which accounts for 79% of all domestic waterborne
576 freight (MARAD 2015). In 2005, inland waterways handled over 624 million tons of freight valued over
577 \$70 billion (MARAD 2007). The U.S. Maritime Administration estimates that if inland waterways
578 became unavailable for transport, truck traffic on rural highways would increase by approximately 33%
579 (58 million truck trips annually) and rail transport, by tonnage, would increase by 25%. Increases of these
580 magnitudes would put tremendous stress on land-based infrastructure, resulting in increased maintenance
581 costs, fuel consumption, congestion, and decreased safety. As waterways are maintained and improved,
582 resilience to lasting drought conditions should be a chief consideration.


583 Inland waterways in the U.S. are relied upon to move large volumes of bulk cargo through a system of
584 rivers and lakes interconnected by locks. As shown in Figure 6-7, one barge which can carry 1,500 tons of
585 cargo moves the equivalent tonnage of 15 jumbo freight rail hopper cars or 58 large semi-trucks. A large
586 barge tow consisting of 15 barges can transport the equivalent of 870 large semi-trucks. When the inland
587 waterways flood, or there is a bridge collapse blocking a key river on their route, there is tremendous
588 delay to bulk cargo movement that cannot be made up by other modes of freight transportation (Iowa
589 DOT).

Compare...


Cargo Capacity

ONE BARGE	ONE 15 BARGE TOW	JUMBO HOPPER CAR	100 CAR TRAIN	LARGE SEMI
1,500 TON	22,500 TON	100 TON	10,000 TON	26 TON
52,500 BUSHELS	787,500 BUSHELS	3,500 BUSHELS	350,000 BUSHELS	910 BUSHELS
453,600 GALLONS	6,804,000 GALLONS	30,240 GALLONS	3,024,000 GALLONS	7,865 GALLONS

Equivalent Units

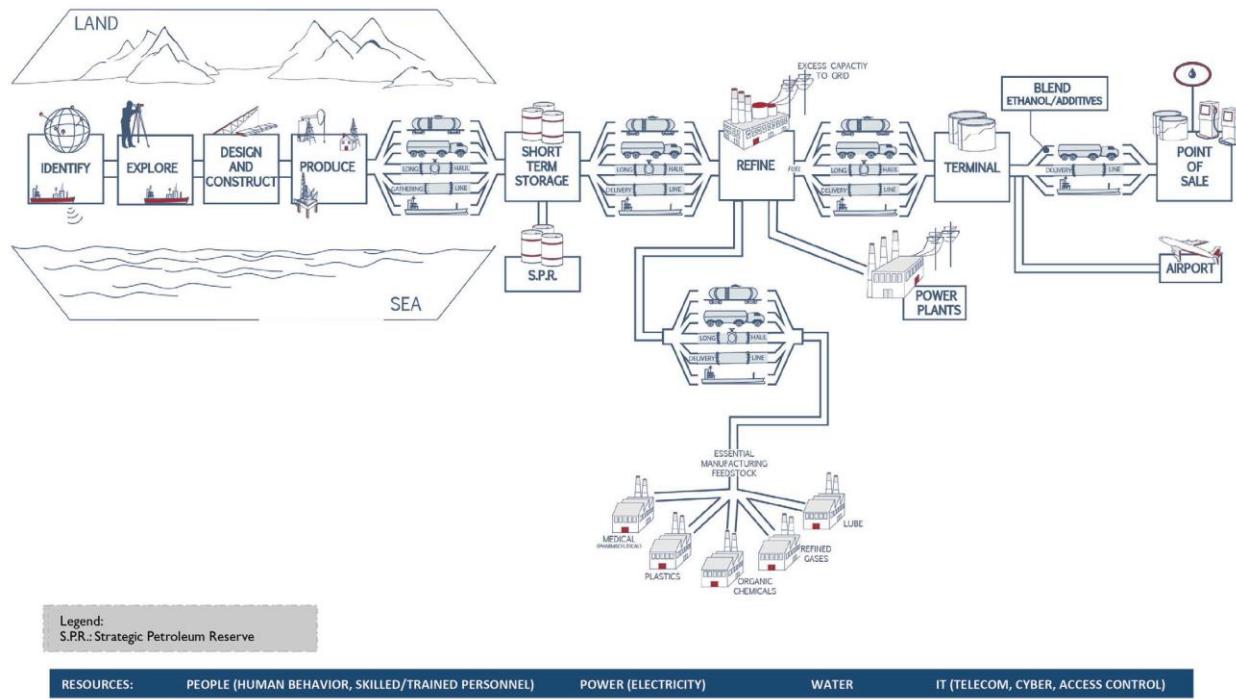
Equivalent Lengths

PM 444

Figure 6-7: Iowa DOT Comparison Chart.

590 6.2.5. Pipelines

591 Pipelines are a key lifeline of the U.S. transportation and energy supply infrastructure, delivering natural
 592 gas, crude oil, refined products, such as gasoline and diesel, and natural gas liquids, such as ethane and
 593 propane. Because the engineering standards for pipeline safety and design are administered by the U.S.
 594 Department of Transportation's Pipeline and Hazardous Materials Administration (PHMSA), pipelines
 595 needed to transport natural gas and liquid fuels are discussed here as part of the transportation system.


596 The regulation and enforcement of pipeline safety for all types of pipelines are the responsibility of the
 597 PHMSA. A combination of federal, state, and local agencies are responsible for siting pipelines and their
 598 economic regulation (rates and tariffs).

599 Pipelines are generally grouped into three categories based on function: gathering (small pipelines in an
 600 oil or gas production area), transmission (larger, longer pipelines transporting products from supply areas
 601 to market areas), and distribution (pipelines delivering the product to residential, commercial or industrial
 602 end users). Including both onshore and offshore lines, there are approximately 300,000 miles of natural
 603 gas transmission pipelines, and 2.1 million miles of distribution pipelines in the U.S., delivering over 26
 604 billion cubic feet of natural gas. Over 190,000 miles of liquids pipeline delivered nearly 15 billion barrels
 605 of crude oil and petroleum products in 2013. Over the last 10 years, liquids pipeline mileage is up 25,727
 606 miles or 15.4%, with crude oil pipeline mileage growing 11,647 miles or 23.6% since 2004 (AOPL 2014).

Transportation Systems, Transportation Infrastructure

607 The vast majority of liquid and gas pipelines are located underground, on land, or offshore; however,
 608 portions of the liquid pipeline network are located above ground along the Trans-Alaska Pipeline System,
 609 for example, which transports crude oil (DOT 2014).

610 Pipelines connect to compression/pumping stations, processing facilities, production platforms, wells, and
 611 storage facilities upstream and to end users, such as power plants and residential/commercial customers,
 612 downstream. Figure 6-8, showing the critical elements of the supply chain for oil, is equally illustrative of
 613 other types of pipeline systems and shows how these systems are inter-related with energy and other
 614 transportation systems. Short-term disruptions of the pipeline system by natural hazards complicate,
 615 hinder, and prolong disaster response and recovery. Long -term disruptions have a negative impact on the
 616 national economy, national security, and ecology.

Figure 6-8: Critical Elements of the Oil Supply Chain

617 Pipelines and their associated aboveground facilities are vulnerable to damage by flooding and storm
 618 surge, impact from flood or windborne debris, and movement of land both on and offshore (earthquakes,
 619 subsidence, mudslides). Impacts to, or movement of, a pipeline can cause the line to rupture and that may
 620 ignite or explode into the air, soil, or a body of water. Secondary effects of pipeline disruptions include
 621 delays and fuel supply loss for the transportation system and natural gas to the energy infrastructure,
 622 which affects 1) the movement of responders and goods into affected areas and around the country if
 623 disruptions are prolonged and 2) power distribution to residents, businesses, and industry, which delays
 624 recovery and causes additional distress and life safety threats to residents.

625 Hurricanes can cause offshore pipes to be displaced laterally or become exposed, which can cause leaks at
 626 clamps, welds, flanges, and fittings or be pulled apart, rupturing pipelines. Earthquakes damage pipes by

629 ground deformation – landslides, liquefaction and lateral movement of pipes – and by wave propagation
630 or shaking (Ballantyne 2008, 3). These types of impacts result in pipe compression or wrinkling, cracking
631 and separation at joints, welds, flanges, and fittings, and bending and shear (Ballantyne 2008, 3).

632 Hurricane Katrina caused extensive damage to offshore natural
633 gas facilities that resulted in releases of gas from damaged or
634 leaking pipelines in 72 locations (DNV 2007, 29). Damages to
635 fuel refining and natural gas processing facilities caused by
636 Hurricanes Katrina and Rita resulted in a loss of about 8% of the
637 nation's capability to refine and process fuels, which significantly
638 reduced the domestic supply (DNV 2007, 28). In addition, the
639 damages also caused the equivalent of nearly an 11% loss of an
640 average day's total gas consumption for the entire country (DNV
641 2007, 28). By comparison, Hurricane Sandy damaged petroleum
642 refineries, not pipelines. Because the refineries were offline,
643 although petroleum could still be moved through the pipeline, the
644 movement was significantly slowed throughout the entire pipeline
645 to compensate the loss of the supporting facilities, which affected
646 areas from the Gulf Coast up the East Coast to New Jersey and
647 New York, creating a supply chain problem in New Jersey and
648 New York. Yet, this delay lacked the long term effects that
649 Hurricane Katrina caused in 2005 (EIA 2012, 1). The Northridge
650 (1994), Washington State (1997), and the Napa, California (2014)
651 earthquakes damaged pipelines, which leaked natural gas that
652 ignited, resulting in a fire (Northridge, Napa) and an explosion
653 (Washington State) causing additional property damage
654 (Ballantyne 2008, 1). Figure 6-10 shows an example of property
655 damage caused by fire from broken gas lines.

656 The PHMSA identified five areas for local governments to
657 develop mitigation strategies to improve protection of pipelines
658 and increase the resiliency of the transmission system: 1) pipeline
659 awareness (education and outreach), 2) pipeline mapping, 3)
660 excavation damage prevention, 4) land use and development
661 planning near transmission pipelines, and 5) emergency response
662 to pipeline emergencies (DOT 2013, 3). Identifying pipeline
663 locations and entering the information into the National Pipeline
664 Mapping System is a first step toward resiliency. Knowing where
665 pipelines are located and making that information available is important
666 for mitigation planning, and preparedness, response, and recovery activities. Redesign or realignment of
667 pipes to avoid liquefaction zones, faults, areas of subsidence, and floodplains are only possible if the
668 location of both the pipeline alignment and the hazards are known and mapped. Similarly, local
669 government can create a buffer zone around pipelines to provide an extra margin of safety for nearby
670 residents and businesses and to provide greater access for repair or emergency response equipment. In
671 addition to non-structural mitigation, structural mitigation measures help to mitigate damages to pipes due
672 to earthquakes. These measures include replacing older pipes with modern steel piping with electric arc
673 welded joints, avoiding use of anchors to allow the pipe to move with the ground, installing a
674 coating/covering over piping to minimize soil friction and allow easy pipe movement, installing an
675 automated control system to allow quick shutdown of damaged pipeline systems, and constructing
676 parallel pipelines to build redundancy in the pipeline system (Ballantyne 2008, 6).

Figure 6-9: Natural gas crew shuts off gas after Hurricane Sandy (Photographer: Liz Roll, 2012)

Figure 6-10: Fire damage from broken gas lines (Photographer: Christopher Mardorf, 2014)

DISASTER RESILIENCE FRAMEWORK

75% Draft for San Diego, CA Workshop

11 February 2015

Transportation Systems, Transportation Infrastructure

677 The American Lifelines Association (ALA 2005) identified the high-level performance measures and
678 performance metrics for pipeline systems shown in Table 6-1.

679 **Table 6-1: The American Lifelines Association High-Level Performance Measures and Performance**
680 **Metrics for Pipeline Systems (ALA 2005).**

Desired Outcomes (Performance Targets)	System Performance Metrics					
	Capital Losses (\$)	Revenue Losses (\$)	Service Disruption (% Service Population)	Downtime (hours)	Casualties (Deaths, Injuries)	Lost Product
Protect public and utility personnel safety					X	X
Maintain system reliability			X	X		
Prevent monetary loss	X	X	X	X		X
Prevent environmental damage						X

681 A qualitative ranking of hazards to typical pipeline system components and facilities from the ALA
682 (2005) study is reproduced in Table 6-2.

683 **Table 6-2: Qualitative Ranking of Hazards to Typical Pipeline System Components and Facilities**
684 **(ALA 2005).**

Hazards	Degree of Vulnerability									
	Transmission Pipelines	Pump Stations	Compressor Stations	Processing Facilities	Storage Tanks	Control Systems	Maintenance Operations Buildings and Equipment	Pressure Regulations / Metering Stations	Distribution Pipelines	Service Lines or Connections
Natural Hazards										
Earthquake Shaking	L	M	M	M	H	M	H	L	L	M
Earthquake Permanent Ground Deformations (fault rupture, liquefaction, landslide and settlement)	H	-	-	-	L	-	-	L	H (Buried)	M
Ground Movements (landslide, frost heave, settlement)	H	-	-	-	L	-	-	L	H (Buried)	M
Flooding (riverine, storm surge, tsunami and seiche)	L	H	H	H	M	H	H	H	L	M
Wind (hurricane, tornado)	L (Aerial)	-	-	-	-	L	L	-	-	-
Icing	L	-	-	-	-	-	-	-	L	-
Collateral Hazard: Blast or Fire	M	H	H	H	H	M	L	L	L	M
Collateral Hazard: Dam Inundation	L	H	H	H	M	H	H	H	L	M
Collateral Hazard: Nearby Collapse	-	L	L	L	-	L	L	L	M	L
Human Threats										
Physical Attack (biological, chemical, radiological and blast)	M	M	M	M	-	M	M	-	M	-
Cyber Attack	-	L	L	L	-	H	L	-	L	-

685 Note: Degrees of vulnerability: H = High, M = Moderate, L = Low. When a component or system is located within a building the
686 vulnerability of both the building and component should be considered. For example, where there is a potential for building
687 collapse or mandatory evacuation, the equipment housed within is at risk. The entries in Table 4-2 assume that the component is
688 of recent vintage, i.e., post 1945.

689 It should be noted that over the last several years cyber security issues with pipeline systems have become
690 an increased concern. Federal agencies, including the Department of Homeland Security, work with
691 companies to improve security of computer-based pipeline control systems.

692

6.3. Performance Goals

693
694
695

Performance goals in this framework are defined by how quickly the functionality of the infrastructure systems recover after a hazard event. Minimizing downtime can be achieved during design or by developing and implementing a well prepared recovery plan (ideally both).³

696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720

Performance goals for the transportation system should be established by a panel of key stakeholders within the community, including owners, engineers, planners, regulators, codes and standards representatives, and representatives of other infrastructure systems (e.g., power and water/wastewater). Community stakeholders include representatives of the transportation system users, including commuters, school districts, emergency response services, local businesses, and other private and commercial property owners. Transportation stakeholders come from the state DOT, city DOT, township engineer, transit authorities, highway authorities, airport authorities, Amtrak, freight and short line railroads, independent taxi, bus, marine, airline and truck operators, USACE, FHWA, FAA, FRA, FTA, USCG, state, city and township code officials, AASHTO, AREMA, state, city and township OEMs, and others, as applicable. Additional stakeholders from local critical facilities, businesses, and users of the transportation system should be included establishing performance goals. For transportation systems, in particular, it is imperative that other infrastructure industries are involved in establishing the performance goals, because several systems have strong interdependencies with transportation systems, as discussed in Section 6.1.2. For example, both overhead and underground distribution lines for the power transmission and communication systems are often within the right-of-way of roads and bridges, thus are subject to DOT requirements. Likewise, water, gas, wastewater utilities with buried lines beneath streets should also be involved. In the case of passenger and light rail, the method of transportation is heavily reliant on energy systems. Once a panel of stakeholders is established, they can work to establish the performance goals for transportation system of their community. Table 6-3 through Table 6-5 present examples of performance goals for the routine, expected, and extreme events (defined in Chapter 3) for the fictional community of Centerville, USA. These example performance goals are intended to be generic so that they can be used for a hurricane, earthquake, flood, etc. Although the loading on the infrastructure and failure modes will differ depending on the type of hazard event, the social needs that drive the establishment of performance goals remain the same. However, it is noted that the social needs, and thus performance goals will vary by community.

721
722
723
724
725
726
727
728
729
730

The matrices provide three functional categories that equate to general services that transportation provides: ingress, egress and community transportation. Ingress refers to transportation of goods, services and first responders into a community immediately after a disaster and in the period of rebuilding and recovery from the event. Egress refers to the need to evacuate the population before and immediately after a hazard event. The transportation network must be viable and sufficient to provide safe egress for all citizens of the affected community. Community transportation ensures that the community can withstand and come back, or be resilient, from the given disaster. It ensures that the transportation network is available to provide passage to the critical facilities directly after an event and is available to citizens when their businesses re-open several days or weeks after. A full discussion of the definitions of each level is provided in Chapter 3.

731
732
733
734
735
736

Recovery times are broken down into three main phases: Short-term, Intermediate, and Long-term. The short term phase (0-3 days) includes the needs/goals to support immediate recovery of the community in the wake of a hazard event. The intermediate recovery phase (1-12 weeks) includes the needs/goals to support citizens and businesses returning to their daily functionality. The long term recovery phase (4-36+ months) performance goals support the need to rebuild, retrofit, and strengthen the transportation network to become more resilient for future hazard events.

³ A detailed discussion on performance goal metrics is provided in Chapter 3.

737 Table 6-3 through Table 6-5 can be used as guides by communities/owners to evaluate the vulnerabilities
738 of their transportation infrastructure at the various hazard levels (routine, expected, and extreme). The
739 tables should be used by communities/owners to establish performance goals based on local social needs.
740 Tables similar to Table 6-3 through Table 6-5 can be developed for any community (rural or urban), and
741 any type of hazard event.

742 The performance goals in Table 6-3 through Table 6-5 were based on the performance seen in previous
743 disaster events, such as Hurricanes Sandy and Katrina. Although these performance goals are provided as
744 an example, it is up to the individual community to prepare their own set of performance goals for their
745 given hazards and infrastructure.

746 The affected area of a given hazard event can also be specified, which often depends on the type of
747 hazard. For example, earthquake and hurricanes typically have large affected areas, whereas tornadoes
748 and tsunamis have relatively small affected areas. The affected area is important for the infrastructure
749 owner to consider because it will impact how much of the infrastructure may be damaged which will
750 impact the duration of the recovery process.

751 The disruption level in the performance goals tables is based on the current state of the transportation
752 infrastructure system as a whole, and should be specified as minor, moderate, or severe.

753 In the individual rows of Table 6-3 through Table 6-5 an “X” shows how an infrastructure owner can
754 indicate the anticipated performance and recovery of the infrastructure in their evaluation. As seen in
755 these tables, there are significant gaps between the desired level of performance and what is seen in
756 reality. This difference is a resilience gap. Once a community completes this table based on their local
757 social needs and current anticipated performance, they can prioritize which gaps to address first.

758 Example performance goals for pipelines during the expected event in Centerville, USA are presented in
759 Table 6-6. These example performance goals are similarly based on the performance seen in previous
760 hazard events. The portions of the pipeline system most likely to have community impacts are liquid fuels
761 and natural gas distribution systems, rather than production or transmission. This is because the
762 interconnectivity of the pipeline grid is generally sufficient to adjust to localized incidents. Further,
763 because natural gas and oil serve similar functions as electricity in the residential and commercial
764 markets, the functional categories listed in Table 6-6 are essentially the same as the corresponding
765 performance goal tables for electric transmission and distribution in Chapter 7. Much of the current
766 infrastructure and response efforts managed by larger utilities may meet the 90% restored metric
767 identified and therefore the blue shaded box is marked with 90% to show that they are “overlapping.”

768 To establish performance goals for transportation systems, it is necessary to first prioritize the
769 transportation systems and components that are most critical to community response and recovery. Next,
770 set the highest performance goals for those systems. Corresponding performance goals of a lesser degree
771 will then be set for systems and components that play a lesser role. This will insure that efforts to improve
772 resiliency will be focused first on actions that can bring the most benefit to the community. The priority
773 for each transportation system to support ingress, egress, and community transportation is based on the
774 degree the system contributes to the performance of that role for the community. The ability of each
775 system to effectively serve these functions is a balance of the volume of people or goods that the system
776 has the capacity to move and the interface of the system with the local community it serves. For example,
777 highways are designed as networks for evacuation/egress. Local streets feed state county routes, which
778 feed state highways, which feed interstate highways. The capacity of each branch is commensurate with
779 the demand. If a local street is blocked, a detour to another street can be found and the impact on traffic
780 congestion is small. If a major interstate highway is blocked, the consequences are significant since traffic
781 jams will create gridlock, because the detour routes require large traffic volumes to take local routes that
782 cannot handle them.

783 In turn, design standards for highways are the highest for interstate highways, because they are the most
784 critical for the movement of people and goods. They are graded to be above flood plains, trees are cut
785 back from the shoulders, rock slopes are well back of shoulders, and they are well maintained. State
786 highways are next in the level of performance standards and numbered county routes follow.

787 Highway bridges and road tunnels are part of the highway infrastructure and cannot be prioritized
788 separately from the highway they connect. Bridges on interstate highways are more important than
789 bridges on state highways and county routes when it comes to egress and ingress. Similarly, bridges or
790 tunnels that are part of a subway or rail system that relies on them cannot be prioritized separately.

- 791 1. Designated evacuation routes and emergency access routes should have highest priority. They
792 were designated such, because they can function as a network collecting vehicles from local
793 streets, to county routes, state highways, and interstate highways, moving travelers to higher
794 ground or away from other hazards such as a nuclear power plant alert. Highways may have
795 intelligent transportation systems (ITS) to alert travelers of travel times, detours, and potential
796 traffic congestion that can be avoided. Evacuation plans may reverse the direction of highways,
797 so that all travel lanes are outbound, away from the hazard. ITS devices like cameras, sensors and
798 variable message signs let traffic command centers communicate with travelers in vehicles to
799 direct them.
- 800 2. Interstate Highways are next, since they are constructed to higher standards. They also carry the
801 highest volume of vehicles, which makes them critical in evacuations.
- 802 3. State Highways are next for similar reasons to the above.
- 803 4. Numbered County Routes should be next (they are numbered parts of complete systems).
- 804 5. Pipelines serving power and energy systems in the community are next. In the short-term phase,
805 ruptured natural gas, fuel, water, and wastewater lines need to be repaired to support recovery.
- 806 6. Buses use all the highway routes described above. Bus fleets should be protected, fueled, and
807 strategically located and staged to support egress. They can move the greatest volumes of people,
808 especially those in communities who do not own vehicles or have people they can rely on for a
809 ride. In the short-term phase, they can also move the largest volume of relief and recovery
810 workers to a disaster area. In evacuation planning it is preferable to have people who do not have
811 access to automobiles to use buses instead of taxis or livery vehicles, since it results in less
812 highway congestion.
- 813 7. In large cities subway mass transit systems are generally designed to collect commuters traveling
814 to the city center from their local community via walking, bicycle, bus, regional rail, park and
815 ride lots, and livery vehicles. The subway lines also connect at transfer stations, which serve as
816 hubs to allow commuters to get to the specific destination station closest to where they work. At
817 the end of the business day they perform these functions in reverse. Subway systems are capable
818 of moving large volumes of people for egress purposes away from a hazard in the city center.
819 When used for ingress purposes, the subway routes will likely allow passengers to use the transfer
820 stations to get to a point close to their destination if their normal destination station is closed due
821 to a disaster. Subways may not be useful for egress or ingress for disasters other than those
822 described here. For this reason they are placed after buses in priority order.
- 823 8. Large ferry vessels are capable of moving significant volumes of people across bodies of water
824 that otherwise would require long travel distances by other modes of transportation. Examples are
825 the ferry system in San Francisco and the Staten Island Ferry in New York City. They can
826 perform this function well on an emergency basis for egress or ingress. Their operation; however,
827 is limited in storm conditions when they are required to shut down. Large ferry systems have
828 robust ferry terminal docking systems that are less likely to suffer damage during an expected
829 storm event; however, for more extreme storm events they may suffer significant damage.

830 9. Light rail transit systems are often found to be a link between communities, the town center, and
831 other modes of transportation, such as airports or passenger rail stations. They transport much
832 lower volumes of passengers at lower speeds than mass transit systems, but provide more
833 frequent service with shorter headways between trains. In general, light rail systems are not as
834 resilient as other rail systems; they do not operate in high winds and have problems with icing,
835 since they are either powered by overhead electric catenaries or have electric bus bars similar to,
836 but less robust than, third rails.

837 10. Regional rail is generally designed to collect commuters traveling to the city center from local
838 suburban communities via local stations or distribute them in the reverse direction. Travel to
839 stations is by automobile, taxi, livery car, walking, or bicycle. Some stations are hubs with larger
840 park and ride lots or garages. Regional rail usually feeds a multimodal train terminal station in the
841 city or town center where passengers extend their trip to their ultimate destination by intercity
842 rail, subway, bus transit systems, or taxis. Examples of regional rail are Penn Station in New
843 York City and Union Station in Washington, DC. Regional rail can serve for egress or ingress;
844 however, travelers evacuating from the suburbs need to be wary that the other transportation
845 systems they will rely on for connections are functioning.

846 11. National or international airports can be used for egress of travelers who need to return to their
847 home airport, or community residents evacuating to other cities. In the ingress mode, it can
848 receive large volumes of emergency aid as air cargo and bring recovery workers from large
849 distances unaffected by the hazard event. Airports are generally well connected to the regional
850 highway network, which is likely to be the first local transportation system that is functioning
851 after a hazard event. They may also be connected to regional rail, subway systems, or light rail
852 systems.

853 12. Intercity rail, such as Amtrak, can be used for egress of travelers who need to return to their
854 community, or residents evacuating to other communities. In the ingress mode, it can bring
855 recovery workers from distant cities unaffected by the hazard event. Intercity rail stations are
856 generally in the town center or city center and are well connected to the regional rail or local
857 subway or bus transit system with taxi and rental car service.

858 13. Regional airports can function similar to national or international airports to serve communities
859 that are outside of large cities. The highway networks that support these airports should be sized
860 according to the lower volumes of cargo and passengers they transport.

861 14. Marine ports are comprised of docks, waterways, locks, and supporting upland facilities, which
862 include cargo storage and distribution centers, cargo and container cranes, intermodal freight rail
863 yards, and truck transfer and inspection facilities. Egress at these facilities involves scheduling
864 large container ships and cargo vessels to divert to other ports, and diverting rail and truck
865 exports to other ports. Ingress for recovery supplies and bulk and container cargo can only take
866 place after restoration of the docks, waterways, locks, supporting upland facilities, and the
867 connecting highways and rail yards.

868 15. Freight rail lines connect to major distribution centers in inland cities and to major port facilities
869 on the coasts. Use for egress would include removal of debris and refuse. Use for ingress would
870 include recovery supplies, bulk cargo, and heavy equipment.

871 16. Ferry terminals for smaller vessels carrying lower volumes of travelers do not have a big impact
872 on egress, except where they may serve waterfront communities that are otherwise isolated
873 (island communities). In addition, during the recovery phases, temporary ferry operations can be
874 quickly established to serve communities cut off by bodies of water after the wash out of roads
875 and bridges.

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015
Transportation Systems, Performance Goals

876

Table 6-3: Example Transportation Performance Goals for Routine Event in Centerville, USA

Disturbance			Restoration times		
(1)	Hazard	Any	(2)	30%	Restored
	Affected Area for Routine Event	Localized		60%	Restored
	Disruption Level	Minor		90%	Restored
			(3)	X	Current

877

Functional Category: Cluster	(4) Support Needed	(5) Target Goal	Overall Recovery Time for Hazard and Level Listed									
			Routine Hazard Level									
			Phase 1 – Short-Term			Phase 2 -- Intermediate			Phase 3 – Long-Term			
			0	1	1-3	1-4	4-8	8-12	4	4-24	24+	
Ingress (goods, services, disaster relief)	A											
Local Roads, Bridges and Tunnels			90%	X								
State Highways, Bridges and Tunnels			90%	X								
National Highways, Bridges and Tunnels			90%	X								
Regional Airport			60%	90%	X							
National/International Airport			60%	90%	X							
Military Airports			60%	90%	X							
Marine Port			60%	90%	X							
Ferry Terminal			60%	90%	X							
Subway Station			60%	90%	X							
Rail Station, Local			60%	90%	X							
Rail Station, Regional				30%	60%	90%	X					
Rail Station, National				30%	60%	90%	X					
Egress (emergency egress, evacuation, etc)	1											
Local Roads, Bridges and Tunnels			90%	X								
State Highways, Bridges and Tunnels			90%	X								
National Highways, Bridges and Tunnels			90%	X								
Regional Airport			60%	90%	X							
National/Int'l Airport			30%	60%	90%	X						
Military Airports			60%	90%	X							
Subway Station			60%	90%	X							
Ferry Terminal			60%	90%	X							
Rail Station, Local			90%		X							
Rail Station, Regional			60%	90%	X							
Rail Station, National			30%	60%	90%		X					
Community resilience												
Critical Facilities	A											
Hospitals			90%	X								
Police and Fire Stations			90%	X								
Emergency Operational Centers			90%	X								
Emergency Housing	B											
Residences			90%	X								
Emergency Responder Housing			90%	X								
Public Shelters			90%	X								
Housing/Neighborhoods	B											
Essential City Service Facilities			60%	90%	X							
Schools			60%	90%	X							
Medical Provider Offices			60%	90%	X							
Retail			60%	90%	X							
Community Recovery	C											
Residences			60%	90%	X							
Neighborhood retail			60%	90%	X							
Offices and work places			60%	90%	X							
Non-emergency City Services			60%	90%	X							
All businesses			30%	60%	90%	X						

878

Footnotes:

1 Specify hazard being considered

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015
Transportation Systems, Performance Goals

Specify level – Routine, Expected, Extreme

Specify the size of the area affected – localized, community, regional

Specify severity of disruption – minor, moderate, severe

2	30%	60%	90%
3	X		

3 Estimated restoration time for current conditions based on design standards and current inventory

Relates to each cluster or category and represents the level of restoration of service to that cluster or category

Listing for each category should represent the full range for the related clusters

Category recovery times will be shown on the Summary Matrix

"X" represents the recovery time anticipated to achieve a 90% recovery level for the current conditions

4 Indicate levels of support anticipated by plan

R Regional

S State

MS Multi-state

C Civil Corporate Citizenship

5 Indicate minimum performance category for all new construction.

See Section 3.2.6

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015
Transportation Systems, Performance Goals

880

Table 6-4: Example Transportation Performance Goals for Expected Event in Centerville, USA

Disturbance			Restoration times		
(1)	Hazard	Any	(2)	30%	Restored
	Affected Area for Expected Event	Community		60%	Restored
	Disruption Level	Moderate		90%	Restored
			(3)	X	Current

881

Functional Category: Cluster	(4) Support Needed	(5) Target Goal	Overall Recovery Time for Hazard and Level Listed								
			Expected Hazard Level								
			Phase 1 – Short-Term		Phase 2 -- Intermediate			Phase 3 – Long-Term			
			0	1	1-3	1-4	4-8	8-12	4	4-24	24+
Ingress (goods, services, disaster relief)	A										
Local Roads, Bridges and Tunnels			60%	90%	X						
State Highways, Bridges and Tunnels			60%	90%		X					
National Highways, Bridges and Tunnels		90%			X						
Regional Airport			30%	60%	90%				X		
National/International Airport			30%	60%	90%	X					
Military Airports			30%	60%	90%	X					
Marine Port			30%	60%	90%				X		
Ferry Terminal			30%	60%	90%	X					
Subway Station			30%	60%	90%		X				
Rail Station, Local			30%	60%	90%	X					
Rail Station, Regional			30%	60%	90%		X				
Rail Station, National			30%	60%	90%		X				
Egress (emergency egress, evacuation, etc)	1										
Local Roads, Bridges and Tunnels			60%	90%	X						
State Highways, Bridges and Tunnels			60%	90%		X					
National Highways, Bridges and Tunnels		90%			X						
Regional Airport			30%	60%	90%				X		
National/Int'l Airport			30%	60%	90%	X					
Military Airports			30%	60%	90%	X					
Subway Station			30%	60%	90%	X					
Ferry Terminal			60%	90%	X						
Rail Station, Local			30%	60%	90%	X					
Rail Station, Regional			30%	60%	90%	X					
Rail Station, National			30%	60%	90%	X					
Community resilience											
Critical Facilities	A										
Hospitals			60%	90%	X						
Police and Fire Stations			60%	90%	X						
Emergency Operational Centers			60%	90%	X						
Emergency Housing	B										
Residences			30%	60%	90%	X					
Emergency Responder Housing			30%	60%	90%	X					
Public Shelters			90%		X						
Housing/Neighborhoods	B										
Essential City Service Facilities			30%	60%	90%	X					
Schools			30%	60%	90%	X					
Medical Provider Offices			30%	60%	90%	X					
Retail			30%	60%	90%	X					
Community Recovery	C										
Residences			30%	60%	90%	X					
Neighborhood retail			30%	60%	90%	X					
Offices and work places			30%	60%	90%	X					
Non-emergency City Services			30%	60%	90%	X					
All businesses				30%	60%	90%	X				

882

Footnotes: See Table 6-3, page 22.

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015
Transportation Systems, Performance Goals

883

Table 6-5: Example Transportation Performance Goals for Extreme Event in Centerville, USA

Disturbance			Restoration times		
(1)	Hazard	Any	(2)	30%	Restored
	Affected Area for Extreme Event	Regional		60%	Restored
	Disruption Level	Severe		90%	Restored
			(3)	X	Current

884

Functional Category: Cluster	(4) Support Needed	(5) Target Goal	Overall Recovery Time for Hazard and Level Listed								
			Extreme Hazard Level								
			Phase 1 – Short-Term			Phase 2 -- Intermediate			Phase 3 – Long-Term		
			0	1	1-3	1-4	4-8	8-12	4	4-36	36+
Ingress (goods, services, disaster relief)	A										
Local Roads, Bridges and Tunnels					30%	60%	90%	X			
State Highways, Bridges and Tunnels					30%	60%	90%	X			
National Highways, Bridges and Tunnels			30%	60%	90%	X					
Regional Airport					30%	60%	90%	X			
National/International Airport				30%	60%	90%		X			
Military Airports					30%	60%	90%	X			
Marine Port					30%	60%	90%	X			
Ferry Terminal					30%	60%	90%	X			
Subway Station					30%	60%	90%	X			
Rail Station, Local					30%	60%	90%	X			
Rail Station, Regional					30%	60%	90%	X			
Rail Station, National					30%	60%	90%	X			
Egress (emergency egress, evacuation, etc)	1										
Local Roads, Bridges and Tunnels					30%	60%	90%	X			
State Highways, Bridges and Tunnels					30%	60%	90%	X			
National Highways, Bridges and Tunnels			30%	60%	90%	X					
Regional Airport					30%	60%	90%	X			
National/Int'l Airport				30%	60%	90%		X			
Military Airports					30%	60%	90%	X			
Subway Station					30%	60%	90%	X			
Ferry Terminal					30%	60%	90%	X			
Rail Station, Local					30%	60%	90%	X			
Rail Station, Regional					30%	60%	90%	X			
Rail Station, National					30%	60%	90%	X			
Community resilience											
Critical Facilities	A										
Hospitals			30%	60%	90%		X				
Police and Fire Stations			30%	60%	90%		X				
Emergency Operational Centers			30%	60%	90%		X				
Emergency Housing	B										
Residences				30%	60%	90%	X				
Emergency Responder Housing			30%	60%	90%	X					
Public Shelters			30%	60%	90%	X					
Housing/Neighborhoods	B										
Essential City Service Facilities					30%	60%	90%	X			
Schools					30%	60%	90%	X			
Medical Provider Offices					30%	60%	90%	X			
Retail					30%	60%	90%	X			
Community Recovery	C										
Residences					30%	60%	90%	X			
Neighborhood retail					30%	60%	90%	X			
Offices and work places					30%	60%	90%	X			
Non-emergency City Services					30%	60%	90%	X			
All businesses					30%	60%	90%	X			

885

Footnotes: See Table 6-3, page 22.

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015
Transportation Systems, Performance Goals

886

Table 6-6. Example Pipeline Performance Goals for Expected Event in Centerville, USA

Disturbance			Restoration times						
(1)	Hazard	Any	(2)	30%	Restored				
	Affected Area for Expected Event	Community		60%	Restored				
	Disruption Level	Moderate		90%	Restored				
			(3)	X	Current (note: 90% used if desired equal to anticipated)				

887

Functional Category: Cluster	(4) Support Needed	(5) Target Goal	Overall Recovery Time for Hazard and Level Listed								
			Phase 1 -- Response			Phase 2 -- Workforce			Phase 3 -- Community		
			Days 0	Days 1	Days 1-3	Wks 1-4	Wks 4-8	Wks 8-12	Mos 4	Mos 4-36	Mos 36+
Pipelines											
Distribution											
Critical Response Facilities and Support Systems											
Hospitals, Police and Fire Stations				30%	60%	90%					
Emergency Operations Centers				30%	60%	90%					
Disaster debris/recycling centers				30%	60%	90%					
Related lifeline systems				30%	60%	90%					
Emergency Housing and Support Systems											
Public Shelters (General Population, Animal, etc.)				30%	60%	90%					
Food distribution centers				30%	60%	90%					
Nursing homes, transitional housing				30%	60%	90%					
Emergency shelter for response/recovery workforce				30%	60%	90%					
Related lifeline systems				30%	60%	90%					
Housing and Neighborhood infrastructure											
Essential city services facilities							30%	60%	90%		
Schools							30%	60%	90%		
Medical provider offices							30%	60%	90%		
Houses of worship/meditation/ exercise											
Buildings/space for social services (e.g., child services) and prosecution activities											
Food distribution from local grocery stores (location known by community)					30%	60%	90%	X			
Community Recovery Infrastructure											
Residential housing restoration							30%	60%	90%		
Commercial and industrial businesses							30%	60%	90%		
Non-emergency city services							30%	60%	90%		
Community Recovery Infrastructure											
Residential housing restoration							30%	60%	90%		
Commercial and industrial businesses							30%	60%	90%		
Non-emergency city services							30%	60%	90%		
Related lifeline systems							30%	60%	90%		

888

Footnotes: See Table 6-3, page 22.

889

6.4. Regulatory Environment

890 There are multiple regulatory bodies at the various levels of government (federal, state, and local) that
 891 have authority over the transportation system. The transportation system is not regulated by a single
 892 regulatory body, even within a single transportation mode. This section discusses regulatory bodies of
 893 communications infrastructure at the federal, state, and local levels.

894

6.4.1. Federal

895 Federal regulatory agencies oversee the transportation network and methods of transportation used within
 896 those networks. These agencies have promulgated policies and regulations that maintain the safety and
 897 security of infrastructure and operations. As the transportation industry features a diverse range of
 898 methods and operating environments, is overseen by a myriad of regulatory agencies, and funded by
 899 disparate streams that are subject to variability in direction of different political administrations, efforts to
 900 assess and address resilience across the transportation industry varies in scope. Some of the key
 901 regulatory agencies are discussed in the following sections.

902 Table 6-7 presents a summary of the methods of transportation used and the oversight authorities
 903 involved in their regulation.

904

Table 6-7: Transportation Infrastructure Code and Standards Governing Agencies

Industry	Infrastructure	Type	Method of Transportation	Public	Private	Oversight Authority											
						DHS	FEMA	NTSB	USDOT	FRA	FTA	TSA	FMCSA	FHWA	USCG	EPA	FAA
Surface Transport	Rail	Passenger	Inter-City Rail (Amtrak)	X		X	X	X	X	X		X					X
			Commuter Rail	X		X	X	X	X	X	X	X	X				X
			Subway	X		X	X	X	X		X	X					X
			Light Rail	X		X	X	X	X		X	X					X
			Inclined Plane	X		X	X	X	X		X	X					X
			Trolley/Cable Car	X		X	X	X	X		X	X					X
	Roads, Bridges and Tunnels	Passenger	Class 1 Freight Carriers		X	X	X	X	X	X		X					X
			Inter-City Motor coach	X	X	X	X	X			X	X	X				X
			Intra-City Bus/Motor coach	X	X	X	X	X		X	X	X	X				X
			Paratransit/Jitneys	X	X	X	X	X		X	X	X	X				X
			Taxis	X	X	X	X	X			X	X	X				X
		Freight	Personal Cars		X				X								X
Air	Maritime	Passenger	Commercial Trucking		X	X		X	X		X	X	X	X			X
			Ocean Lines		X			X	X		X			X	X		X
			Ferries	X		X	X	X	X		X	X		X	X		X
			Commercial Boats		X			X	X		X			X	X		X
			Personal Boats		X			X	X		X			X	X		X
		Freight	Freighters		X	X	X	X	X		X			X	X		X
			Barges		X	X	X	X	X		X			X	X		X
	Air	Passenger	Commercial Airplanes		X			X	X		X			X	X		X
			Blimps		X			X	X		X			X	X		X
			Drones	X	X			X	X		X			X	X		X
		Freight	Commercial Air Freight		X			X	X		X			X	X		X

905 6.4.1.1. U.S. Department of Transportation

906 The United States Department of Transportation (DOT) is a federal agency concerned with transportation.
907 It was created in 1966 and governed by the U.S. Secretary of Transportation. Its mission is to "Serve the
908 United States by ensuring a fast, safe, efficient, accessible, and convenient transportation system that
909 meets our vital national interests and enhances the quality of life of the American people, today and into
910 the future." The following agencies are housed within the DOT:

- 911 • National Highway Traffic Safety Administration
- 912 • Federal Aviation Administration
- 913 • Office of Inspector General
- 914 • Federal Highway Administration
- 915 • Pipeline and Hazardous Materials Safety Administration
- 916 • Federal Motor Carrier Safety Administration
- 917 • Federal Railroad Administration
- 918 • Saint Lawrence Seaway Development Corporation
- 919 • Federal Transit Administration
- 920 • Surface Transportation Board
- 921 • Maritime Administration

922 6.4.1.2. Federal Highway Administration

923 The Federal Highway Administration (FHWA) is an agency within the U.S. Department of
924 Transportation. The FHWA supports state and local governments in the design, construction, and
925 maintenance of the roadway system. The FHWA provides funding to state and local DOTs to ensure that
926 roadways remain safe and operable. It also conducts research and advances the technology of the
927 transportation system including bridges, pavements, and materials through facilities such as the Turner
928 Fairbanks Highway Research Center in McLean, Virginia.

929 The FHWA partners with state and local DOTs by funding pilot projects in an attempt to relieve
930 congestion in the existing transportation network and improve commuter time for both citizens and
931 business (FHWA 2009). One pilot program is the Freight Intermodal Distribution Pilot Grant Program,
932 which funded six programs around the country to make improvements to their infrastructure, so that
933 intermodal transportation of people and goods becomes more efficient (FHWA 2009). One of these six
934 programs improves the transfer area of the Fairbanks, AK Freight Yard, so trucks can make pick-
935 ups/drop-offs in a shorter period (FHWA 2009). The current pick-up/drop-off location does not provide
936 enough room for the trucks to get to the trains, thus creating bottlenecks even without a hazard event
937 occurring.

938 The FHWA also attempted to relieve congestion in road networks by funding pilot programs in four cities
939 that encourage non-motorized methods of transportation in the road network (i.e., walking and bicycles).
940 These programs provide infrastructure for other forms of transportation in the road network and
941 encourage people to use the infrastructure, so the road network is more diverse (FHWA 2012). Increasing
942 the diversity of how the road network is used relieves congestion, which is especially helpful after a
943 hazard event.

944 6.4.1.3. Federal Transit Administration

945 The Federal Transit Administration (FTA) is an agency within the U.S. Department of Transportation,
946 which provides financial and technical support to local public transit systems (i.e., buses, subways, light
947 rail, commuter rail, monorail, passenger ferryboats, trolleys, inclined railways, and people movers). FTA
948 programs assist state, regional, and local transit operators in developing and maintaining transit systems.

949 In 1990, the FTA promulgated 49 CFR Part 659, Fixed Guide way Rail State Safety Oversight, which
950 mandated that rail transit agencies that do not run on the national railroad network develop a system
951 safety management organization guided and documented in a System Safety Program Plan (SSPP), which
952 covered revenue service operations. It later released 49 CFR Part 633 to cover system safety issues in
953 design and construction of major capital projects. Later, after 9/11, the FTA developed requirements to
954 cover security issues. However, these regulations did not cover the preponderance of transit systems that
955 offered transit bus and paratransit operations. Nor did these, in general, cover capital projects of under
956 \$100M in value. Some of these capital design requirements do impact ferry grantees that operate under
957 the USCG if the operation uses FTA grant funding. These programs potentially cover climate change
958 issues, since transit systems are required to perform design and operational risk assessments at this time.⁴
959 However, the FTA does not have a systematic regulatory program to address climate change or resilience.
960 Instead, the FTA has developed guidance and a pilot program for agencies to investigate the issues.

961 **6.4.1.4. Federal Railroad Administration (FRA)**

962 The Federal Railroad Administration (FRA) is an agency within the U.S. Department of Transportation
963 responsible for heavy rail freight systems, commuter and inter-city passenger rail systems. The primary
964 FRA programs organize around safety, rail network development, research and development, regulations,
965 and grants and loans.

966 FRA's core mission is railroad safety, and their programs reflect this focus. The safety programs address
967 hazardous materials, motive power and equipment, operating practices, signal and train control, and track.
968 FRA's Track Division provides evaluation, direction, and technical advice for rail safety enforcement
969 programs for FRA and State safety programs. The Track Division participates in accident investigations
970 and directly investigates reports concerning track conditions. Most relevant to resiliency, the Track
971 Division actively participates in development of industry and consensual standards useful for
972 enhancement of railroad safety. Industry design standards relevant to resiliency are developed primarily
973 by the American Railway Engineering and Maintenance-of-Way Association (AREMA). Additionally,
974 for policy matters and operations-related standards, the leading organization is the Association of
975 American Railroads (AAR).

976 FRA's R&D mission is to ensure the safe, efficient and reliable movement of people and goods by rail
977 through basic and applied research, and development of innovations and solutions. Safety is the DOT's
978 primary strategic goal and the principal driver of FRA's R&D program. FRA's R&D program also
979 contributes to other DOT strategic goals because safety-focused projects typically yield solutions towards
980 the state of good repair, economic competitiveness, and environmental sustainability goals.

981 FRA's R&D program is founded on an understanding of safety risks in the industry. Hazard identification
982 and risk analysis allows FRA to identify opportunities to reduce the likelihood of accidents and incidents,
983 and to limit the consequences of hazardous events should they occur. Key strategies include stakeholder
984 engagement and partnerships with other researchers, such as the AAR, prioritization of projects and
985 conducting research through cost-effective procurement.

986 For roadway systems, federal regulation often leaves room for interpretation, while states often issue
987 more specific guides and manuals building on federal regulation. For example, in each subsection of the
988 FHWA's Manual on Uniform Traffic Control Devices (MUTCD) there is a "Standard" section followed
989 by multiple "Guidance" sections, providing further details that are recommended, but not required,
990 depending on specific conditions. States are allowed, and even encouraged, to make modifications to the
991 MUTCD that fit specific state needs. California found so many such modifications that it issues its own
992 California MUTCD that supersedes the federal version.

⁴ The latter is not a mandated and necessarily enforced by a standardized framework but the former is more so.

993

6.4.1.5. Federal Aviation Administration (FAA)994
995
996
997
998

The Federal Aviation Administration (FAA) is an agency of the U.S. Department of Transportation that oversees all civil aviation in the country. The major roles of the FAA include regulating U.S. commercial airspace, regulating flight inspection standards, and promoting air safety. The Transportation Security Administration (TSA) also has an active role in the security of air freight and commercial air passenger service.

999
1000
1001
1002
1003
1004

The FAA supports public and private airports within the National Plan of Integrated Airport Systems (NPIAS) in the design, construction, and maintenance of the airport system with grants through the Airport Improvement Program (AIP). The FAA has undertaken a study to review facility, service, and equipment profile (FSEP) data and its vulnerability to various climate responses, such as storm surge. This data will result in publicly available climate models that will be accessible by airport operators and managers.

1005

6.4.1.6. Federal Emergency Management Agency (FEMA)1006
1007
1008
1009
1010

FEMA is an agency of the United States Department of Homeland Security with a primary purpose to coordinate the response to a disaster that has occurred in the United States and that overwhelms the resources of local and state authorities. FEMA supports the recovery of infrastructure systems after a disaster event, including the transportation system, and the specific authorities and programs within the jurisdiction of participating departments and agencies.

1011
1012
1013
1014

As one of their mission is to recover from all hazards and provide funding for recovery and hazard mitigation, FEMA identifies transportation modes and capabilities for all populations, including individuals located in hospitals and nursing homes and individuals with disabilities and others with access and functional needs.

1015

6.4.1.7. U.S. Coast Guard (USCG)1016
1017
1018
1019

The USCG covers the safety and security of the national waterways, overseeing commercial freight and passenger service, as well as public transportation (e.g., municipal ferry service, boaters, and kayakers). The USGS works to prevent import of illegal or unwanted goods that may harm communities and provides escorts of exported cargo for national security (e.g., military cargo).

1020

6.4.1.8. Transportation Security Administration (TSA)1021
1022
1023
1024
1025
1026
1027
1028
1029

The Transportation Security Administration (TSA), an agency within the U.S. Department of Homeland Security (DHS), is responsible for prevention of the intentional destruction or disablement of transportation systems in all modes of transport. Formed after the events of 9/11, TSA immediately imposed security oversight and regulation in the aviation community and subsequently established divisions in all other modes, including highway, mass transit, passenger and freight rail, pipeline and maritime where it shares oversight with the U.S. Coast Guard. TSA established direct interaction and partnerships with private and public transportation operators to review and assess modal security preparedness, training and enhancement through both regulatory and voluntary steps. TSA has focused its attentions on prevention of intentional disruption and improved resilience in all modal systems.

1030

6.4.1.9. United States Corps of Engineers (USACE)1031
1032
1033

The USACE provides support in the emergency operation and restoration of inland waterways, ports, and harbors under the supervision of DOD/USACE, including dredging operations and assists in restoring the transportation infrastructure.

1034
1035
1036

The USACE is a U.S. federal agency under the Department of Defense, with environmental sustainability as a guiding principle. By building and maintaining America's infrastructure and by devising hurricane and storm damage reduction infrastructure, the USACE is reducing risks from hazard events.

1037 The USACE regulates water under “Section 404 clean Water Act” and “Section 10 Rivers and Harbors”
1038 permits. As the lead federal regulatory agency, USACE assesses potential impacts to marine navigation in
1039 the federal-maintained channels in the USA.

1040 USACE is addressing climate issues identified in the National Ocean Policy Implementation Plan
1041 (NOPIP) and taking actions. The USACE climate programs incorporate collaborative efforts to develop
1042 and disseminate methods, best practices, and standards for assessing coastal resilience in a changing
1043 climate. In response to Executive Orders 13514 and 13653, the USACE released its Climate Change
1044 Adaptation Plan and annual Strategic Sustainability Plan.

1045 As it relates to the maritime industry, the USACE is working on the following actions in response to
1046 climate change related issues: [3]

- 1047 • Develop an interagency plan for topographic and shallow bathymetric mapping to ensure
1048 comprehensive and accurate elevation information for coastlines that will eventually include
1049 acoustic bathymetry mapping.
- 1050 • Provide and integrate county-level coastal and ocean job trends data via NOAA’s Digital Coast to
1051 enable decision-makers and planners to better assess the economic impacts of climate change and
1052 ocean acidification.
- 1053 • Support NOAA’s Economics: National Ocean Watch (ENOW) will provide data on six economic
1054 sectors that directly depend on the resources of the oceans and Great Lakes: Living Resources
1055 (includes commercial fishing), Tourism and Recreation, Marine Transportation, Ship and Boat
1056 Building, Marine Construction (includes harbor dredging and beach nourishment), and Offshore
1057 Minerals (exploration and production, sand, gravel, oil, gas).
- 1058 • Provide coastal inundation and sea-level change decision-support tools to local, state, tribal, and
1059 federal managers.
- 1060 • Build on the USACE-developed sea level change calculator used in the interagency Sea Level
1061 Rise Tool for Sandy Recovery in the North Atlantic Coast. The USACE, NOAA, and FEMA are
1062 working on two pilot programs to test the application of this tool in the gulf coast and west coast.
1063 USACE, NOAA, and the Department of the Interior are working on a Sea Level Rise and Coastal
1064 Flooding Impacts Viewer and associated datasets including Digital Elevation Models. Being able
1065 to visualize potential impacts from sea level rise and coastal flooding is a powerful teaching and
1066 planning tool, and the Sea Level Rise Viewer, map services, and data brings this capability to
1067 coastal communities.

1068 **6.4.1.10. United States Environmental Protection Agency (EPA)**

1069 The EPA is an agency of the U.S. federal government created to protect human health and the
1070 environment by writing and enforcing regulations based on laws passed by Congress.

1071 The Clean Water Act (CWA) establishes the basic structure for regulating discharges of pollutants into
1072 the waters of the United States and regulating quality standards for surface waters. EPA’s National
1073 Pollutant Discharge Elimination System (NPDES) permit program controls discharges. These regulations
1074 are important from the perspective that most marine infrastructure design and construction process are
1075 required to comply.

1076 The EPA’s Program and Regional Offices produced a final Climate Change Adaptation Plan and the
1077 Climate Change Adaptation Implementation Plans. These plans describe how the agency will integrate
1078 considerations of climate change into its programs, policies, rules, and operations to ensure they are
1079 effective, even as the climate changes. On June 30, 2014, the EPA issued a new policy statement on
1080 climate change adaptation. This statement updates the initial policy statement issued in June of 2011.
1081 Climate Ready Estuaries is a partnership between EPA and the National Estuary Program to assess

1082 climate change vulnerabilities in coastal areas, develop and implement adaptation strategies, engage and
1083 educate stakeholders, and share the lessons learned with other coastal managers. [4, 5]

1084 **6.4.1.11. Council on Environmental Quality (CEQ)**

1085 CEQ was established within the Executive Office of the President by Congress as part of the National
1086 Environmental Policy Act of 1969 (NEPA) and additional responsibilities were provided by the
1087 Environmental Quality Improvement Act of 1970. NEPA assigns CEQ the task of ensuring that federal
1088 agencies meet their obligations under the Act. The challenge of harmonizing our economic,
1089 environmental and social aspirations puts NEPA and CEQ at the forefront of our nation's efforts to protect
1090 the environment. NEPA advanced an interdisciplinary approach to federal project planning and decision-
1091 making through environmental impact assessment. This approach requires federal officials to consider
1092 environmental values alongside the technical and economic considerations that are inherent factors in
1093 federal decision-making. They also require agencies to create their own NEPA implementing procedures.
1094 These procedures must meet the CEQ standard, while reflecting each agency's unique mandate and
1095 mission. Consequently, NEPA procedures vary from agency to agency. Further procedural differences
1096 may derive from other statutory requirements and the extent to which federal agencies use NEPA
1097 analyses to satisfy other review requirements. These include environmental requirements under statutes
1098 like the Endangered Species Act and Coastal Zone Management Act, Executive Orders on Environmental
1099 Justice, and other federal, state, tribal, and local laws and regulations.

1100 **6.4.1.12. National Ocean and Atmospheric Administration**

1101 Coastal Zone Management Act (CZMA) of 1972, administered by NOAA, provides for the management
1102 of the nation's coastal resources, including the Great Lakes. The National Coastal Zone Management
1103 Program works with coastal states and territories to address some of today's most pressing coastal issues,
1104 including climate change, ocean planning, and planning for energy facilities and development.
1105 The federal consistency component ensures that federal actions with reasonably foreseeable effects on
1106 coastal uses and resources must be consistent with the enforceable policies of a state's approved coastal
1107 management program. This also applies to federally authorized and funded non-federal actions.

1108 **6.4.1.13. Pipeline and Hazardous Materials Administration (PHMSA)**

1109 PHMSA is one of ten operating administrations within the U.S. Department of Transportation. PHMSA
1110 leads two national safety programs related to transportation. It is responsible for identifying and
1111 evaluating safety risks, developing and enforcing standards for transporting hazardous materials and for
1112 the design, construction, operations, and maintenance of pipelines carrying natural gas or hazardous
1113 liquids. PHMSA is also responsible for educating shippers, carriers, state partners and the public, as well
1114 as investigating hazmat and pipeline incidents and failures, reviewing oil spill response plans, conducting
1115 research, and providing grants to support state pipeline safety programs and improve emergency response
1116 to incidents. PHMSA also works with the Federal Aviation Administration (FAA), Federal Railroad
1117 Administration (FRA), Federal Motor Carrier Safety Administration (FMCSA), and U.S. Coast Guard to
1118 help them administer their hazardous materials safety programs effectively.

1119 **6.4.1.14. Federal Energy Regulatory Commission (FERC)**

1120 FERC is an independent regulatory agency for transmission and wholesale of electricity and natural gas in
1121 interstate commerce and regulates the transportation of oil by pipeline in interstate commerce. FERC also
1122 reviews proposals to build interstate natural gas pipelines, natural gas storage projects, and liquefied
1123 natural gas (LNG) terminals. FERC also licenses nonfederal hydropower projects and is responsible for
1124 protecting the reliability and cyber security of the bulk power system through the establishment and
1125 enforcement of mandatory standards.

1126 FERC has comprehensive regulations implementing the National Environmental Policy Act (NEPA) that
1127 apply to interstate natural gas pipelines, natural gas storage facilities, and liquefied natural gas facilities.
1128 In evaluating applications for new facilities or modifications of existing facilities, FERC will issue an

1129 environmental assessment (EA) or environmental impact statement (EIS). If FERC approves the project
1130 and the routing, pipeline companies must comply with all environmental conditions that are attached to
1131 FERC orders.

1132 **6.4.2. Regional, State, and Local**

1133 Metropolitan Planning Organizations (MPO) were encouraged to review the safety and security of the
1134 regional transportation network, since the enactment of SAFETEA-LU in 2005. FHWA funded and
1135 encouraged MPOs across the U.S. to look into ways they can foster considerations of safety and security
1136 planning, including resilience efforts in the long-term capital plans that MPOs develop and fund.

1137 For airports, FAA can accept state standards for construction materials and methods. Under certain
1138 conditions⁵, the use of state dimensional standards that differ from the standards in FAA Advisory
1139 Circulars are not acceptable for federally obligated or certificated airports.

1140 Many communities have zoning ordinances, building codes, and fire regulations that may place additional
1141 requirements on airport development and operations. For example, if a new hangar or other structure is to
1142 be built at an existing airport, approval and/or permits must be received from the local building
1143 department or planning authority (e.g., Borough of Lincoln Park, New Jersey has strict storm water
1144 management requirements due to high flood hazard potential).

1145 State regulatory agencies oversee the ports, harbors, and waterways industry/infrastructure for methods of
1146 design and construction. Using New York as an example, the New York Department of State (NYSDOS)
1147 [6] regulates water under “Coastal Consistency Concurrence” permit. Coastal Zone Management Federal
1148 Consistency is a process that requires federal agencies to follow State coastal management policies when
1149 conducting a project or issuing a permit that could affect coastal resources. It also enables increased
1150 coordination between government agencies. The Department of State provides both technical assistance
1151 and grant funding to waterfront communities to facilitate disaster resilience.

1152 **6.5. Standards and Codes**

1153 Codes and standards are used by the transportation industry to establish the minimum acceptable criteria
1154 for design and construction. To maintain adequate robustness, each state and locality must adopt
1155 appropriate codes and standards as a minimum requirement. Although adoption of codes is important,
1156 enforcement is a key factor in ensuring compliance of the built environment with codes and standards.

1157 **Roads, Bridges, Highways and Road Tunnels.** Moving Ahead for Progress in the 21st Century (MAP-21)
1158 is a bill signed into law by FHWA in July, 2012. MAP-21 makes funds available for studies of climate
1159 change vulnerability, to improve the dissemination of research products, and to accelerate deployment of
1160 new technologies and ensure existing programs are kept intact. Authorization is given to create programs
1161 granting financial awards for transportation research. MAP-21 requires the USDOT to create a bureau of
1162 transportation statistics that will oversee a national transportation library, an advisory council on statistics,
1163 and a national electronic atlas database. Although climate change statistics are not specified, this act at the
1164 very least, gives the option for a centralized data center useful for transportation agencies gaining access
1165 to climate information and using this information for the development of codes and standards.

1166 AASHTO is a standards-setting body that publishes specifications, test protocols, and guidelines used in
1167 highway and bridge design and construction throughout the United States. AASHTO specifications for
1168 design of bridges consider waterfront effects, since bridges often span waterways. Hence, the provisions
1169 of these specifications are often used in the design of similar waterfront structures.

⁵ Applies to airports with 10,000 passengers or less boarding per year and runways 5,000 feet or shorter, serving aircraft of 60,000 pounds gross weight and under, and standards not related to the safety of airport approaches or airport geometric standards. Reference AC 150/5100-13, Development of State Standards for Nonprimary Airports.

1170 **Rail.** The American Railway Engineering and Maintenance-of-Way Association (AREMA) authors a
1171 Manual for Railway Engineering (MRE) and a Communications and Signals Manual, among other
1172 guides. The MRE is updated annually with new design standards for fixed railway. Chapter 13 covers
1173 environmental aspects including water, air quality, and waste management and sites environmental acts
1174 pertaining to regulations. For example, Section 404 of the Clean Water Act discusses the regulatory limit
1175 for tidal waters and states that a project including placement of fill material within a body of water
1176 between ordinary high water marks requires a Section 404 permit from the USACE (see 6.4.1.6).
1177 Additionally, Section 401 of the CWA pertains to water quality certifications and provides a statutory
1178 basis for federally-designated states to regulate their state's water quality. This flexibility of state-issued
1179 certification allows for a more tailored response to disaster resilience needs. For example, Section 401
1180 regulatory limit for tidal waters extends to the mean high water limit, which is influenced by changing sea
1181 levels.

1182 The American Society of Civil Engineers, ASCE, is a professional body representing members of the
1183 civil engineering profession worldwide. The following standards, published by ASCE are of interest to
1184 facilities with a risk of natural hazards. These standards do not include specific reference to
1185 adaptation/resilience policies.

- 1186 • ASCE 24 Flood Resistant Design and Construction: This standard is also referenced by the
1187 International Building Code, with any building or structure proposed to be located in a flood
1188 hazard area is to be designed in accordance with ASCE 24. Also, the International Residential
1189 Code (IRC) allows homes in coastal high hazard areas to be designed in accordance with ASCE
1190 24, as an alternative to the prescriptive requirements therein. [12]
- 1191 • ASCE 7 Minimum Design Loads for Buildings and Other Structures: This standard is referenced
1192 by the International Building Code (IBC). It includes the consideration and calculation of flood
1193 loads. [13]
- 1194 • ASCE 61 Seismic Design Standard for Piers and Wharves: This defines a displacement-based
1195 design method to establish guidelines for piers and wharves to withstand the effects of
1196 earthquakes. [14]

1197 The American Concrete Institute, ACI, is a leading authority and resource for the development and
1198 distribution of consensus-based standards for individuals and organizations involved in concrete design,
1199 construction, and materials. The ACI codes typically used where the flood risk is greatest are:

- 1200 • ACI 318 Building Code Requirements for Structural Concrete and Commentary: This covers the
1201 materials, design, and construction of structural concrete used in buildings and where applicable
1202 in non-building structures. The code also covers the strength evaluation of existing concrete
1203 structures.
- 1204 • ACI 350 Code Requirements for Environmental Engineering Concrete Structures: This code
1205 provides design requirements more stringent than ACI 318 for concrete structures intended to
1206 contain highly corrosive liquids used for environmental engineering. Waterfront structures
1207 exposed to aggressive saltwater environments are often designed to meet these more exacting
1208 standards.
- 1209 • ACI 357.3R Guide for Design and Construction of Waterfront and Coastal Concrete Marine
1210 Structures: This is a relatively new guide, covering durability and serviceability of concrete
1211 waterfront structures, as well as analysis techniques and design methodologies unique to them.

1212 The American Institute of Steel Construction's (AISC) mission is to provide specification and code
1213 development, research, education, technical assistance, quality certification, standardization, and market
1214 development for steel construction. Most building codes reference American National Standards Institute
1215 (ANSI)/AISC standard 360, Specification for Structural Steel Buildings.

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015
Transportation Systems, Standards and Codes

1216 **Air.** The FAA regulates commercial service airports under 14 CFR Part 139, Certification of Airports.
1217 This regulation prescribes rules governing the certification and operation of airports in any state of the
1218 United States, the District of Columbia, or any territory or possession of the United States that serve
1219 scheduled or unscheduled passenger service. Advisory Circulars (ACs) contain methods and procedures
1220 that certificate holders use to comply with the requirements of Part 139.

1221 FAA's AC 150/5200-31C, Airport Emergency Plan, provides guidance to the airport operator in the
1222 development and implementation of an Airport Emergency Plan (AEP) that should address essential
1223 actions in the event of possible emergencies, including natural disasters. The guidance includes
1224 mitigation, such as zoning and earthquake-resistant construction, as an important phase of comprehensive
1225 emergency management.

1226 **Ports, Harbors, and Waterways.** Codes and standards are used by the ports, harbors and waterways to
1227 establish minimum acceptable criteria for design and construction. To mandate adequate robustness, each
1228 jurisdiction adopts appropriate codes and standards to set these minimum requirements. Climate change
1229 adaptation would be in the form of local regulations, independent of the codes and standards selected.
1230 These regulations would be similar for a project, such as a pier or bulkhead, whether it is proposed as part
1231 of development of upland property or to protect upland property from sea level rise for an extended
1232 period. Therefore, the application of regulations to maritime infrastructure would be similar to those
1233 developments mentioned above. In the purpose and need statement for a proposed project, the basis of
1234 design should state the standards and codes used, and the regulations and guidelines followed; that part of
1235 the justification for the project includes risk for natural hazard, if appropriate.

1236 The World Association for Waterborne Transport Infrastructure, PIANC, provides expert guidance,
1237 recommendations and technical advice for design, development, and maintenance of ports, waterways and
1238 coastal areas. Two guidelines of frequent interest in port design are:

- 1239 • Seismic Guidelines for Port Construction
- 1240 • Guidelines for the Design of Fender Systems

1241 The following organizations provide codes, standards, and guidelines commonly used in maritime
1242 infrastructure design and construction:

- 1243 • American Association of State Highway Officials (AASHTO)
- 1244 • Permanent International Association of Navigation Congress PIANC 2002
- 1245 • American Society of Civil Engineers (ASCE)
- 1246 • American Concrete Institute (ACI)
- 1247 • USA Department of Defense (DoD)
- 1248 • U.S. Army Corps of Engineers (USACE)
- 1249 • American Institute of Steel Construction (AISC)
- 1250 • British Standards Institution (BSI)
- 1251 • Overseas Coastal Area Development Institute of Japan (OCDI).

1252 The DoD initiated the Unified Facilities Criteria (UFC) program to unify all technical criteria and
1253 standards pertaining to planning, design, and construction, which was previously issued by individual
1254 Defense agencies. The following UFC documents are often used for waterfront design – none specifically
1255 refer to adaptation/resilience policies.

- 1256 • UFC 4-150-06 Military Harbors and Coastal Facilities
- 1257 • UFC 4-151-10 General Criteria for Waterfront Construction
- 1258 • UFC 4-150-01 Design: Piers and Wharves
- 1259 • UFC 4-152-07N Design: Small Craft Berthing Facilities

1260 • UFC 4-159-03 Design: Mooring

1261 The USACE published an extensive library of Engineering Manuals covering the design of a variety of
1262 major civil works. The manuals typically used for waterfront design include the following – none of
1263 which specifically incorporate adaptation policies regarding resilience. [18]

1264 • EM 1110-2-2502 Retaining and Flood Walls
1265 • EM 1110-2-2602 Planning and Design of Navigation Locks
1266 • EM 1110-2-2504 Design of Sheet Pile Walls
1267 • EM 1110-2-2503 Design of Sheet Pile Cellular Structural Cofferdams and Retaining Structures
1268 • EM-1110-2-1614 Design of Coastal Revetments Seawalls and Bulkheads
1269 • EM-1110-2-1100 Coastal Engineering Manual

1270 The standards from this institution used for waterfront construction are contained in the following parts of
1271 BSI 6349, Maritime Structures.

1272 • Part 1: General Criteria
1273 • Part 1-4: Materials
1274 • Part 2: Design of Quay Walls, Jetties and Dolphins
1275 • Part 3: Design of Shipyards and Sea Locks
1276 • Part 4: Code of Practice for Design of Fendering and Mooring Systems
1277 • Part 8: Design of RO/RO Ramps, Linkspans and Walkways

1278 ***Pipelines.*** The nation's pipeline safety programs are overseen by Congress and administered by PHMSA.
1279 However, PHMSA delegates the majority of these responsibilities for intrastate (generally the gathering
1280 and distribution pipelines) lines to the states. PHMSA retains the role as primary safety inspector for
1281 interstate pipelines (generally, the transmission pipelines), except in 11 states (Arizona, California,
1282 Connecticut, Iowa, Michigan, Minnesota, New York, Ohio, Washington, Virginia and West Virginia).
1283 State pipeline safety personnel represent more than 75% of the state/federal inspection workforce,
1284 although state employees account for less than 40% of the federal pipeline safety budget. This means that
1285 the bulk of the safety and inspection responsibility lies at the state level. Under existing law, states opt
1286 into this relationship with PHMSA. If a state decides not to participate, PHMSA does the safety
1287 inspection on its own. At present, this applies only to Alaska and Hawaii.

1288 All state programs must certify to DOT that they will adopt regulations that are as stringent as the Federal
1289 Pipeline Safety Regulations. States are allowed to adopt pipeline safety regulations that are stricter than
1290 federal government regulations and the overwhelming majority of states do have more stringent
1291 requirements. State regulations were developed over the years based on specific results of state
1292 inspections, changing public priorities, and increased safety expectations of the local public. A 2013
1293 report issued by the National Association of Pipeline Safety Representatives (NAPSR), with assistance
1294 and support from the National Association of Regulatory Utility Commissioners (NARUC), found that
1295 most states have adopted pipeline safety regulations more stringent than the federal regulations. The
1296 report also contains a compendium of state regulations and identifies those that exceed federal
1297 requirements. (NAPSR, 2013).

1298 PHMSA has separate safety and design standards for natural gas and liquids pipelines (49 CFR Part 192
1299 for natural gas and 49 CFR Part 195 for liquids). The regulations also provide guidance for proper
1300 management and operation of these pipelines. PHMSA employees also participate in more than 25
1301 national voluntary consensus standards-setting organizations that address pipeline design, construction,
1302 maintenance, inspection, and repair. PHMSA then reviews and approves standards for incorporation by
1303 reference into its regulations. PHMSA currently incorporates by reference all or parts of more than 60
1304 voluntary standards and specifications developed and published by technical organizations, including

1305 consensus engineering standards from the American Society of Mechanical Engineers (ASME), the
1306 American Petroleum Institute (API), the American Gas Association, the National Fire Protection
1307 Association, and the American Society for Testing and Materials. For example, ASME Standard B31.8S
1308 establishes risk assessment practices for identifying pipelines (primarily older pipelines) that could
1309 possibly be susceptible to material and construction-related integrity concerns. In addition, many agencies
1310 – federal, state and local – share responsibility for developing and enforcing other codes and standards
1311 applicable to pipeline infrastructure, such as erosion control requirements, noise ordinances, and building
1312 codes.

1313 **6.5.1. New Construction**

1314 Current federal and state project development guidelines require an environmental study at the early
1315 stages of transportation projects to identify potential environmental impacts and identify state and federal
1316 permitting requirements. The study must provide a sufficient level of understanding of the projected
1317 alignment of the facility to enable engineers and planners to identify likely impacts. If federal funding is
1318 to be used for the project, it will be subject to environmental review under the National Environmental
1319 Policy Act (NEPA). Projects go through a scoping process to establish general parameters of the work
1320 and the potential for impact. The scoping process leads to a Class of Action determination establishing
1321 whether the project is Categorically Exempt from NEPA review, or will need either an Environmental
1322 Assessment (EA) or the highest level of review, which is an Environmental Impact Statement (EIS).

1323 ***Roads, Bridges, Highways and Road Tunnels.*** The interstate roads, bridges, highways, road tunnels
1324 system, and virtually all other state and local roadways and bridges in the United States are owned and
1325 operated by the public sector. Toll roads are typically owned and operated by public/private partnerships,
1326 but are subject to the same federal and state design standards issued primarily by FHWA and state
1327 Departments of Transportation. The state DOTs establish standards within the framework of the
1328 American Association of State Highway and Transportation Officials (AASHTO). AASHTO's most
1329 recent bridge design manual, the Load Factor and Resistance Design (LFRD) Bridge Design
1330 Specifications, incorporates a risk factor into load bearing calculations. This includes effects due to
1331 deflection, cracking, fatigue, flexure, shear, torsion, buckling, settlement, bearing, and sliding. Effects of
1332 climate change are able to influence the uncertainty variables in the load equation ([Myers](#)).

1333 After Hurricane Katrina, FHWA began recommending a design standard for major interstate structures to
1334 consider a combination of wave and surge effects, as well as the likelihood of pressure scour during an
1335 overtopping event. Additionally, FHWA recommended that a flood frequency surge and wave action
1336 (500-year storm) be considered. ([Myers](#)). Some of the codes, standards, and guidelines for surface
1337 transportation are shown in Table 6-8.

1338

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015
Transportation Systems, Standards and Codes

1339

Table 6-8: Surface Transport Codes, Standards, or Guidelines

Component	Organization	Codes, Standards or Guideline
General	AASHTO	Roadside Design Guide, 4 th Edition, 2011
		A Policy on Geometric Design of Highways and Streets, 6 th Edition, 2011
General	AASHTO	LRFD Bridge Design Specifications, 7 th Edition, 2014
		AASHTO Highway Drainage Guidelines, 2007
	FHWA	Guide for Design of Pavement Structures, 4 th Edition, 1998
		Design Standards Interstate System
		Highways in the Coastal Environment, 2 nd Edition, June 2008
		A Policy on Design Standards – Interstate Systems, January 2005
Specific to Severe Weather/Hazards	AASHTO	Guide Specifications for Bridges Vulnerable to Coastal Storms (2008)
		Transportation Asset Management Guide, January 2011
		Integrating Extreme Weather Risk into Transportation Asset Management
	NCHRP	Climate Change, Extreme Weather Events, and the Highway System
	FHWA	Impacts of Climate Change and Variability on Transportation Systems and Infrastructure, The Gulf Coast Study, Phase 2, Task 3.2 (Aug 2014)
	United States DOT	2014 DOT Climate Adaptation Plan
	U.S. Global Change Research Program	National Climate Assessment

1340 **Rail.** The rail network in the United States is primarily owned and operated by the private sector. The few
1341 exceptions are in densely developed urban corridors where Amtrak and public transit agencies operate
1342 over the privately owned freight lines under trackage rights. In some areas, such as the Northeast Corridor
1343 and cities with commuter rail service the tracks and other infrastructure may be owned and maintained by
1344 Amtrak, the regional transit authority, or its contract operator. In the railroad industry, AREMA
1345 establishes and updates design standards for track, structures, and facilities. Operating standards in the rail
1346 industry pertaining to safety are under the jurisdiction of FRA. Additionally, the industry trade
1347 organization AAR has a role in the development of operating standards and policies pertaining to railroad
1348 operations. Some of the codes, standards, and guidelines for rail are shown in Table 6-9.

1349

Table 6-9: Rail Surface Transport Codes, Standards, or Guidelines

Component	Organization	Codes, Standards or Guideline
General	AREMA	Manual for Railway Engineering, 2014
		Communications and Signal Manual, 2014
		Portfolio of Track Work Plans
General	AREMA	Practical Guide to Railway Engineering
		Bridge Inspection Handbook
		Design of Modern Steel Railway Bridges
General	AAR	Guide for Design of Pavement Structures
		Design Standards Interstate System
		A Policy on Design Standards – Interstate Systems
Specific to Climate Change	AREMA	None identified
	AAR	None identified
	United States DOT	2014 DOT Climate Adaptation Plan
	U.S. Global Change Research Program	National Climate Assessment

1350 **Ports.** As stated elsewhere in this document, new maritime construction needs to follow the local codes
1351 and standards for design and construction. Climate change impacts are usually incorporated by local
1352 authorities by utilizing the guidance documents issued by various local and federal authorities (such as
1353 USACE, IPCC). For example, the City of New York adopted specific guidelines in regards to climate
1354 change through an authorized panel, New York Panel on Climate Change (NPCC).

DISASTER RESILIENCE FRAMEWORK

75% Draft for San Diego, CA Workshop

11 February 2015

Transportation Systems, Standards and Codes

1355 The following return periods from current industry standards can serve as a starting point to guide an
 1356 agency towards a comfortable level of risk for current and projected scenarios. A return period or
 1357 recurrence interval is an estimate of the likelihood of an event, such as a flood, to occur.

- 1358 • Wind on facilities (ASCE-7): Varies depending on occupancy category – up to 1700 year return
- 1359 • Coastal Flooding (USACE): 50 year return
- 1360 • Inland Flooding (AASHTO): 100 year return plus a percentage depending on agency
- 1361 • Inland Flooding for other facilities (ASCE-7): 100-year return

1362 **Pipelines.** New pipelines are subject to current federal and state design and safety guidelines. Liquids
 1363 pipelines and intrastate natural gas pipelines are regulated at the state level; therefore, regulations and risk
 1364 evaluations for assessment of hazards will vary depending on location.

1365 The failure modes discussed in this chapter may represent key vulnerabilities in the codes that are
 1366 exposed during hazard events. Table 6-10 presents a summary of the methods of transportation used,
 1367 whether they are used for public or private transportation, and the oversight authorities involved in their
 1368 regulation.

1369 **Table 6-10: Transportation Infrastructure Code and Standards Governing Agencies**

Industry	Infrastructure	Type	Method of Transportation	Public	Private	Oversight Authority										1+ state agencies	
						DHS	FEMA	NTSB	USDOT	FRA	FTA	TSA	FMCSA	FHWA	USCG	EPA	FAA
Surface Transport	Rail	Passenger	Inter-City Rail (Amtrak)	X		X	X	X	X	X		X					X
			Commuter Rail	X		X	X	X	X	X	X	X	X				X
			Subway	X		X	X	X	X		X	X					X
			Light Rail	X		X	X	X	X		X	X					X
			Inclined Plane	X		X	X	X	X		X	X					X
		Trolley/Cable Car	X		X	X	X	X		X	X						X
	Roads, Bridges and Tunnels	Freight	Class 1 Freight Carriers		X	X	X	X	X	X		X					X
		Passenger	Inter-City Motor coach	X	X	X	X	X				X	X	X			X
			Intra-City Bus/Motor coach	X	X	X	X	X		X	X	X	X				X
			Paratransit/Jitneys	X	X	X	X	X		X	X	X	X				X
			Taxis	X	X	X	X	X			X	X	X				X
		Freight	Personal Cars		X				X								X
	Maritime	Passenger	Commercial Trucking		X	X		X	X		X	X	X	X			X
		Passenger	Ocean Lines		X			X	X			X			X	X	X
			Ferries	X		X	X	X	X		X	X		X	X	X	X
			Commercial Boats		X			X	X			X		X	X		X
			Personal Boats		X			X	X			X		X	X		X
		Freight	Freighters		X	X	X	X	X			X			X	X	X
			Barges		X	X	X	X	X			X		X	X		X
Air	Air	Passenger	Commercial Airplanes		X			X	X			X			X	X	X
		Blimps		X			X	X			X			X	X	X	
		Drones	X	X			X	X			X			X	X	X	
		Freight	Commercial Air Freight		X			X	X			X			X	X	X

1370 **6.5.1.1. Implied or stated Performance Levels for Expected Hazard Levels**

1371 When defining standards for hazards for roads, bridges, highways, and road tunnels, federal regulations
 1372 tend to use general language for performance levels. For example, when describing Drainage Channels,

1373 the AASHTO Roadside Design Guide states that “channels should be designed to carry the design runoff
1374 and to accommodate excessive storm water with minimal highway flooding or damage.” No specific
1375 levels are mentioned, leaving specific implementation up to state regulations and engineering judgment.

1376 Although federal documentation does not give specifics on hazard mitigation levels for the entire country,
1377 it often gives guidance on how more locally-based regulation should be formed. For example, in
1378 Highways in the Coastal Environment, the FHWA gives three approaches for determining site-specific
1379 design water levels. These consist of 1) use of available analyses, 2) historical analysis, and 3) numerical
1380 simulations with historic inputs. These are only general guidelines, but they apply to all regions of the
1381 country and ensure the process is data driven.

1382 AREMA provides more specific regulations than AASHTO in regards to hazard levels, but still leaves
1383 room for site-specific engineering. To continue the draining example, the Manual for Railway
1384 Engineering states that, “typically, the 100-year base flood elevation is the most commonly regulated
1385 storm water elevation associated with rivers, streams and concentrated flow areas.” It goes on to describe
1386 how, “any change to the flood plain will generally result in extensive studies and computer modeling to
1387 be submitted for approval.” Again, these regulations are not specific numeric regulations, but a guidance
1388 that ensures proper steps are taken by the appropriate agency to mitigate risk.

1389 The National Cooperative Highway Research Program conducted a study on climate change adaptation
1390 strategies in 2013 that provided some specific examples of dealing with increasing severity of weather
1391 events. For example, precipitation events may consider estimating second -order recurrence intervals (if
1392 two 100-year storms happened in two consecutive years) and updating variables accordingly in the
1393 Clausius-Clapeyron relationship for relative precipitation increases (NCHRP 2013).

1394 The Advisory Circulars (AC) define design criteria for most details of an *airport's* facilities –
1395 runway/taxiways, terminal buildings, lighting, and navigational aids. These documents define standard
1396 criteria for construction, but do not specifically address climate extreme weather events beyond
1397 potentially constructing drainage for a 50-year storm. The following is a subset of the available ACs.

- 1398 • AC 150/5300-13A, Airport Design (9/28/12)
- 1399 • AC 150/5370-10G, Standards for Specifying Construction of Airports (7/21/14)
- 1400 • AC 150/5340/30H, Design and Installation Details for Airport Visual Aids (7/21/14)
- 1401 • AC 150/5320-5D, Airport Drainage Design (8/15/13)
- 1402 • AC 150/5345-53D, Airport Lighting Equipment Certification Program (9/26/12)
- 1403 • AC 150/5345-28G, Precision Approach Path Indicator (PAPI) Systems (9/29/11)
- 1404 • AC 150/5320-6E, Airport Pavement Design and Evaluation (9/30/09)
- 1405 • AC 150/5200-30C, Airport Winter Safety and Operations (12/9/08)
- 1406 • AC 150/5345-46D, Specification for Runway and Taxiway Light Fixtures (5/19/09)
- 1407 • AC 150/5360-13, Planning and Design Guidelines for Airport Terminals and Facilities (4/22/88)

1408 Performance levels addressed include a recommended 5-year storm event be used with no encroachment
1409 of runoff on taxiway and runway pavements when designing storm water drainage (including paved
1410 shoulders). Airport pavements should provide a skid-resistant surface that will provide good traction
1411 during any weather conditions (with provisions for frost and permafrost). And, airport terminal buildings
1412 should be structurally designed to appropriate seismic standards (Executive Order 12699, Seismic Safety
1413 of Federally Assisted or Regulated New Building Construction, January 5, 1990).

1414 State and local legislative bodies are not obligated to adopt model building codes and may write their own
1415 code or portions of a code. A model code does not have legal standing until it is adopted as law by a
1416 legislative body (state legislature, county board, city council, etc.). When adopted as law, owners of
1417 property within the boundaries of the adopting jurisdiction are required to comply with the referred codes.

1418 Because codes are updated regularly, existing structures are traditionally only required to meet the code
1419 that was enforced when the property was built unless the building undergoes reconstruction,
1420 rehabilitation, alteration, or if the occupancy of the existing building changes. In that case, provisions are
1421 included in the code to require partial to full compliance depending on the extent of construction. [\[ASCE](#)
1422 [Policy Statement 525 – Model Building Codes\]](#). For example, New York City Building code describes the
1423 requirement for flood-resistant construction, referencing FEMA flood maps and ASCE 24 for “dry flood-
1424 proofing.” The Design Flood Elevation for certain structures, such as terminals, air traffic control towers,
1425 and electrical substations, is the 100-year floodplain plus one-foot.

1426 Except for wind and seismic loading, rail codes do not provide specifics regarding natural hazards (e.g.,
1427 the codes may stipulate various flood levels for which a structure may need to be designed, but they will
1428 not specifically set what that level is). Rather, they set event-based criteria, e.g., 50 or 100-year event.
1429 Similarly for wave loads, various codes (e.g., USACE Coastal Engineering Manual) may advise that
1430 waves should be considered, but it’s usually up to the design professional to determine what wave
1431 characteristics should be considered.

1432 Each agency’s tolerance for risk (note that risk tolerance could include interests beyond an agency’s
1433 immediate jurisdiction particularly if other utilities within the asset right of way, such as water, sewer, or
1434 electrical may be impacted). An agency with a higher risk tolerance would plan for less extreme changes.
1435 An agency with a lower risk tolerance could be expected to plan for more extreme change.

1436 Interstate natural gas infrastructure is regulated by FERC, which is responsible for compliance with
1437 NEPA. The NEPA document will address potential impacts of climate change: impacts resulting from the
1438 project and impacts on the project. As stated previously, impacts on pipelines are generally limited
1439 because they are buried, but aboveground facilities such as compressor stations could be affected by
1440 storm-related incidents. Input from state and local governments is a key component of the review process
1441 at FERC. Local knowledge of environmental conditions and concerns about inter-relationships with other
1442 critical infrastructure should be identified to FERC at the earliest point in any project review. For
1443 example, there may be resiliency and reliability concerns if a new pipeline’s proposed route would be
1444 adjacent to a critical electric transmission line.

1445 **6.5.1.2. Recovery Levels**

1446 For roadway and rail transportation, no specific requirements were identified in codes or standards.
1447 However, at state and local levels there may be operational goals or performance standards. For example,
1448 a state may issue a severe weather warning, mandating that all drivers remain home until authorities deem
1449 roads are safe enough to be traveled. Similarly for rail, administrative and inspection personnel decide
1450 when a system is safe to operate.

1451 There is minimal description of required recovery levels for extreme events for airports. Language for
1452 storm water drainage requires surface runoff from the selected design storm be disposed of without
1453 damage to facilities, undue saturation of the subsoil, or significant interruption of normal traffic. “The
1454 drainage system will have the maximum reliability of operation practicable under all conditions, with due
1455 consideration given to abnormal requirements, such as debris and annual periods of snowmelt and ice jam
1456 breakup.”

1457 Marine infrastructure is critical to the transportation industry (commercial, public, and private) and the
1458 full recovery will be necessary for proper functionality. However, no specific guidance or performance
1459 levels were identified.

1460 **6.5.2. Existing Construction**

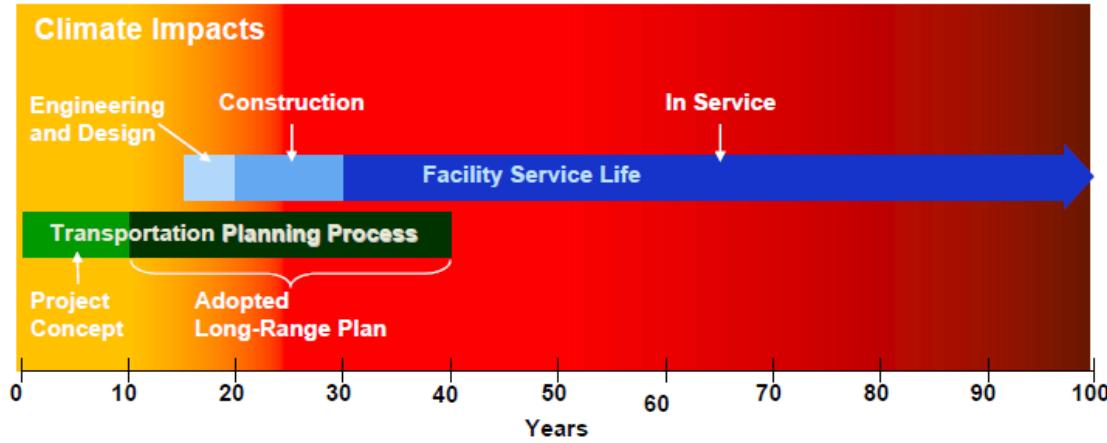
1461 The design of transportation systems has been refined over time; however, incorporating resiliency into
1462 the design is a relatively new concept. For existing transportation systems, they are bound by the codes
1463 and standards for which they were initially designed. Typically, transportation infrastructure is not

1464 required to meet the new codes as they develop. As the codes and standards incorporate resiliency, a
 1465 significant portion of transportation system will not be covered under these new more restrictive codes
 1466 and standards.

1467 For rail and roadways, documented codes or standards have not been identified specifically for existing
 1468 construction.

1469 Airport codes and standards do not address retrofitting existing construction to adjust for climate change
 1470 or extreme weather events. Several advisory circulars outline procedures for maintaining existing
 1471 facilities only.

- 1472 • AC 150/5380-6C, Guidelines and Procedures for Maintenance of Airport Pavements (10/10/14)
- 1473 • AC 150/5380-7B, Airport Pavement Management Program (PMP) (10/10/14)
- 1474 • AC 150/5340-26C, Maintenance of Airport Visual Aid Facilities (6/20/14)
- 1475 • AC 150/5200-33, Hazardous Wildlife Attractants on or Near Airports


1476 In relation to Prevailing Design Standards for the maritime industry, only sections of the local or national
 1477 codes and standards that govern design of the component would be required. Information collected will
 1478 allow for the assessment of the existing asset to determine if it adheres to current design standards. This
 1479 will assist in determining vulnerabilities and the selection and prioritization of adaptation strategies for
 1480 the marine infrastructure in question.

1481 Reviewing existing design codes and standards will guide the engineer to determine the design parameters
 1482 required to perform a check of the condition of the marine infrastructure. Using the selected code or
 1483 design standards and the parameter values to perform an engineering calculation to determine if the asset
 1484 satisfies the requirements. The degree to which the component is affected by the stressor will serve to
 1485 assist in determining appropriate adaptation strategies.

1486 Figure 6-11 illustrates a comparison of transportation timeframes against the climate impacts. According
 1487 to Moritz (2012), infrastructure planned and built with past climate and weather in mind may not be
 1488 adequate for future resilience and operation. Hence, there is a strong need to re-consider or adopt the
 1489 long-range transportation planning process.

Transportation Timeframes vs. Climate Impacts

1490

1491 *Figure 6-11: Procedures to Evaluate Sea Level Change Impacts, Responses, and Adaptation Corps of*
 1492 *Engineers' Approach, Naval Facilities Engineering Command Port Hueneme, CA 24 October 2012*

1493 6.5.2.1. Implied or stated Performance Levels for Expected Hazard Levels

1494 The performance levels for new/future and existing transportation infrastructure are anticipated to be the
1495 same. Therefore, the reader is referred to the previous discussion in Section 6.5.1.1.

1496 6.5.2.2. Recovery Levels

1497 Since the performance levels anticipated for new/future and existing construction are the same, the
1498 recovery levels are also anticipated to be similar. The reader is referred to the previous discussion in
1499 Section 6.5.1.2.

1500 6.6. Strategies for Implementing Community Resilience Plans**1501 6.6.1. Available Guidance**

1502 Section 6.2 describes the various components of the transportation systems and case studies of where
1503 these systems may have failed in the past. The performance of the transportation system is highly
1504 dependent on the age of the system, the type of natural hazard, the standard to which it was designed, and
1505 the basic decisions made immediately before and after the hazard event. Current engineering standards
1506 and guidelines provide tools to assess the performance of bridges and roadways, such as the (AASHTO)
1507 *Manual for Bridge Evaluation*. Similar standards exist for other transportation nodes, such as airports,
1508 rail, subways, etc.

1509 AASHTO's Transportation Asset Management Guide applies to both roads and rail, as it encourages
1510 agencies to include operations and maintenance into state and local resource management programs. This
1511 includes considering life-cycle planning, including frequency of maintenance and repair based on weather
1512 conditions. The guide asks, "What allowance should be made for climate change when designing a new
1513 asset or facility with a long life? For example, should expanded storm water drainage capacity be
1514 provided, should route planning decisions consider the risks of sea level changes in coastal areas?" The
1515 guide goes on to recommend processes and tools for life cycle management, incorporating effects due to
1516 climate change. In addition to processes, it is necessary to continue to monitor the assets to continually
1517 improve the model's forecasting.

1518 ISO 31000:2009, *Risk management – Principles and guidelines*, provides principles, a framework, and a
1519 process for managing risk. It can be used by any organization regardless of its size, activity, or sector.
1520 Using ISO 31000 can help organizations increase the likelihood of achieving objectives, improve the
1521 identification of opportunities and threats, and effectively allocate and use resources for risk treatment.
1522 ISO 31000 cannot be used for certification purposes, but does provide guidance for internal or external
1523 audit programs. Organizations using it can compare their risk management practices with an
1524 internationally-recognized benchmark, providing sound principles for effective management and
1525 corporate governance. The guidelines for establishment of sound risk assessment programs can be applied
1526 to the development of resilience assessment and mitigation
1527 (<http://www.iso.org/iso/home/standards/iso31000.htm>).

1528 FAA issued a memorandum titled "Considering Greenhouse Gases and Climate Under the National
1529 Environmental Policy Act (NEPA): Interim Guidance" (January 12, 2012). The memo indicates that an
1530 estimate of GHG emissions can serve as a "reasonable proxy for assessing potential climate change
1531 impacts" and provide information for decision-making. The amount of carbon dioxide and/or fuel burn
1532 from aircraft operations should be calculated for FAA NEPA evaluations. Consideration should be given
1533 to reducing GHG emissions as a part of the project; however, reduction is not mandated. The memo does
1534 not reference assessing vulnerability to extreme weather as a result of climate change.⁶ FAA's AC

⁶ CEQ recently issued the "Draft Guidance on Consideration of Greenhouse Gas Emissions and the Effects of Climate Change" (December 2014), which suggests agencies focus quantitative greenhouse gas analysis on the projects and actions with 25,000 metric tons of CO₂-equivalent emissions on an annual basis or more, and counsels

Transportation Systems, Strategies for Implementing Community Resilience Plans

1535 150/5200-31C, Airport Emergency Plan, provides guidance on conducting a hazard/risk analysis to help
1536 determine what hazards exist and how to address them. In addition, the scope of work for FAA's Airport
1537 Sustainable Master Plan Pilot Program included a baseline inventory or assessment of each defined
1538 sustainability category (which will vary by airport), establishment of measurable goals, and development
1539 of specific sustainability initiatives to help the airport achieve each goal.

1540 Several of the larger airport authorities, such as Port Authority of New York and New Jersey (PANYNJ),
1541 Los Angeles World Airports (LAWA) and Philadelphia International Airport, have established
1542 assessment methodologies, either alone or as part of larger citywide or regional efforts. PANYNJ became
1543 involved in a climate change assessment led by New York City's Long-Term Planning and Sustainability
1544 Office, which was conducted between August 2008 and March 2010. The team was called the Climate
1545 Change Adaptation Task Force, and its work was part of a comprehensive sustainability plan for New
1546 York City called PlanNYC. The assessment process comprised six major tasks: defining the climate
1547 change variables and projections, developing asset inventories, assessing vulnerabilities, analyzing risks,
1548 prioritizing the assets, and developing adaptation strategies.

1549 The Greater Toronto Airports Authority (GTAA) uses the PIEVC (Public Infrastructure Engineering
1550 Vulnerability Committee) Protocol from Engineers Canada to assess risk and identify preliminary needs
1551 (such as storm water facilities).

1552 The ASCE and Coasts, Oceans Ports and Rivers Institute (COPRI) established special committees on
1553 climate change to identify, gather, and organize information on potential infrastructure impacts due to
1554 climate change; to develop partnerships and collaborations of relevant and interested committees and
1555 organizations for responsible understanding and planning of potential climate change impacts; to develop
1556 strategies and recommendations addressing climate change impacts [22]. The Sea Level Change
1557 Committee provides a more systematic approach to estimating and including sea level change in
1558 marine/coastal projects. [23]

1559 6.6.2. Strategies for New/Future Construction

1560 The Canadian Council of Professional Engineers developed a risk based vulnerability assessment
1561 framework to evaluate climate change risks in building, roadway asset, stormwater–wastewater systems,
1562 and water resource management infrastructures. The protocol involves project definition, data gathering
1563 and sufficiency, risk assessment, engineering analysis, and recommendations. It covers the categories of
1564 buildings, roads and associated structures, stormwater/wastewater, and water resource systems (PIEVC
1565 2009).

1566 In the United Kingdom, the Highway Agency has a Climate Change Adaptation Strategy and framework
1567 that addresses specific climate risks for highway infrastructure and agency practices (UK, 2009).
1568 Transport Asset Management Plans (TMAPs) are mandatory in the UK, and some incorporate specific
1569 sections on climate change (Myers).

1570 Transit New Zealand has incorporated climate change into its asset management inventory. Standards for
1571 assets have the ability to change with newly developed climate change predictions. An economic analysis
1572 shows that existing assets with a lifespan of 25 years or less did not require changes in design or
1573 maintenance, but new construction can be modified as needed. Additionally, Transit NZ modified its
1574 bridge manual, including a new design factor for climate change (Myers).

1575 **Rail.** The FTA advocates for designs including larger drainage capacity, stronger structures to withstand
1576 winds, and materials suited for higher temperatures. For subway systems, flooding is a primary climate
1577 change affected concern. Potential strategies include requiring flood gates, high elevation entrances, and

agencies to use the information developed during the NEPA review to consider alternatives that are more resilient to the effects of a changing climate.

Transportation Systems, Strategies for Implementing Community Resilience Plans

1578 closable ventilation gates (requiring new fan-driven ventilation). A FEMA-commissioned study
1579 determined that that flood protection savings are, on average, four times greater than prevention costs.

1580 Localized flooding for transit and other transportation facilities can be prevented by establishing proper
1581 stormwater management. Best practices include rain gardens, stormwater ponds, increased vegetation,
1582 green roofs, rain barrels, and pervious pavements. These allow stormwater to be absorbed through natural
1583 processes, reducing, or preventing flooding altogether (FTA 2011).

1584 Port Authority of NY and NJ, PANYNJ, has an organization-wide “Sustainable Infrastructure
1585 Guidelines” that is implemented for projects including terminal building construction, building
1586 demolition, electronics systems, communications systems, airfield construction or rehabilitation, and
1587 landscaping. The guidelines require the protection of the ecological health of wetlands, floodplains, and
1588 riparian buffers, protection and maintenance of absorbent landscapes, mitigation of the heat island effect,
1589 and implementation of stormwater best management practice strategies, implementation of sustainable
1590 landscape maintenance. LAWA’s Sustainable Airport Planning, Design, and Construction Guidelines are
1591 similar, identifying many technical approaches to climate change adaptation planning such as increasing
1592 the capacity of stormwater conveyance and storage (e.g., design for 100-year and 500-year storms) and
1593 utilizing heat-resistant paving materials.

1594 New buildings, particularly those adjacent to coastal resources or within a floodplain, should implement
1595 flood hazard mitigation as part of the design. PANYNJ sets forth an elevation of 18 inches higher than the
1596 current code requirements, based on an anticipated increase of the mean sea level, for the lowest floor of
1597 buildings to be considered for all project elements. If that is not feasible, then the standard should at least
1598 be met for all critical project elements (electrical equipment, communications, etc.).

1599 San Diego International Airport has incorporated low impact development strategies (e.g., pervious
1600 pavement, infiltration storage chambers, bio-retention swales, modular wetlands, riprap energy dissipater)
1601 into their north side improvements in order to reduce flooding risks.

1602 The American Society of Civil Engineers (ASCE) issued a series of policy statements (a list is provided at
1603 the end of this document for those relevant to this study) defining the Societies role in the industry by
1604 supporting the sustainable and resilient reconstruction of affected areas devastated by accidental,
1605 intentional and/or natural disaster events. Collaboration with ASCE and its technical Institutes would
1606 promote development of national codes and standards for the changing world.

1607 ASCE specifically supports the following activities:

- 1608 • *Redesign and reconstruction of disaster protection systems for affected communities at a level
1609 appropriate for protection of the population, critical infrastructure and the environment; and*
- 1610 • *Reconstruction that incorporates appropriate studies, urban design, application of technology,
1611 land use, zoning, and utilization of natural systems to recreate communities that are resilient,
1612 sustainable, more livable and less vulnerable to accidental, intentional and/or natural disaster
1613 events.*

1614 The challenges include evaluation of the prior conditions and effects caused by the hazard(s) to determine
1615 if reconstruction of the affected infrastructure is viable, feasible and beneficial to facilitate the task of
1616 protecting life, property, and national critical infrastructure.

1617 To better protect American lives, property, and infrastructure, the affected areas cannot always be rebuilt
1618 to match prior conditions. Reconstruction and recovery includes consideration of the existing conditions,
1619 which may have facilitated the destruction. It also includes consideration of the principles of
1620 sustainability and resilience.

1621 There are many federal, state and local agencies that have been working on strategies for the maritime
1622 industry, including USDOT (FHWA) USACE and ASCE. Additional research including a more detailed

Transportation Systems, Strategies for Implementing Community Resilience Plans

1623 review of the TRB 2013 report, *Assessment Of The Body Of Knowledge On Incorporating Climate*
1624 *Change Adaptation Measures Into Transportation Projects.*

1625 From a European perspective, resilience or adaptation means anticipating the adverse effects of climate
1626 change and taking appropriate action to prevent or minimize the damage they can cause, or taking
1627 advantage of opportunities that may arise ([EU Adaptation Policy](#)).

1628 Adaptation strategies are needed at all levels of administration: at the local, regional, national, EU and
1629 also the international level. Due to the varying severity and nature of climate impacts between regions in
1630 U.S. and Europe, most climate adaptation initiatives will be taken at the regional or local levels. The
1631 ability to cope and adapt also differs across populations, economic sectors and regions within Europe.

1632 **6.6.3. Strategies for Existing Construction**

1633 The Transportation Research Board, TRB, reviewed operation and maintenance practice to mitigate the
1634 effects of future climate change conditions. They cite the example of an airport operator purchasing
1635 additional snow removal equipment to minimize operational out-of-service time. Agencies should be
1636 prepared for increased extreme weather incidents of all types and obtain the necessary equipment to
1637 minimize the operational disruption time ([TRB, 2013](#)).

1638 PANYNJ's climate change assessment found that capital investments could take the form of permanent
1639 improvements that could include installing new flood barriers, elevating certain elements of critical
1640 infrastructure so that they would be above the projected flood elevations, moving entire facilities to higher
1641 ground, and designing new assets for quick restoration after an extreme event. Regulatory strategies could
1642 include modifying city building codes and design standards.

1643 Key West International Airport in Florida is already vulnerable to hurricanes and sea level rise. They have
1644 been retrofitting existing infrastructure, such as installing flapper valves inside drainage structures to
1645 avoid standing water on runways and taxiways. In addition, they have had to adapt their wildlife hazard
1646 mitigation strategies to handle new animals that are encroaching on the airport as a result of changing
1647 habitat. Additional strategies are outlined in the "Monroe County Climate Action Plan" (March 2013).

1648 Climate adaptation strategies in the maritime industry must be applied to existing buildings as well as
1649 new building projects. Borrowing from the ICLEI process, the steps below describe how a project team
1650 can integrate adaptation strategies to existing buildings and sites. [\[24\]](#)

- 1651 1. Understand regional impacts: Identify climate impacts for the facility's region.
- 1652 2. Evaluate current operation and maintenance targets: Understand how the maintenance and
1653 operations perform under current peak climate conditions.
- 1654 3. Conduct a scenario analysis: Analyze how the facility will respond to projected climate impacts,
1655 modeling different system options under a variety of climatic conditions. Implement adaptation
1656 strategies: Install adaptation strategies that provide passive or efficient responses to more extreme
1657 climate events in order to maintain occupant comfort while preventing increased energy use.

1658 Similar to the process above, USACE employs a 3 tier process for screening out the projects ([Moritz,](#)
1659 [2012](#)). Tier 1 Establish Strategic Decision Context, Tier 2 involves Project Area Vulnerability and Tier 3
1660 for Alternative Development, Evaluation, and Adaptability. Future storm tides will reach higher
1661 elevations than past storms and will do so more frequently impacting both flooding and structural loading.

- 1662 • As part of the Tier 2 process, structural loading and processes needs to be evaluated from
1663 technical perfective:
- 1664 • Natural variability of loading factors
- 1665 • Tidal and wave height range
- 1666 • Local sea level change rate

DISASTER RESILIENCE FRAMEWORK

75% Draft for San Diego, CA Workshop

11 February 2015

Transportation Systems, Strategies for Implementing Community Resilience Plans

1667 • Extreme lows and highs
1668 • Frequency of events
1669 • Key project processes
1670 • Short and Long-term erosion/recession
1671 • Rate of change of exposure
1672 • Cumulative impacts with other climate or natural Drivers
1673 • Example of Inventory & Forecast Qualitative Matrix (describes study area's and parallel system's
1674 susceptibility to sea level change (Moritz, 2012)

1675 **Table 6-11: Risks from Sea Level Rise**

Critical Resources in Study Area	Density of Resource (3=high, 2=medium, 1=low, X=none)	Relevance	Risk from Sea Level Rise (3=high, 2=medium, 1=low, X=none present)
Length and type of primary federal navigation	3	The length and type of navigation structure will determine stability and maintenance impacts.(age, last maintained)	3
Length and type of secondary federal navigation structures (groins, spur jetties,dikes, etc.)	2	The length and type of navigation structure will determine stability and maintenance impacts.(age, last maintained)	2
Length and type of federal shoreline protection structures	1	The length and type of shoreline protection structure will determine stability and maintenance impacts. (age, last maintained)	2
Channel length and authorized depth, mooring areas and basins	3	SLR may impact this favorably; SLF may require adjustments to authorized lengths and depths. Harbor and entrance resonance and performance issues may arise. (length, area)	1
Dredged material management sites	1	DMMP sites may become more or less dispersive and/or have changes in capacity. (number, area)	1
Port facilities- bulkheads, wharves, docks, piers	3	Performance of existing federal structures under modified ocean conditions will result in increased magnitude and frequency of impacts. (length, type, seasons of use)	3
Commercial Infrastructure	3	Performance of existing federal structures under modified ocean conditions will result in increased magnitude and frequency of impacts. (type, value)	2
Transportation infrastructure	2	Impacts to transportation infrastructure (roads, rail, etc.) can impact benefits realized. (length, type)	2
Utilities, drainage systems, communication	2	Connectivity and support systems may be affected resulting in decreased project benefits.(length, type)	2
Environmental and habitat areas	1	Assessment of any environmental systems in project area. (type, sensitivity)	1

1676 The FTA identifies four categories pertaining to adaptation strategies. They are broad enough that they
1677 apply to a range of transportation facilities (FTA 2011):

1678 • **Maintain and manage** – adjust budgets for increased maintenance cost and improve severe event
1679 response times. Utilize technologies that detect changes such as pressure and temperature in
1680 materials as a precaution against structure damage or rising water levels.

1681 • **Strengthen and protect** – existing infrastructure should be retrofitted to withstand future climate
1682 conditions. Ensure facilities can stand up against high winds and extreme temperatures, and
1683 assure flood prevention and adequate drainage.

1684 • **Enhance redundancy** – identify system alternatives in the event of service interruption and
1685 develop a regional mobility perspective that includes all transportation modes.

1686 • **Retreat** – Abandon at risk infrastructure located in vulnerable or indefensible areas. Potentially
1687 relocate in a less vulnerable location.

1688 In regards to subways, many strategies have been implemented to combat heavier rains that would
1689 otherwise result in flooding. Many cities have increased the number of pumps or pump capacity. New
1690 York City has implemented raised ventilation grates to prevent runoff into subway lines. Tokyo
1691 ventilation shafts are designed to close when a heavy rain warning is issued, and can be closed by remote
1692 control or automatically in response to a flood sensor. The Port Authority of New York and New Jersey
1693 raised the floodgates at the top of stairs leading to station platforms to account for sea level rise and
1694 sealed all gates below the 100-year floodplain.

1695 For open railway, track buckling results from increased temperatures and are costly to the railroad
1696 industry as well as an important derailment safety hazard. Slow orders (mandated speed reductions) are
1697 typically issued on sections of track in areas where an elevated rail temperature is expected and risk of
1698 track buckling is increased. Replacement track has a higher lateral resistance to combat buckling forces.
1699 FRA has created a model for predicting rail temperatures, allowing proper replacement before an incident
1700 occurs (FRA 2014).

1701 Increased temperatures also have an effect on electrical equipment, worker exhaustion, and passenger
1702 comfort. Increased ventilation and cooling rooms may be required to maintain adequate temperatures for
1703 electronics and computers. Workers may need better air conditioning or shorter shifts to combat heat
1704 exhaustion. Transit stops and other shelter facilities should be designed with proper shading and
1705 ventilation. Heat resistant materials and reflective paints should also be considered (FTA 2011).

1706 **6.7. References**

1707 Airport Cooperative Research Program (ACRP 2012). *ACRP Synthesis 33: Airport Climate Adaptation*
1708 *and Resilience – A Synthesis of Airport Practice*. Transportation Research Board, Washington,
1709 DC, 2012.

1710 American Society of Civil Engineers (2013). *2013 Report Card for America's Infrastructure*. ASCE,
1711 2013.

1712 Ballantyne, David. *The ShakeOut Scenario, Supplemental Study: Oil and Gas Pipelines*. Report prepared
1713 for the U.S. Geological Survey and California Geological Survey. USGS Circular 1324;
1714 California Geological Survey Special Report 207, version 1.0. May 2008.
1715 <http://pubs.usgs.gov/circ/1324/c1324.pdf> Accessed October 1, 2014.

1716 The City of New York (2013). *A Stronger, More Resilient New York*. The City of New York, New York,
1717 2013.

1718 C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, M. D. Mastrandrea, K. J. Mach, G.
1719 -K. Plattner, S. K. Allen, M. Tignor and P. M. Midgley, "Managing The Risks of Extreme Events
1720 and Disasters to Advance Climate Change Adaptation: A Special Report of Working Groups I
1721 and II of the Intergovernmental Panel on Climate Change," Cambridge University Press, New
1722 York, 2012.

1723 DeBlasio et al. 2004. *Learning from the 2003 Blackout*. <
1724 <https://www.fhwa.dot.gov/publications/publicroads/04sep/04.cfm>> Viewed October 14, 2014.
1725 U.S. Department of Transportation Federal Highway Administration.

1726 Det Norske Veritas (DNV). Pipeline Damage Assessment from Hurricane Katrina and Rita in the Gulf of
1727 Mexico. Report No. 448 14182, Revision No. 1. Report prepared for the Minerals Management
1728 Service. January 22, 2007.
1729 <http://www.google.com/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=12&ved=0CF4QFjAL&url=http%3A%2F%2Fwww.bsee.gov%2FResearch-and-Training%2FTechnology->

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015
Transportation Systems, References

1731 [Assessment-and-Research%2Ftarprojects%2F500-599%2F581AA%2F&ei=a0wsVJyHO7LgsAS9_YKACA&usg=AFQjCNHe2jy30TYdlzPigLyRfqKfrABs5Q](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3599581/)

1732 ITS International (ITS 2012). *Success of Kuala Lumpur's dual purpose tunnel*. ITS International, 2012.

1733 Johnson, Karl (2012). *Abutments*. MnDOT Bridge Office LRFD Workshop.

1734 Kentucky Public Service Commission (2009). *The Kentucky Public Service Commission Report on the September 2008 Wind Storm and the January 2009 Ice Storm*.

1735 L. Lazo (2013). *Upgrading D.C.'s Virginia Avenue tunnel is key to growing East Coast rail freight, officials say*. The Washington Post, p. 1, 16 February 2013.

1736 MARAD 2007: http://www.marad.dot.gov/documents/Phase_II_Report_Final_121907.pdf

1737 MARAD 2015:

1738 http://www.marad.dot.gov/about_us_landing_page/gateway_offices/upper_mississippi_gateway/upper_mississippi_gateway.htm

1739 Q. Meng and X. Qu (2010). *Quantitative Risk Assessment Model for Fire in Road Tunnels*. University of Singapore, Singapore, 2010.

1740 M. Meyer, M. Flood, J. Keller, J. Lennon, G. McVoy, C. Dorney, K. Leonard, R. Hyman and J. Smith, "Strategic Issues Facing Transportation Volume 2 - Climate Change, Extreme Weather Events, and the Highway System: A Practitioner's Guide and Research Report," Transportation Research Board, Washington, DC, 2014.

1741 NOAA Coastal Services Center (NOAA 2014). *Port Tomorrow: Resilience Planning Tool*. NOAA, 2014. [Online]. Available: <http://www.csc.noaa.gov/port/>. [Accessed 15 June 2014].

1742 NPR 2013: <http://www.npr.org/2013/01/30/170286658/drought-causes-ripple-effect-along-mighty-mississippi-river>

1743 NYC DOT 2015: <http://www.nyc.gov/html/dot/html/ferrybus/staten-island-ferry.shtml>

1744 PWC (2013). *Rebuilding for resilience: Fortifying infrastructure to withstand disaster*.

1745 RITA 2009 (USDOT Bureau of Transportation Statistics): http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/subject_areas/ncfo/highlights
Note: updated statistics report for 2014 will be published Spring 2015, may be worth updating quoted stats if possible.

1746 Transportation Research Board (TRB 2014). *Critical Issues in Aviation and the Environment*. Transportation Research Board, Washington, DC, 2014.

1747 URS Corporation (URS 2012). *Port of Houston Authority Bayport Climate Change Study*. 2012.

1748 US DHS (2013). *35,000 Gallons of Prevention: Containing a Tunnel Flood with an Inflatable Stopper*. U.S. Department of Homeland Security, 2013.

1749 U.S. Department of Transportation (DOT). Pipeline Safety Awareness Facts & Stats, <https://opsweb.phmsa.dot.gov/pipelineforum/facts-and-stats/pipeline-101/> Accessed October 1, 2014.

1750 U.S. Department of Transportation Federal Highway Administration (FHWA 2009). *Freight Intermodal Distribution Pilot Program Report to Congress Project Information and Program Recommendations*. April 2009.

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015
Transportation Systems, References

1771 U.S. Department of Transportation Federal Highway Administration (FHWA 2010). *Hazard Mitigation*
1772 *R&D Series: Article 1: Taking a Key Role in Reducing Disaster Risks.*
1773 <https://www.fhwa.dot.gov/publications/publicroads/10mayjun/04.cfm>. Viewed October 16, 2014.

1774 U.S. Department of Transportation (2012). *Climate Adaption Plan: Ensuring Transportation*
1775 *Infrastructure and System Resilience.*

1776 U.S. Department of Transportation Federal Highway Administration (FHWA 2014). <
1777 https://www.fhwa.dot.gov/environment/climate_change/adaptation/ongoing_and_current_research_h/vulnerability_assessment_pilots/2013-2014_pilots/index.cfm>. Viewed October 19, 2014.

1779 U.S. Department of Transportation (DOT) and Pipelines and Informed Planning Alliance. *Pipelines and*
1780 *Hazard Mitigation for Emergency Managers.* Draft, February 8, 2013.
1781 <http://primis.phmsa.dot.gov/comm/publications/PIPA/PIPA-Report-Final-20101117.pdf#pagemode=bookmarks> Accessed October 1, 2014.

1783 U.S. Energy Information Administration (EIA). *New York/New Jersey Intra Harbor Petroleum Supplies*
1784 *Following Hurricane Sandy: Summary of Impacts Through November 13, 2012.* U.S. Department of
1785 Energy, Washington, D.C. November 2012.
1786 http://www.eia.gov/special/disruptions/hurricane/sandy/pdf/petroleum_terminal_survey.pdf
1787 Accessed October 1, 2014.

1788 U.S. Energy Information Administration (EIA). About U.S. Natural Gas Pipelines, based on data through
1789 2007/2008 with selected updates.
1790 http://www.eia.gov/pub/oil_gas/natural_gas/analysis_publications/ngpipeline/index.html
1791 Accessed October 1, 2014.

1792 U.S. Federal Energy Regulatory Commission (FERC). Presentation to the Association of Oil Pipe Lines.
1793 Washington, D.C. April 2004. <http://www.ferc.gov/industries/oil/gen-info.asp> Accessed October
1794 1, 2014. Accessed October 1, 2014.

1795 USFTA 2013: 2013 Status Report of the Nation's Highways, Bridges, and Transit: Conditions and
1796 Performance. Report to Congress.

1797 T. H. Wakeman (2013). *Final Report: Lessons from Hurricane Sandy for Port Resilience.* The City
1798 College of New York, New York, 2013.

1799 The World Bank (2012). *Building Urban Resilience: Principles, Tools and Practice.* The World Bank,
1800 Washington, DC, 2012.

1801 *Note to reviewers. Numbered references will be cleaned up and clearly provided for the next draft.*

1802 **Photograph Credits**

1803 Liz Roll, November 1, 2012. Long Beach Island, NJ. <http://www.fema.gov/media-library/assets/images/65917> Accessed October 1, 2014.

1805 Christopher Mardorf, August 30, 2014. Napa, CA. http://www.fema.gov/media-library-data/1409613757983-e7cfcdc60d36a0bc2aabef089f34d080/Napa_CA_Earthquake_V0A6397.jpg
1806 Accessed October 1, 2014.

1808 U.S. Department of Transportation Federal Highway Administration (2012). *Report to the U.S. Congress*
1809 *on the outcomes of Nonmotorized Transportation Pilot Program SAFETE-LU Section 1807.* April
1810 2012.

1811 U.S. Department of Transportation Federal Highway Administration (2011). *Framework for Improving*
1812 *Resilience of Bridge Design.* January 2011.

1813

1 **7. Energy Systems**

2 **7.1. Introduction**

3 The electricity performance expectations and needs of society have increased dramatically over the past
4 25 years. In fact, the demand for electricity has increased by over 25% since 1990. However, the aging
5 United States infrastructure is a major issue for all communities. The energy system is making progress in
6 upgrading the existing electric infrastructure with a focused effort to make the system less vulnerable to
7 large catastrophic events. For example, many utility providers are installing smart grid technologies; and
8 grid modernization improvement is a major effort nationwide that is projected to continue for years to
9 come. This translates to a need to upgrade all elements of the energy infrastructure system and build for
10 resiliency. In an effort to build resilient and flexible energy infrastructure there needs to be an
11 understanding and balance of the desired level of resilience, the expected benefits resilience may bring,
12 and the estimated costs associated with improving and replacing this infrastructure.

13 Electricity and fuel are interdependent, essential, and cross-cutting services for community resilience and
14 reliability. They support society's most basic human needs for food, water, and shelter. In a hazard event,
15 electricity and fuel supply are critical to supporting human life and restoration of service is a critical
16 activity no matter what the cause or where the event occurred. Post-disaster fuel supply is also critical to
17 electricity generation and transportation. Having available fuel is essential for local generators in
18 managing recovery and for emergency service and supply vehicles.

19 This section discusses the natural gas and liquid fuels subsystems only as they relate to the reliability and
20 resilience of the electric power system. The pipelines needed to transport natural gas and liquid fuels are
21 discussed as part of the Transportation System (Chapter 6) because the engineering standards for pipeline
22 safety and design are administered by the USDOT.

23 **7.1.1. Social Needs and System Performance Goals**

24 The electrical and fuel supply societal needs of the 21st century are much different from what these needs
25 were a century ago. High quality, high availability, inexpensive power has become a basic societal
26 necessity. Even in day-to-day power delivery, utilities struggle to meet these conflicting consumer
27 expectations. Preparing for and responding to hazard events becomes an even larger challenge when
28 utilities need to pay for necessary infrastructure repairs while experiencing revenue losses when
29 electricity delivery is suspended. This difficult challenge requires careful consideration, especially from
30 regulatory authorities, when addressing utility rate recovery cases and setting public expectations for post-
31 disaster recovery timelines and quality of service expectations.

32 As communities address issues related to their expectations of energy system performance, improving
33 grid resilience and the costs associated with the associated improvements, communicates must prioritize
34 and balance end user (public safety, hospitals, businesses, and residences) resiliency and restoration
35 requirements. As much as practical, systems need to adapt to the ever-changing environment and be built
36 to either minimize damage and impacts to the system, or rapidly restore the system after hazard events
37 occur. Communities must strike a balance that enables utilities, municipalities and co-operatives to
38 protect, maintain, and recover the system while controlling costs. Involving additional community
39 partners may be necessary if performance or restoration expectations are greater than the energy service
40 provider(s) can economically or practically support.

41 Electricity consumers should be informed and educated on the costs and benefits of facility and
42 infrastructure hardening and resiliency planning and resulting performance expectations. Generation
43 facilities (including renewable energy and storage options) and substations may need to be located into
44 the communities they serve to ensure these facilities are sited and constructed to be resistant to potential
45 hazards (e.g., flooding, storm surge, wildfire, etc.).

46 When events occur and recovery efforts are required, the priorities and restoration efforts should address
47 emergency-related societal needs first, and then progress through a tiered response. Although this model
48 of recovery can be complex, for simplicity, the three general tiers on which to focus restoration of
49 services are: 1) emergency facilities and services (Critical and Essential Facilities), 2) critical public
50 works and right of way (access) for critical infrastructure restoration crews, and then 3) systematic
51 restoration of the community at large. Later in this chapter (Section 7.3), these tiers are further
52 investigated for energy systems (by system element such as generation, transmission, and distribution) in
53 example performance goals matrices. These tiers are discussed in Section 7.5, and are related to recovery
54 levels for new and existing infrastructure (Sections 7.5.1.2 and 7.5.2.2, respectively).

55 **7.1.2. Reliability, Energy Assurance, and Resilience**

56 Reliability and resilience are related, but distinct, concepts with different performance goals or metrics. In
57 many cases, the projects and investments to improve day-to-day reliability contribute to resilience;
58 however there is not a one-to-one correspondence. In August 2012, the President's Council of Economic
59 Advisers released a study on the benefits of investing in grid resilience. The study explained the
60 difference between resilience and reliability as:

61 *“A more resilient grid is one that is better able to sustain and recover from adverse events like
62 severe weather – a more reliable grid is one with fewer and shorter power interruptions.”*

63 In September 2012, Maryland's Grid Resiliency Task Force adopted similar definitions for resilience and
64 reliability.

65 *“[R]eliability [was defined] as the ability of the bulk power and distribution systems to deliver
66 electricity to customer during normal ‘blue sky’ operations. . . . Resiliency was defined as the
67 ability of the distribution system to absorb stresses without experiencing a sustained outage.”*

68 The Public Service Enterprise Group (PSEG) in New Jersey states in its Energy Strong Program:

69 *“Reliability remains fundamental but is no longer enough now that extreme storms have become
70 increasingly common and people are more dependent on electricity than ever before.”*

71 PSEG is looking for a different set of performance metrics for all conditions; performance metrics that
72 have commonality with resilience metrics presented in this framework.

73 For the purposes of this framework, NIST will use the definition of “resilience” from Presidential Policy
74 Directive/PPD-21: Presidential Policy Directive – Critical Infrastructure Security and Resilience:

75 *“The term “resilience” means the ability to prepare for and adapt to changing conditions and
76 withstand and recover rapidly from disruptions. Resilience includes the ability to withstand and
77 recover from deliberate attacks, accidents, or naturally occurring threats or incidents.”*

78 Quantitative statistics have not yet been compiled to illustrate the effort the electricity system has put into
79 resilience, but those in the industry have thought a great deal about resilience. In recent industry studies
80 ([NARUC 2013](#)), NERC defines resilience of the bulk electric system via two main responsibilities –
81 adequacy and security. Adequacy in this context is “the ability of the bulk power system to supply the
82 aggregate electrical demand and energy requirements of the customers at all times, taking into account
83 scheduled and reasonably expected unscheduled outages of system elements.” Security is the “ability of
84 the bulk power system to withstand sudden disturbances such as electric short circuits or unanticipated
85 loss of system elements from credible contingencies.” This definition of security may be applied to the
86 bulk electric system, but is not applicable to the distribution system, nor does it address infrastructures of
87 other systems (e.g., gas/fuels, telecommunications and water).

88 The purpose of this discussion is not to resolve the issue of which term is most appropriate or which
89 approach will make the infrastructure of the grid least susceptible to damage and outages during all types
90 of events. Rather, the purpose is to look at the infrastructure elements of the energy system (generation

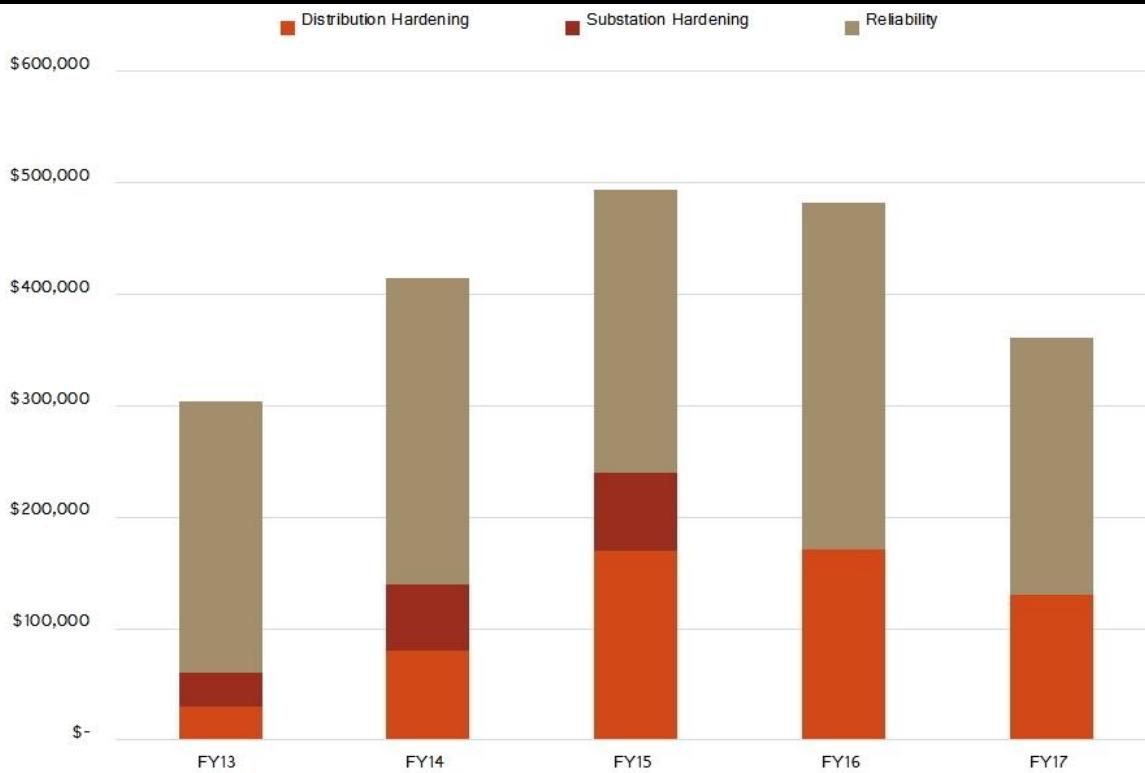
91 facilities, substations, transmission and distribution elements) and provide guidelines and performance
92 objectives for design and construction of an electrical grid that is more reliable and also more hazard
93 resistant so as to perform with the least impact or interruption when events (routine, expected, or extreme)
94 occur. Using the terms related to resilience that are used by the other systems will simplify defining
95 performance metrics for resilience in this and the other systems, allowing us to identify and understand
96 interdependencies between the different systems.

97 **The Four R's.** When applying the PPD-21 to the energy system to define resilience, a number of
98 scholarly articles and reports on resilience provide an energy industry specific evaluation of what
99 resilience can look like. One article, the NASEO State Energy Assurance Guidelines¹ refer to the 4 Rs of
100 resilience with respect to infrastructural qualities:

- 101 1. **Robustness** - the inherent strength or resistance in a system to withstand external demands
102 without degradation or loss of functionality
- 103 2. **Redundancy** - system properties that allow for alternate options, choices, and substitutions when
104 the system is under stress
- 105 3. **Resourcefulness** - the capacity to mobilize needed resources and services in emergencies
- 106 4. **Rapidity** - the speed with which disruption can be overcome and safety, services, and financial
107 stability restored

108 An overall energy resilience strategy is one that actively manages each of these qualities to achieve the
109 desired performance of an energy system. In addition, it can be used to help quantify the following
110 measures of resilience for various types of physical and organizational systems:

- 111 1. **Technical** - the ability of physical systems (including all interconnected components) to perform
112 to acceptable/desired levels when subject to hazard events
- 113 2. **Organizational** - the capacity of organizations - especially those managing critical facilities and
114 hazard event-related functions - to make decisions and take actions that contribute to resilience
- 115 3. **Social** - consisting of measures specifically designed to lessen the extent to which communities
116 and governmental jurisdictions suffer negative consequences due to loss of critical services due to
117 a hazard event
- 118 4. **Economic** - the capacity to reduce both direct and indirect economic losses resulting from a
119 hazard event


120 To explore some differences between reliability and resilience, look at recent events. In the wake of
121 Hurricane Sandy, widespread power outages had cascading and disastrous consequences across the New
122 York and New Jersey region, but specifically in lower Manhattan in New York City. The tidal surge
123 flooded a substation in lower Manhattan and knocked out power for customers below 39th Street for
124 nearly five days. "[It was] the largest storm-related outage in our history," according to an October 30,
125 2012, press release from John Miksad, Senior Vice President for Electric Operations at Consolidated
126 Edison.

127 The lights in lower Manhattan were hardly back on before Consolidated Edison asked state utility
128 regulators to approve a very large, multi-year capital investment program to harden the electric power
129 grid for future storms. Note, resilience hardening is programmed and funded at lower levels than
130 reliability funding over the same period of time (taken from Pentland 2013) at this utility.

¹This report can be found at :

http://www.naseo.org/Data/Sites/1/documents/publications/State_Energy_Assurance_Guidelines_Version_3.1.pdf

Figure 7-1. Con Edison's Proposed Capital Budget

131
132

133 This spending demonstrates that even a very large commitment to hardening is still not at the same levels
134 as reliability spending for this one entity. Is this a trend? Is it representative of the industry as a whole?
135 The answer to both questions is “no.” Nevertheless the spending plan provides a recent example to help
136 our understanding of these two initiatives. Reliability can be stated as a “core goal” of electric service. It
137 can be argued that resilience is a new and growing goal, but is secondary to reliability. There is no clear
138 formula to designate the appropriate balance between the two; and assigning or measuring expenditures as
139 attributable to only reliability or resiliency is not always easy. For example, reliability expenditures,
140 particularly in automation of operations, positively benefit resiliency, so where should these expenditures
141 be tracked?

142 **7.1.3. Interdependencies**

143 Energy is a key aspect of resilience. In fact, every other system presented in this framework depends upon
144 the energy system for the power required to provide a functioning level of resilience for their system. For
145 example, although a hospital or emergency operations center may not be physically damaged by a
146 hurricane, flood, or earthquake (a resilience success for buildings), it still may not be functional without
147 power or electricity for sustained and complete operations of all systems and services (presuming the
148 emergency and backup power systems on site have limitations on the duration and the number of systems
149 they can power when electricity from the grid is unavailable).

150 Energy systems also have interdependencies with other systems that reduce effectiveness or resilience.
151 Some examples are:

152 1. Operations and control centers of utilities rely on the communications and information system to
153 send and receive operational information to the generation, transmission, and distribution
154 components within the grid. While the deployment of automated systems to control the switches
155 and controls within the grid will improve resilience, operational control must still be maintained
156 at some level or the resilience of the grid will be affected.

157 2. Liquid fuels rely on the transportation system to ensure the ability to distribute liquid and natural
158 gas over land (via truck and rail). Disruptions to the transportation system negatively affect the
159 supply chain and resilience of the energy system (see also 6.2.5 Pipelines for additional
160 information).

161 3. The ability to recover electricity infrastructure in the electrical subsystem can be seriously
162 hampered if buildings or transportation system damage is sustained. The response teams, who are
163 integral to the recovery (and resilience) of the electrical Subsystem, must be able to mobilize and
164 reach impacted areas. If buildings are destroyed and block access or if roads are impassable due
165 to catastrophic events, they cannot perform response and recovery activities, making the energy
166 system less resilient.

167 Where possible, interdependencies including, but not limited to, those presented here were considered in
168 preparing the example performance goals presented in Section 7.3.

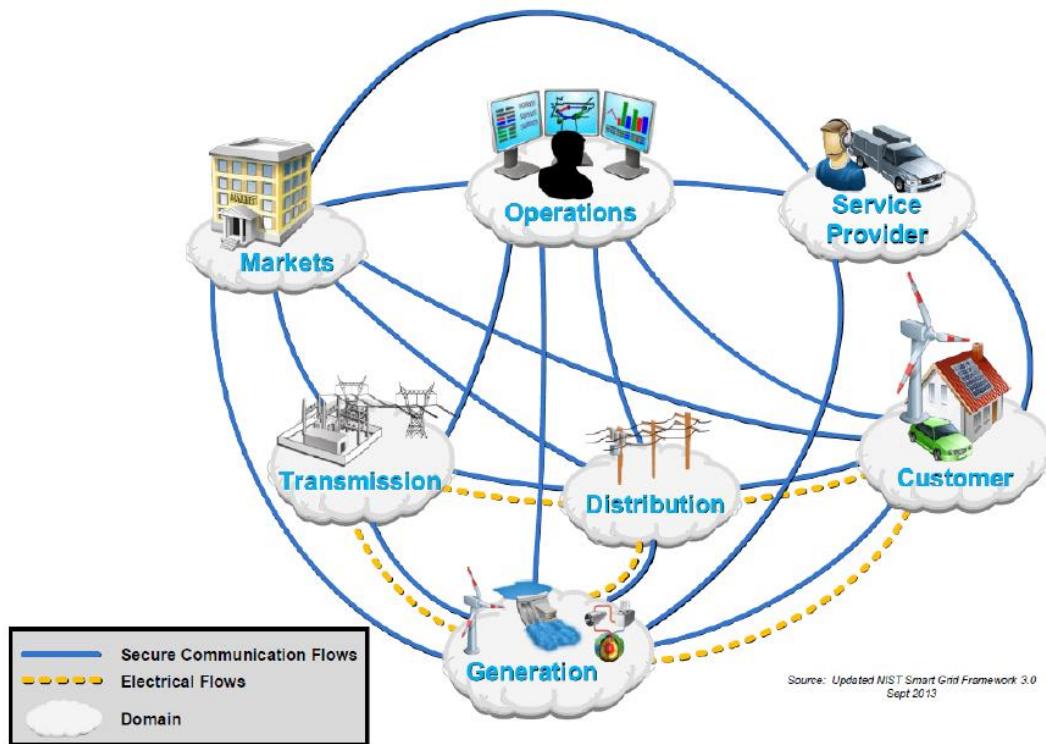
169 **7.2. Energy Infrastructure**

170 Our national infrastructure systems are designed for reliable service with some intent to build a stronger
171 system due to potential hazard events. While these systems are designed to minimum NESC codes (and in
172 many areas, beyond the minimum criteria set forth in the codes), the level or magnitude of the event these
173 systems can withstand without damage is not clearly defined. Over the years, improvements in technology
174 have addressed some vulnerabilities or risks in the system. However, these improvements in technology
175 may have also inadvertently introduced new vulnerabilities or risks. Recent post-disaster studies and
176 reports on climate change shed light on why damage and impacts to these systems from the natural hazard
177 events occurred in the past several years.

178 The electricity subsystem has spent a great deal of time and money planning, building, rebuilding, and re-
179 planning for reliability and to support energy assurance goals. While much of that effort pre-dates current
180 definitions of resiliency, it should still be stated that the electricity subsystem is working to create and
181 ensure some level of resiliency for communities. The infrastructure continues to improve, with some
182 improvement actually due to hazard events.

183 The Characteristics of a Resilient Energy System include:

- 184 1. Planned, modeled, and prepared; ready for immediate and reliable deployment; robust (hardened)
185 where appropriate
- 186 2. Supports emergency response, life safety, restoration effectiveness, and socio-economic
187 continuity during a major event
- 188 3. Recovers rapidly after catastrophic events
- 189 4. Incorporates redundancy and spare capacity
- 190 5. Supports a diversity of energy sources
- 191 6. Modular or loosely-coupled architecture
- 192 7. Aware and responsive to electrical and environmental conditions
- 193 8. Actively monitored and maintained
- 194 9. Operates efficiently in non-emergency conditions
- 195 10. Provides economic and societal benefits to the communities and stakeholders served


196 When designing energy infrastructure, resiliency performance metrics should use common vocabulary,
197 understood by both providers and consumers, to ensure clear communication, reduce risk, and increase
198 resilience from different threat and hazard events. Some questions to consider when (re)designing and
199 establishing performance criteria for the critical components of the energy infrastructure include:

200 1. Why did failures occur?
201 2. Were the design criteria not correct to account for these hazard events?
202 3. Can and should higher criteria be used? Or were these hazard events truly rare or extreme events
203 for which it is not feasible to design the systems to resist with minimal to no impact to the
204 services they provide?
205 4. Was the extent and impact of the failures disproportionate to the magnitude of the event that
206 occurred? And if so, was the degree of the failure or impact due to the design and construction of
207 the infrastructure or was it a result of, or exacerbated by, the inability to respond/repair the
208 damage that was caused by the event (i.e., a poor operational response)?

209 These important questions need to be discussed and answered to create a framework that provides design
210 and construction guidance in the energy industry so generators, distributors, and users of the bulk power
211 system can set and achieve performance goals. The performance metrics discussed in this guidance must
212 be discussed in a common vocabulary by both providers and consumers within this industry to have a
213 chance to reduce our risk and increase our resilience from these different threat and hazard events.

214 **7.2.1. Electric Power**

215 The electric power subsystem provides production and delivery of electric energy, often known as power,
216 or electricity, in sufficient quantities to areas that need electricity through a grid connection, which
217 distributes electrical energy to customers. Electric power is generated by central power stations or by
218 distributed generation. The other main processes are transmission and distribution. This was illustrated in
219 the *NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 2.0*, shown in
220 Figure 7-2 below.

221
222 **Figure 7-2: NIST Smart Grid Conceptual Model (NIST 2012)**

223 In 2009, NIST established the Smart Grid Interoperability Panel (SGIP) and developed the Smart Grid
224 Conceptual Model. This model is used worldwide as a simple mechanism for graphically describing the

225 different domains within the Smart Grid. The model is fully described in the [NIST Framework and](#)
226 [Roadmap for Smart Grid Interoperability Standards, Release 3.0](#), which reflects advances in smart grid
227 technologies and developments from NIST's collaborative work with industry stakeholders.

228 For simplicity, and to remain focused on the primary resilience components within the bulk power
229 electrical network, this document will focus primarily on generation, transmission, and distribution. Note
230 that the natural gas delivery system is very similar in architecture and much of the terminology is
231 interchangeable with the electricity network when describing the domains.

232 **7.2.1.1. Generation**

233 Traditional power generation is supported through bulk power plants that incorporate large spinning
234 electrical generators. In the US, this power is 3-Phase Alternating Current (AC). However, the generation
235 system is evolving and has been for some time. Prior to deregulation of electricity in certain US states, the
236 public utilities owned and managed both the generation (power plants) and the transmission grid over
237 which electricity was delivered. Deregulation separated generation and transmission, with most
238 deregulated states allowing independent power producers (IPPs) to competitively develop generation
239 projects. The term "deregulation" does not imply these utilities are not highly regulated, simply that
240 consumer choice exists, although IPP developers must still negotiate contracts to sell power to the utilities
241 who maintain their responsibility to manage and deliver the electricity via the grid. The US today is a
242 patchwork of regulated and deregulated states so, depending on the state, the utility could control
243 transmission, generation, or both. This patchwork of regulation and deregulation at the state level also
244 applies to the distribution of natural gas by utilities.

245 In addition, renewable power projects, distributed generation by commercial entities, and demand-side
246 management (such as demand response and energy efficiency and energy storage) are becoming more
247 pervasive. Today the term "generation" increasingly includes "virtual generation," resulting from using
248 load-reduction to offset power demand or the use of storage rather than developing new generation
249 (power plants). Additionally, more of this activity is evolving to be located behind the meter at homes and
250 businesses (rooftop solar, smart meters, etc.).

251 Renewable power comes in many forms – wind, solar, biomass, hydropower. In some states energy-from-
252 waste (waste-to-energy) plants also meets the definition of renewable power. The public is well-versed in
253 the term "renewable power," but does not typically understand that the rules vary from state to state in the
254 same way the Renewable Portfolio Standards (RPS) or goals for the percentage of power to be generated
255 from renewables vary by state.

256 "Distributed generation" is an umbrella term typically describing power plants developed for a specific
257 company or industrial location, also known as "in-the-fence" power, which serve the needs of a particular
258 commercial plant, manufacturing facility or industrial park. These plants must be developed in
259 accordance with requirements for their particular state, but are typically single or small group load-
260 serving entities. An example might be an industrial facility that builds its own on-site power plant to serve
261 its electric power supply needs. Often these generating plants are also cogeneration facilities, providing
262 steam for a host establishment or a neighboring industrial/commercial facility for heat or another
263 industrial process use. Many of these smaller facilities are also referred to as Combined-Heat and Power
264 or CHP plants.

265 In regulated states Demand Side Management (DSM) is best defined by the Energy Information
266 Administration: "the planning, implementation, and monitoring of utility activities designed to encourage
267 consumers to modify patterns of electricity usage, including the timing and level of electricity demand."
268 Thus, DSM can include both Energy Efficiency (EE) or Demand Response (DR) to reduce electric
269 demand.

270 Energy Efficiency at the utility level is a method or program by which the utility manages or reduces the
271 demand for power rather than building or contracting for new generation (power plants) or having to

272 purchase additional power on the spot market, which can be extremely expensive. These programs can be
273 high-level state-wide improvements to public buildings (efficient light bulbs, improved insulation, etc.) or
274 can entail distribution of energy efficient light-bulbs or sophisticated meters and thermostats for
275 residential users.

276 Demand Response (DR) is sometimes implemented by a non-utility company that enters into a contract
277 with electric users, usually large users such as universities, high-rise office buildings, chains of retail
278 stores etc., and pays those users to lower their electric use during times of peak demand such as hot
279 summer days. In doing so, the DR company sells that reduced-load to the utility during peak demand
280 periods. This allows large users of electricity to lower their annual electric costs via the DR payment and
281 allows the utility to avoid brown-outs or black-outs and avoid spot market purchases or the need to
282 develop new generation.

283 Energy Storage comes in many forms, from large-scale batteries, to pump storage, to fuel cells. In the
284 case of pump storage, which has a long history, water is pumped up to a dam or holding basin during
285 periods of low electric demand (non-peak-periods) so it can be released during periods of high demand to
286 meet load. This historical use of pump storage is now being expanded to use compressed air and other
287 technical methods of delayed release of energy, such as flywheels, during peak periods.

288 As noted earlier, the belief that generation satisfies electric demand is only partly true. Using alternative
289 methods to reduce, offset, or delay peak electric demand plays a larger role and, as such, needs to be
290 considered as a key part of the system by which reliable and efficient power to the US population is
291 ensured.

292 **7.2.1.2. Transmission**

293 In the traditional bulk power system, 3-Phase power exits the generator and enters a transmission
294 substation. Voltages are transformed to very high voltages to travel long distances along three separate
295 transmission lines, each carrying a single phase. The transmission infrastructure is primarily wire and
296 towers carrying high voltage power from generators to distribution substations. It is the “middle-man” of
297 the electric power delivery network.

298 The overarching issues surrounding the vulnerabilities of the transmission infrastructure stem from the
299 aging physical assets today. As overall customer load requirements grow and the various federal and state
300 regulations change, there is a need for more robust and flexible electric power delivery systems to keep up
301 with demand. The emergence of the renewable generation market, and the transition from coal generation
302 to natural gas generation, has begun new stresses on the power grid beyond its original design. Electrical
303 flows that were designed to be in one direction are now in multiple directions, depending on the
304 generation available at any particular time of day. Transmission constraints, which affect cost and
305 reliability, have become common in operations.

306 Recently (over the last 10 years), transmission planning has evolved from relatively few new transmission
307 lines being built nationwide to many new transmission lines being planned by most major utilities. The
308 cost and time to build new transmission lines have also increased significantly over the years due to
309 public routing, regulatory and environmental restrictions. But the performance of these transmission lines
310 has improved with the passage and implementation of FAC-003-3 Transmission Vegetation Management
311 Program. The purpose of FAC 003-3 is to provide the guidance needed *“to maintain a reliable electric*
312 *transmission system by using a defense-in-depth strategy to manage vegetation located on transmission*
313 *rights of way (ROW) and minimize encroachments from vegetation located adjacent to the ROW, thus*
314 *preventing the risk of those vegetation-related outages that could lead to Cascading.”*

315 All of these demands impact electric transmission system reliability. Ever-increasing cyber-based
316 monitoring systems are being developed to reduce the impact of any potential hazard. As new systems are
317 engineered and constructed there is also a need to evaluate ongoing maintenance. Many efforts are
318 underway to strengthen our nation’s transmission systems. Several major Smart Grid transmission

319 projects have been initiated and, in some cases, recently completed to supply power across the nation.
320 Other efforts to increase the power grid's resiliency and efficiency include developing and deploying new
321 technologies (e.g., Demand Response, Micro-grid/Islanding, Synchrophasors (PMU), Dynamic Transfer,
322 Energy Imbalance Markets (EIM) and Dynamic Line Rating (DLR)). The FERC also issued Order 1000,
323 meant to reduce capital costs of transmission for end consumers by introducing competition between
324 utilities and transmission developers.

325 Transmission infrastructure is vulnerable to a number of hazards. Storms with heavy rain (e.g.,
326 hurricanes) can cause flooding of low-lying electrical infrastructure including substations as was the case
327 with Hurricanes Sandy and Irene². The heavy rain that accompanies many thunderstorms and hurricanes
328 adds to the hazards from debris, by potentially washing away the foundations of poles on the sides of hills
329 and exposing underground cabling to the movement of water. There are other examples of flood hazards
330 and events, (ranging from tsunamis, to dam failures, to large water main breaks) that can also cause water
331 to follow electrical lines back to underground electrical conduits and vaults and will have a negative
332 impact on underground substations and splices.

333 Flooding is not the only hazard that threatens damage and failures of the electric power infrastructure.
334 Strong winds, such as those from tornadoes, hurricanes, and even thunderstorms, can damage electrical
335 infrastructure. Large thunderstorms tend to have strong straight line wind and can destroy trees and
336 structures quickly.

337 Another potential hazard that can impact electrical power infrastructure is wildfire. Wildfires are a routine
338 part of life in some communities across the country. Depending upon the wildfire risk, communities may
339 need energy resiliency measures to protect against them. Every year, wildfires burn thousands of acres
340 and destroy homes and other structures. Electrical lines have been implicated in starting wildfires, as was
341 the case in the 2007 San Diego Witch Creek, Guejito and Rice wildfires³.

342 7.2.1.3. Distribution

343 In the traditional power delivery system, the distribution system begins at the distribution substation. The
344 substation takes power that is normally delivered at 10s or 100s of thousands of volts and transforms the
345 voltage to less than 10k volts (typically 7200 volts). The distribution substation is a critical piece of the
346 overall power delivery system and is a focus area for resiliency hardening and post-disaster repair. It
347 supports a variety of Operations Technology (OT) and Information Technology (IT) equipment and
348 systems that connect the endpoint loads to the utility's operation center. The distribution system is by far
349 the largest component of the electricity network. With regard to recovery operations, the majority of focus
350 is normally within the distribution network.

351 Given the aging infrastructure, some real vulnerabilities exist in the energy distribution systems. The
352 distribution systems are typically built and constructed along roadsides but, in some cases, they run
353 through less accessible back lots and other right-of-ways. As overall customer load requirements grow
354 and the changes in regulations continue, there is a need for more robust electric systems; but the ability to
355 provide these robust electric systems is struggling to keep up with the demand.

356 Maintaining the designed distribution systems is also a challenge. The poles and equipment that are key
357 elements of the distribution system are subject to overloading with additional wire and system
358 components by local service providers who add lines and equipment to existing poles. These additions
359 may directly overload the components that make up the electrical system or increase their vulnerability to
360 wind and ice during storm events.

² United Illuminating announces \$11M flood prevention project for substations, July 23, 2013, <http://connecticut.news12.com/features/sandy/united-illuminating-announces-11m-flood-prevention-project-for-substations-1.5753215>, retrieved 27-July-2013

³ Power lines cited as cause of largest wildfires". SAN DIEGO UNION-TRIBUNE. 2007-11-16. Retrieved 2013-7-27.

361 Further, as new systems are engineered and constructed there is a need to evaluate the ongoing
362 maintenance. One element of maintenance in the forefront along the distribution system is tree coverage.
363 Most, if not all, utility entities have well-established and adequate tree management programs; but failure
364 to implement these programs has been a leading cause of outages. The reason for this failure is not always
365 simple. Even though the utility may have an established and programmed vegetation management
366 program, public and private land owners may not allow removal of any trees or limbs. Other jurisdictions
367 and environmental entities (state, local, or activist) have also succeeded in stopping tree trimming and
368 clearing programs. Further, the health of trees and vegetation (as well as insect infestation and other
369 natural scenarios that can diminish the performance of trees) should be anticipated and addressed in
370 planning and maintenance programs. The aggregate impact of these actions results in failed
371 implementation of the tree trimming programs, which creates a critical failure point where system
372 vulnerability continues to worsen instead of being mitigated. These tree maintenance programs should
373 consider local factors that can also impact the performance of trees and vegetation and result in localized
374 areas of poor performance during storm events that, if not accounted for, would directly impact the
375 performance of the Distribution Systems.

376 As discussed for transmission, many cyber-based monitoring systems are being developed annually to
377 reduce the impact of any potential natural hazard such as the hurricanes and flooding.

378 Many efforts are underway to strengthen our nation's distribution systems. There are major feeder
379 hardening program/projects underway across the nation. These projects have been focusing on dead-end
380 cross arms, lightning arresters at any identified weak points. In California there is a push for strengthening
381 the systems from fires. They are now "boxing in" fuses so no hot metal will hit the ground and potentially
382 cause fires. Dependent on the location nationally, there has also been a movement away from wood poles.
383 Where wooden poles are still being used, they are increasing the size and class to accommodate the
384 overall design constraints.

385 The electric energy distribution system is vulnerable to a number of hazard events. Overhead distribution
386 lines are particularly vulnerable to high wind hazards, such as hurricanes and tornadoes. However, most
387 infrastructure failures from wind storms are not from the wind loading directly. Trees often fall onto
388 infrastructure, causing damage and failures to the distribution network. Many neighborhoods have large
389 trees that parallel the overhead infrastructure; and in many cases conductors may actually run through the
390 trees. Therefore, vegetation management is critical to minimizing vulnerability of distribution lines to
391 high wind events⁴. It only takes one property owner resisting a utility tree trimming program to trigger a
392 power outage affecting a large number of people.

393 The constant push of high winds on utility poles can slowly cause them to lean. Pole toppling events can
394 occur several days after a storm. Heavily loaded poles can be braced if they are likely to be exposed to
395 high straight line winds. Winds that change direction around the clock, such as those experienced in
396 Florida at the end of the 2007 hurricane season, can do more damage than storms where the wind comes
397 from one direction. If it is solidly packed, the pole can crack off at ground level or another weak point. As
398 a result of the observations after the 2007 hurricane season, Florida now requires more pole inspections to
399 look for overloaded poles and poles that show rot at the interface with the ground or other weakness.
400 Instead of a 15-year pole inspection cycle, Florida is considering a 7-year inspection cycle. Poles that look
401 perfectly fine from a visual inspection may not be fine internally or underground. Therefore, new
402 inspection tools and techniques have been developed to help with pole inspection.

403 Another hazard associated with high wind events such as hurricanes, tornadoes, and thunderstorms is
404 lightning, which is a particular concern for electrical energy infrastructure. When a transformer is
405 overloaded, either by a direct lightning strike or by an overload on the circuit, it typically flashes to a

⁴ EPRI Report 1026889, Enhancing Distribution Resiliency, Opportunities for Applying Innovative Technologies, January 2013

406 roaring blaze quickly. The resulting blaze can consume not only the transformer, but the pole it is on and
407 the close vegetation as flaming oil falls to the ground. Lines can come down from direct lightning strikes,
408 especially on poles that have hollowed out over time and filled with water. These poles literally explode
409 when the water inside flashes to steam.

410 Lightning will travel down a conductor until it finds an easier path to travel. Even when a line is already
411 down and de-energized, lightning can strike it traveling the remaining path, until it finds a lightning
412 arrestor or a fusible link. Damage to home appliances and consumer electronics is common when
413 lightning strikes a line beyond an outage point. Reminding people to unplug appliances and other
414 equipment in a major storm is the best way for them to protect this equipment. Having back up or standby
415 power for critical communications needs and data gathering in emergency centers that are fully up to date
416 on software and data is important, even in mobile command posts. Having that back up equipment that is
417 simply stored and not connected to the grid is a good approach to redundancy and resiliency. Too often,
418 backup equipment is used to provide additional capacity on a day-to-day basis, only to leave the location
419 with no working equipment after lightning strikes. Surge protectors, uninterruptible power supply (UPS)
420 systems, and other protection equipment is helpful, but only having the equipment unplugged from the
421 wall is 100% insurance that a lightning strike will not disable it.

422 Earthquakes can also cause damage to electrical infrastructure. Earthquakes can do widespread damage to
423 the electrical infrastructure with little or no warning. In addition to directly damaging electrical
424 infrastructure, they can cause other failures, such as fires and ruptured water mains, which may in turn
425 cause damage to electrical infrastructure.

426 Earthquakes that cause ground movement in close proximity to the fault may damage towers and poles or
427 break electrical lines that cross the fault or run parallel to the fault line. Those lines tend to snap because
428 there is not enough slack in the line to allow it to flex with the movement of the fault line, or the
429 movement is so rapid that the line's slack cannot move quickly enough. Overhead lines on proper
430 structures tend to perform better than underground lines near major earthquakes because the lines all have
431 some slack (the sag of the centenary) in them and their supporting structures flex as well.

432 Top loaded poles (those with transformers, voltage regulators, etc.) tend to fail first in an earthquake, all
433 things being equal with the footing of the pole and the quality of the pole. It is better to ground mount this
434 type of equipment if the poles are close to a fault line.

435 7.2.1.4. Emerging Technologies

436 Many smart grid technologies available today are targeted to help the electric utility significantly in
437 improving reliability, operating efficiency, and power quality, and in identifying potential opportunities to
438 harden the current circuits from a resiliency standpoint. Many technologies, considered "plug and play,"
439 are working together nicely with the right infrastructure. Many utilities are also evaluating their smart grid
440 plans and working on full integration to allow for predictability as well as corrective action.

441 Technology has also allowed the utilities to rapidly correct power outage situations. Many utilities have
442 implemented some form of distribution automation with very good results. These results have led to
443 further technological advancements, being implemented today. Today's utilities recognize the real need to
444 build a resilient, safe, and economical electrical network. As the utilities computerize the electric grid,
445 they are opening additional opportunities for predictability and better understanding of communities'
446 usage.

447 *Microgrids*

448 With regards to energy resiliency, one of the most profound emerging technology opportunities is
449 microgrids. Microgrids connect loads with Distributed Energy Resources (DERs) within a defined
450 boundary. The "macro" grid treats the DER as a single entity; the microgrid manages the DERs and loads
451 independently. Microgrids can be connected or disconnected from the grid and can operate independently

452 in an islanded mode. They offer a variety of compelling business opportunities to help meet
453 organizational mission requirements, participate in electricity markets, increase energy surety/resiliency,
454 and incorporate renewable energy resources.

455 Microgrids can be implemented at numerous points in the electric power system physical hierarchy –
456 transmission, subtransmission, substation, distribution, and consumer. The most fundamental division of
457 location however is customer-side or utility-side implementation. Customer-side microgrids can be
458 designed and implemented with the specific operational and business requirements of the facility in mind.
459 Customer-side microgrids can be thought of as an extensive, highly managed extension of an emergency
460 generator backup system. The difference is that a microgrid is designed to provide full energy services for
461 an extended period of time. A customer-side microgrid can be implemented to ensure business continuity
462 during a major natural hazard. Recently a major Fortune 100 corporation included a microgrid as part of
463 their new company campus headquarters design to allow full operation of the facility for an unlimited
464 time in the aftermath of an earthquake. A clear business case could be made for implementing such a
465 microgrid by extracting value from the technology during normal operations. In contrast, a utility-side
466 microgrid has the challenge of being funded using the existing utility regulatory model for technology
467 investment. Many more stakeholders are involved in deciding whether the investment required is prudent.

468 Microgrids have been studied as a potential grid hardening solutions by New York, Connecticut, and
469 California, as well as the U.S. Department of Energy. These studies also consider some of the current
470 regulatory frameworks hindering widespread deployment.

471 There are 6 primary requirement areas to consider when designing a microgrid, which are substantially
472 different for customer-side versus utility-side implementations:

- 473 1. ***Mission:*** What is the organization's mission? How will a microgrid help support the mission?
- 474 2. ***Loads and Generation:*** What are the existing and future loads that will need to be addressed by
475 the microgrid? What are the existing suitable generation resources available?
- 476 3. ***Infrastructure:*** How is the current grid configured? How will the microgrid interact and take
477 advantage of what is already there? How do the infrastructure elements need to be monitored and
478 controlled to ensure stable operation and meet operational goals?
- 479 4. ***Scenarios:*** What are likely events (typical, emergency, opportunistic) that a microgrid can
480 support?
- 481 5. ***Policy:*** What policies, incentives, and constraints need to be considered?
- 482 6. ***Costs:*** What are current and projected costs of the system?

483 Microgrids are not simple, interchangeable systems. They require a good business case, should operate
484 and provide value when the grid is operational, and require long-term operational expertise and
485 maintenance commitment. However, in some cases the economic and business value for microgrids may
486 pencil out when loss of critical operations poses a significant risk to public safety or security. Resiliency-
487 related candidates to consider microgrid solutions include:

488

- 489 • Critical facilities for critical events (City Hall, Police, Fire, 911, etc.)
- 490 • Hospitals and medical centers
- 491 • Local government facilities
- 492 • Federal facilities and military bases
- 493 • Key businesses including grocery stores, drug stores, large employers, gas stations
- 493 • Schools, colleges, and universities

494 Each of these candidates could be serviced by a customer-side or a utility-side microgrid – or a hybrid
495 approach where the customer side is integrated with a utility-side system to provide enhanced flexibility.
496 All of the following technologies are potential elements of a utility or customer side microgrid:

497 ***Renewable Energy Generation***

498 Renewable energy comes from natural sources that are constantly and sustainably replenished. When
499 power is interrupted, renewable energy generation can continue to support uninterrupted or reduced
500 capacity service to energy consumers. Although it is arguable that renewable energy is not emerging
501 technology, the equipment, software, and systems are rapidly becoming pervasive and are maturing at a
502 very accelerated pace. The two primary emerging renewable energy generation resources are solar and
503 wind.

- 504 • ***Solar Photovoltaic (PV)*** - The photovoltaic process converts light into electricity. Solar cell
505 modules supply DC electricity at a certain voltage (e.g. 12 VDC). The amount of current is
506 directly dependent on the amount of light that enters the module. When multiple modules are
507 strung together, a solar (or PV) array is constructed that can produce larger quantities of
508 electricity. PV arrays are configured in series or in parallel in order to provide different voltage
509 and current combinations. PV systems are being used in a variety of scenarios, ranging from
510 small rooftop supplemental power all the way to large solar farms providing many megawatts
511 (MW) of power. The technology continues to improve with higher efficiency conversions of light
512 into electricity and stronger, lighter, more flexible materials.
- 513 • ***Wind Power*** - Wind power is one of the oldest forms of renewable energy and has been
514 harnessed by man for many centuries. The basic process uses turbines to capture the wind's
515 energy, convert to kinetic, spinning energy, and convert the energy into mechanical power. The
516 resulting mechanical power has been used historically to pump and move water, and in mills to
517 grind grain and corn. It can also be used to create electricity through a generator. Although the
518 same basic principles are at work, wind generation today is significantly different than those of
519 our ancestors, primarily due to scale. Farms of wind generators are found throughout the
520 Midwest, Texas, the coasts, and deserts. Some wind farms produce many megawatts (MW) of
521 power. The technology trend is better aerodynamics for more efficient conversion of kinetic wind
522 energy to electricity, more efficient and smarter generators, and larger, more powerful wind
523 turbines.

524 ***Fuel Cells and Storage***

- 525 • ***Fuel Cells*** - Fuel cells create electricity through chemical reactions. The reaction is controllable
526 and can be tuned to manage the amount of electricity produced. The types of fuels vary, but
527 require oxygen and hydrogen in their chemistry. The waste from fuel cells is clean, producing
528 H₂O. Fuel cells have a variety of uses and have been popular concepts in the automotive industry
529 to support environmentally-friendly hydrogen vehicles. The technology continues to involve with
530 different fuel sources, cheaper solutions, and higher capacities.
- 531 • ***Battery Energy Storage*** - Battery storage systems are the next "killer app" for energy resiliency,
532 power quality, and energy efficiency. The concept is simple: when demand is low, charge the
533 batteries; when demand is high or the system is stressed, use battery power. Battery power today
534 is in the same place technologically that solar power was in the 1990s. Batteries are too big, too
535 expensive, and don't last long enough. Also, there are very few incentives for investment in
536 battery technology. The landscape is slowly changing and states like California are performing
537 battery studies and pilots. This emerging technology could have an enormous impact on how the
538 grid is managed and combined with renewable energy generation, simple microgrids become
539 viable, affordable solutions and our energy becomes more resilient.

540 ***Demand-Side Management***

541 The ability for customer-side loads to respond to external controls during an energy system emergency is
542 a key element of energy system resiliency during the event while restorative actions are underway. This is
543 especially important when microgrids are used on the customer side and/or utility side of the meter. A key
544 challenge in managing a microgrid is maintaining load/generation balance to keep the system stable.

545 Simple customer side backup generation solutions that are not intended for long term operation and
546 support of normal business operations typically only supply emergency loads. More sophisticated systems
547 that integrate renewable energy sources, fuel cells, and energy storage may utilize a building automation
548 system to control building loads to optimize the performance of the system for short or long term
549 operation. Utility-side microgrids may also use demand side management systems (DMS) to effectively
550 manage feeder and substation level microgrids to ensure system stability and maximize the number of
551 customers that can be served by those portions of the system that remain intact after a major event and
552 come on line during restoration. DSM techniques can also be used at the bulk level to manage temporary
553 transmission and subtransmission loading constraints that may exist during a major event.

554 **7.2.2. Liquid Fuel**

555 The most common liquid fuels are gasoline, diesel, and kerosene-based products, such as jet fuels, which
556 are produced from petroleum. Other liquid fuels include compressed natural gas, liquefied petroleum gas
557 (LPG), synthetic fuels produced from natural gas or coal, biodiesel, and alcohols. For resiliency, liquid
558 fuels are critical to back-up power generation and nearly all modes of transportation. In addition, 11% of
559 U.S. homes rely on heating oil or propane, with heating oil usage concentrated primarily in the Northeast
560 and propane usage concentrated in rural areas (USEIA 2009).

561 Although less than 1% of all electricity in the U.S. is generated in oil-fired plants, there are some isolated
562 markets in which petroleum remains the primary fuel. The leading example is Hawaii, where more than
563 70% of electricity generation is fueled by petroleum (USEIA 2014a).

564 Potential failure points for liquid fuel production, storage, and distribution include:

- 565 1. Catastrophic loss of major production fields
 - 566 □ Fires
 - 567 □ Blowouts
 - 568 □ Spills
- 569 2. Transport of crude oil from production sites to refineries
 - 570 □ Ports
 - 571 □ Pipelines
 - 572 □ Rail
- 573 3. Processing at refineries into finished products
 - 574 □ Onsite storage of raw materials
 - 575 □ Onsite piping
 - 576 □ Processing reactors vessels
 - 577 □ Power supply (grid or backup)
 - 578 □ Onsite storage of finished products and by-products
- 579 4. Transport from refineries to regional distribution centers
 - 580 □ Ports
 - 581 □ Pipelines
 - 582 □ Rail
- 583 5. Storage at regional distribution centers
 - 584 □ Aboveground tank farms are the most common storage systems used at permanent depots
- 585 6. Regional distribution
 - 586 □ Pipelines (e.g., pipeline from Oregon's CEI Hub to Portland International Airport)
 - 587 □ Trucks (e.g., distribution from Port of Tampa to Orlando-area fuel stations)

588 7. End user or retail sale

589 ▪ Onsite storage (e.g., above ground tanks at an airport or buried tanks at a retail fuel station)

590 ▪ Power for pumps at retail distributors (e.g., New Jersey retail fuel station grant program

591 described below in Section 7.3.4)

592 Maintaining production of crude oil and safely transporting it to refining centers (Steps 1 and 2) are major

593 national and international security issues that are beyond the scope of this framework.

594 US refineries (Step 3) tend to be geographically concentrated and operate at 90% or more of capacity

595 during periods of strong economic growth (USEIA 2014b). The reliability and resiliency of US refinery

596 capacity is both a national security issue and a major regional economic issue in those areas of the US

597 where refinery capacity is concentrated.

598 Regardless of where production and refinery capacity are located, all communities should assess their

599 resiliency with respect to Steps 4-7. Damage to ports, tank farms, pipelines, railways or roadways can

600 cause serious delays to the distribution of liquid fuels which, in turn, can lead to loss of backup power

601 generation when onsite fuel supplies are exhausted and disruptions to all modes of transportation. In cold

602 weather scenarios, an extended disruption to heating fuel supplies also has the potential of becoming a

603 significant issue.

604 Steps 4-7 focus on the energy portion of the Oregon Resilience Plan, which was developed for a

605 magnitude 9.0 earthquake scenario on the Cascadia subduction zone. The Oregon study identifies the

606 northwest industrial area of Portland along the Willamette River as Oregon's Critical Energy

607 Infrastructure (CEI) Hub. More than 90 percent of Oregon's refined petroleum products pass through this

608 six-mile stretch along the lower Willamette River before being distributed throughout the state. For the

609 Cascadia earthquake and tsunami scenario, potential hazards to liquid fuel storage and distribution

610 networks include ground shaking, sloshing, liquefaction, lateral spreading, landslides, settlement, bearing

611 capacity failures, fire, or seiches in the CEI Hub area and tsunami damage at the coast. Fuel is transported

612 to the site via a liquid fuel transmission pipeline from the north and marine vessels. Alternative modes of

613 transporting fuel from the east or south or by air are very limited. Key recommendations for improving

614 the resiliency of the Oregon energy system include conducting vulnerability assessments, developing

615 mitigation plans, diversifying transportation corridors and storage locations, providing alternate means of

616 delivering fuels to end users, and coordinated planning (OSSPAC 2013).

617 The American Lifelines Association (ALA 2005) identified the high-level performance measures and

618 performance metrics for pipeline systems shown in Table 7-1.

619 **Table 7-1. The American Lifelines Association High-Level Performance Measures and Performance**
620 **Metrics for Pipeline Systems (ALA 2005).**

Desired Outcomes (Performance Targets)	System Performance Metrics					
	Capital Losses (\$)	Revenue Losses (\$)	Service Disruption (% service population)	Downtime (hours)	Casualties (deaths, injuries)	Lost Product
Protect public and utility personnel safety					X	X
Maintain system reliability			X	X		
Prevent monetary loss	X	X	X	X		X
Prevent environmental damage						X

621 A qualitative ranking of hazards to typical pipeline system components and facilities from the ALA

622 (2005) study is reproduced in Table 7-2.

623

624
625

Table 7-2. Qualitative Ranking of Hazards to Typical Pipeline System Components and Facilities (ALA 2005).

Hazards	Degree of Vulnerability									
	Transmission Pipelines	Pump Stations	Compressor Stations	Processing Facilities	Storage Tanks	Control Systems	Maintenance Operations	Buildings and Equipment	Pressure Regulations / Metering Stations	Distribution Pipelines
Natural Hazards										
Earthquake Shaking	L	M	M	M	H	M	H	L	L	M
Earthquake Permanent Ground Deformations (fault rupture, liquefaction, landslide and settlement)	H	-	-	-	L	-	-	L	H (Buried)	M
Ground Movements (landslide, frost heave, settlement)	H	-	-	-	L	-	-	L	H (Buried)	M
Flooding (riverine, storm surge, tsunami and seiche)	L	H	H	H	M	H	H	H	L	M
Wind (hurricane, tornado)	L (Aerial)	-	-	-	-	L	L	-	-	-
Icing	L	-	-	-	-	-	-	-	L	-
Collateral Hazard: Blast or Fire	M	H	H	H	H	M	L	L	L	M
Collateral Hazard: Dam Inundation	L	H	H	H	M	H	H	H	L	M
Collateral Hazard: Nearby Collapse	-	L	L	L	-	L	L	L	M	L
Human Threats										
Physical Attack (biological, chemical, radiological and blast)	M	M	M	M	-	M	M	-	M	-
Cyber Attack	-	L	L	L	-	H	L	-	L	-

626 Note: Degrees of vulnerability: H = High, M = Moderate, L = Low. When a component or system is located within a building the
627 vulnerability of both the building and component should be considered. For example, where there is a potential for building
628 collapse or mandatory evacuation, the equipment housed within is at risk. The entries in Table 7-2 assume that the component is
629 of recent vintage, i.e., post 1945.

630 **7.2.3. Natural Gas**

631 Natural gas pipelines and storage facilities comprise a vast natural gas infrastructure that services 65
632 million homes, 5 million businesses, 193,000 factories and 5,500 electric generating facilities
633 ([McDonough 2013](#)). There are nominally over 2.4 million miles of natural gas pipelines in the continental
634 US, with pipelines running along roads and private easements under both urban and rural lands
635 ([McDonough 2013](#)). Steps need to be taken to safeguard this massive and ubiquitous part of our energy
636 infrastructure from disastrous events.

637 Natural gas pipelines can be damaged via ground shaking, liquefaction, and ground rupture. Specific
638 points of failure may be predicted when rupture or liquefaction occurs; but the most damaging event on a
639 wide scale is ground shaking ([Nadeau 2007](#)). Existing weaknesses, which serve as the first points of
640 failure, can include corrosion, bad welds, and weak or strained material. Regular maintenance can have a
641 beneficial effect, as can upgrading piping from iron (used in older pipeline) to plastic (used for low-
642 pressure distribution lines) or even steel. Extensive work has been done to develop models that predict the
643 impact of natural hazards on natural gas systems, which can help leaders determine the risk to their local
644 facilities.

645 Generation, in addition to piping, needs to be resilient to hazard events. Fuel cells, which generate power
646 via electrochemical reaction rather than combustion, are already being used as a means to achieve a more
647 resilient natural gas infrastructure. Fuel cells provide a decentralized, reliable source of power that has
648 proven useful in hazard events. They are considered a distributed resource by IEEE. For example, during
649 Hurricane Sandy, one manufacturer put 60 fuel cells in place to provide backup power to cell phone
650 towers. Thanks to the inherent resilience of underground natural gas systems to non-seismic events, these

651 cell towers remained operational during and after the storm. Notably, they were the only cell towers in the
652 area to remain operational throughout the event (Fuel Cell and Hydrogen Energy Association 2014).

653 Aboveground facilities (e.g., compressor stations, processing plants, meter stations, and wells) are the
654 most vulnerable parts of the natural gas system. Natural gas pipes and storage facilities are inherently
655 protected from many hazard events by being underground, but the facilities aboveground are subject to all
656 the same risks as other commercial structures. For example, unusually cold weather in 2011 caused
657 interruptions in natural gas service in the Southwest, which, in turn, caused outages at gas-fired electric
658 generating facilities that were experiencing high demand for electricity. A joint report by FERC and
659 NERC concluded these outages and disruptions of service were caused by weather-related mechanical
660 problems such as frozen sensing lines, equipment, water lines and valves. The report recommended
661 adopting minimum winterization standards for natural gas production and processing facilities, and
662 suggested that additional underground natural gas storage capacity in the region could have ameliorated
663 the impacts of natural gas supply shortages. In addition to the issues discussed in the section about
664 structure resilience, there are vulnerabilities specific to natural gas facilities – flammability and high
665 pressure hazards, and issues with the surrounding infrastructure. These special vulnerabilities should be
666 recognized and accounted for in addition to the steps taken to mitigate inherent risks of aboveground
667 buildings.

668 **7.2.4. Emergency and Standby Power**

669 Loss of offsite power delivered by the commercial power grid can be triggered by failures in power
670 generation, transmission, or distribution systems or by disruptions to power plant fuel supplies. The
671 vulnerability of offsite power to nearly all hazards and the dependence of nearly all buildings and
672 infrastructure on offsite commercial power combine to make both emergency and standby power key
673 requirements for improving disaster resilience.

674 [IEEE \(1995\)](#) defines an emergency power system as “an independent reserve source of electric energy
675 that, upon failure or outage of the normal source, automatically provides reliable electric power within a
676 specified time to critical devices and equipment whose failure to operate satisfactorily would jeopardize
677 the health and safety of personnel or result in damage to property.”

678 The National Electric Code ([NFPA 2005](#)) defines emergency systems as “those systems legally required
679 and classed as emergency by municipal, state, federal, or other codes, or by any governmental agency
680 having jurisdiction. These systems are intended to automatically supply illumination, power, or both, to
681 designated areas and equipment in the event of failure of the normal supply or in the event of accident to
682 elements of a system intended to supply, distribute, and control power and illumination essential for
683 safety to human life.”

684 The NEC ([NFPA 2005](#)) divides standby power systems into two categories:

- 685 • **“Legally Required Standby Systems:** Those systems required and so classed as legally required
686 standby by municipal, state, federal, and other codes or by any governmental agency having
687 jurisdiction. These systems are intended to automatically supply power to selected load (other
688 than those classed as emergency systems) in the event of failure of the normal source. Legally
689 required standby systems are typically installed to serve loads, such as heating and refrigeration
690 systems, communications systems, ventilation and smoke removal systems, sewage disposal,
691 lighting systems, and industrial processes that, when stopped during any interruption of the
692 normal electrical supply, could create hazards or hamper rescue and fire-fighting operations.”
- 693 • **“Optional Standby Systems:** Those systems intended to supply power to public or private
694 facilities or property where life safety does not depend on the performance of the system.
695 Optional standby systems are intended to supply on-site generated power to selected loads either
696 automatically or manually. Optional standby systems are typically installed to provide an
697 alternate source of electric power for such facilities as industrial and commercial buildings,

698 farms, and residences and to serve loads such as heating and refrigeration systems, data
699 processing and communications systems, and industrial processes that, when stopped during any
700 power outage, could cause discomfort, serious interruption of the process, damage to the product
701 or process, and the like.”

702 Emergency and standby power systems are essential for continuous operation of critical facilities, such as
703 hospitals and emergency operations centers. Emergency and standby power are also needed to mitigate
704 cascading failures of transportation and infrastructure systems that depend on electric power, including:
705 communications networks, waste water lift stations, waste water treatment plants, water treatment plants,
706 water distribution pumps, transportation fueling stations, traffic signals, traffic monitoring systems, and
707 railway signals (ALA 2006).

708 Important considerations for safe and reliable operation of onsite emergency and standby power include:

- 709 • Elevation of all electrical components, including generators, service panels, outlets, etc., above a
710 design flood level that is appropriate to the importance/criticality of the facility
- 711 • Proper ventilation of combustion products and cooling system components
- 712 • Availability of adequate uninterruptable power supply (UPS) to support critical systems until
713 emergency or standby power comes on line
- 714 • Ability to start emergency or standby power
715 generation without power from the grid
716 (“black start capability”)
- 717 • Prioritization of power needs and proper
718 sizing of generators and circuits to safely meet
719 essential requirements
- 720 • Installation of permanent quick-connect
721 hookups to accept power from temporary
722 generators and label the hook up with the
723 power requirement to enable generator size
724 selection
- 725 • Ability to properly disconnect from the utility
726 grid and to avoid feeding power back onto a
727 de-energized grid (“islanding”)
- 728 • Ability to safely transfer back to the grid when primary power is restored

The US Army Corps of Engineers (USACE) had developed tool called the *Emergency Power Facility Assessment Tool* (EPFAT). The EPFAT allows public entities to input generator and bill of material requirements into an on-line database with the intention of expediting the support of temporary power installations after events. There are currently over 16,000 facilities in the database. The EPFAT database may be accessed at <http://epfat.swf.usace.army.mil/>

729 National Fire Protection Association Standards 110 and 111 provide performance standards for
730 *Emergency and Standby Power Systems* (NFPA 2013a) and *Stored Electrical Energy Emergency and*
731 *Standby Power Systems* (NFPA 2013b). NFPA 110 recognizes two classification levels: critical to life and
732 safety (Level 1) and less critical (Level 2). Level 1 applications include life safety illumination, fire
733 detection and alarm systems, elevators, fire pumps, public safety communications systems, industrial
734 processes where current interruption would produce serious life safety or health hazards, and essential
735 ventilating and smoke removal systems. Level 2 applications include heating and refrigerating systems,
736 other communications systems, other ventilating and smoke removal systems, sewage disposal, lighting,
737 and industrial processes.

738 Key considerations for emergency and standby power system fuels include:

- 739 • Providing sufficient on-site fuel supply to support essential power loads until an ongoing supply
740 of fuel can be safely and reliably delivered to the site
- 741 • Selecting a fuel that is not dependent on electricity from the grid for delivery (e.g., pipe-
742 delivered, natural gas or truck-delivered liquid fuels such as diesel fuel)
- 743 • Performing regular tests (at least monthly) and properly maintaining equipment

744 Alternative fuel sources, such as solar arrays with battery backups, can be considered as a means of
745 maintaining lighting for emergency exit paths or providing water pressure in buildings or for operating
746 transportation system signals or pumps at fueling stations (Andrews et al. 2013).

747 A partial listing of technologies used for generating emergency or standby power includes:

- 748 • Diesel generators
- 749 • Combined Heat and Power (CHP)
- 750 • Microturbines
- 751 • Reciprocating gas engines
- 752 • Fuel cells

753 Diesel generators range from small mobile generators to larger permanently installed systems. Small
754 generators can be easily deployed to power traffic signals, rail crossing signals, or critical circuits in
755 residential or small commercial buildings; but they require frequent refueling, pose safety hazards to
756 inexperienced operators, and may not be reliable due to poor maintenance and infrequent use. Theft of
757 generators is also a problem when left unattended to power transportation system signals, for example.
758 Permanently installed generators may have more substantial fuel capacities and may be safer to operate
759 and more reliable if tested and maintained on a regular schedule.

760 Following Superstorm Sandy, the State of New Jersey used FEMA HMGP funds to establish a Retail Fuel
761 Station Energy Resiliency Program (NJOEM 2014). Eligibility requirements for the program include:

- 762 • Stations must be located within 1/4-mile of an identified evacuation route
- 763 • Stations with gasoline storage capacity of 30,000 to 35,000 gallons eligible for up to \$15,000
764 grant to purchase quick-connect technology or to offset a portion of the cost of purchasing a
765 generator
- 766 • Stations with gasoline storage capacity of more than 35,000 gallons eligible for up to \$65,000
767 grant toward the purchase and installation of an onsite generator
- 768 • Stations must sell both gasoline and diesel fuel (except in limited instances)

769 The program requires a maintenance contract be in place for at least five years from the date of final
770 approval of municipal building inspector. New Jersey's Office of Homeland Security and Preparedness
771 (OHSP) was also selected by the federal DHS to conduct the Regional Resiliency Assessment Program
772 (RRAP) on the State's petroleum transportation and distribution system.

773 Combined Heat and Power (CHP) is a highly efficient method of providing uninterrupted power and
774 thermal (heating or cooling) services to a host facility. CHP systems are typically powered by natural gas
775 fueled turbines or reciprocating engines. Over a dozen case studies of successful CHP system
776 performance during Superstorm Sandy and other recent large scale power outages have been documented
777 by Hampson et al. (2013). Key advantages of CHP systems over conventional diesel generators include
778 better reliability, lower fuel costs, lower emissions, and the ability to address thermal demands in addition
779 to power demands. Texas and Louisiana now require that all state and local government entities identify
780 which government-owned buildings are critical in an emergency and that a feasibility study on CHP is
781 conducted prior to constructing or extensively renovating a critical government facility. In New York, the
782 State Energy Research and Development Authority (NYSERDA) and the State Office of Emergency
783 Management have partnered to educate emergency managers about the benefits of CHP systems in
784 emergency facilities; and the governor has announced a \$20 million investment towards CHP projects,
785 with added incentives for projects serving critical infrastructure, including facilities of refuge (Hampson
786 et al. 2013).

787 The technologies described in this section are mature and widely deployed. All of these technologies may
788 be employed and coupled with a sophisticated control system to support a microgrid. As noted earlier in

789 the emerging technologies section, microgrids can support normal or near-normal business operations
790 depending on the application and implementation of the system.

791 **7.3. Performance Goals**

792 Examples of Performance Goals at the community level were presented in Chapter 3 for different
793 elements of critical infrastructure. This section presents an example of performance goals for the energy
794 system components in fictional community Centerville, USA. Previous work to develop and establish
795 performance goals or levels of performance is found in the efforts undertaken by SPUR (San Francisco),
796 the California Energy Assurance Planning (CaLEAP) program, and Oregon. While these efforts were first
797 developed at the local and state levels, respectively, they represent the most recent examples of major
798 urban centers and an entire state developing a resilience plan to improve hazard resistance and
799 infrastructure performance.

800 Table 7-3 through Table 7-5 represent example performance goals for the electrical subsystem for
801 **routine, expected, and extreme** events (the three event levels of routine, expected, and extreme events
802 were presented and discussed in Chapter 3 – the expected event is generally synonymous with a “Design
803 Level event” as defined by the relevant codes and standards.). This example is presented for the fictional
804 community in and around Centerville, USA. Since the ability to provide services after a windstorm, ice
805 storm, hurricane, or flood event allows a utility to win support from their customer base, many providers
806 and entities for energy systems have been designing and rebuilding their infrastructure to consider more
807 severe events to make their systems more resilient and reliable for their customers. As such, it is
808 recognized that the 90% desired performance level is already at the existing or current performance level
809 for most electric utilities in the example matrices. However, the target performance levels proposed may
810 not currently be what are being achieved by all utilities and providers.

811 The example performance goals presented in Table 7-3 through Table 7-5 are based on anticipated
812 performance to support a community in a manner that is considered resilient, based on recent actual
813 events and response times after storm and hazard events that have occurred over the past several years,
814 and anecdotal reporting of response times. It is important to understand that a community may be
815 different than the example community used in the performance goal tables. A community may have
816 different infrastructure (for example, it may not have power generation or transmission assets, just
817 distribution assets that must be evaluated and hardened for improved performance). Also, both the
818 community stakeholders and the utilities supporting them will have different levels of expectation and
819 actual performance (response to outages or interruptions) depending upon their geographic locations and
820 past history of dealing with events of different magnitudes (routine, expected, or extreme). Further, much
821 of the current infrastructure and response efforts managed by larger utilities may meet the 90% restored
822 metric identified and therefore the blue shaded box can be marked with the “X” and 90% are to show that
823 they are “overlapping.” The Centerville, USA example energy performance goals in this chapter do not
824 show this scenario. However, the example performance goals for pipelines in Centerville, USA in Chapter
825 6 so show this possibility. Again, an important and notable caveat to this is that Municipal and
826 Cooperatives (Muni’s and Co-Ops) are not traditionally performing at this level and across the board they
827 would likely be at least one box to the right of the current condition (X) mapped in the example matrix.

828 It is also important to note that, for this system, there is a slight difference in the presentation of
829 information related to percent of the system restored. The reality is that the percentage of the
830 infrastructure the utilities desire to get back on line immediately will vary from community to community
831 and is focused on the sub element identified. If the performance goal is to have all Generation
832 infrastructure operating and functional, but the reality is that the distribution sub elements may be
833 damaged and not operational during the same time period, then each gets its own performance metric as
834 shown (perhaps 90% (or 100%) for the generation, but only 30% of 60% for the other sub elements (such
835 as transmission or distribution), and there may be further granularity in these sub elements based on the
836 infrastructure in another community (see table). The sub elements presented and ranks here are a

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015
Energy Systems, Performance Goals

837 representative set, communities may have a greater or smaller number of sub elements and functions than
838 what has been depicted here. The local planning process should evaluate and establish the sub elements
839 and functions for which the community and the industries should look to set performance goals.

840 Lastly, these performance goals will not capture or reflect the inability of the generation or transmission
841 capabilities to be easily re-established when critical infrastructure assets are completely destroyed by an
842 event (e.g., a surge that completely destroys a generation station or major transmission substation). Major
843 impact events such as these are generally considered in that the grid will be able to respond and absorb
844 some level of infrastructure failure. However in communities where there is a generation, transmission, or
845 substation single-point-of-failure condition, that impact is not well-reflected in these metrics at this time.
846 Effort should be made to consider short- and long-term solutions to disruptions, outages, and
847 interruptions. The ability of the sub elements and functions to be operational as soon as possible after an
848 event can be achieved through a variety of solutions. Some may require capital investments, while others
849 are operational responses that are labor and personnel dependent. Some solutions will be dependent on
850 technology or even completely dependent upon the resilience of other supporting systems. Additional
851 information on codes, standards, and recovery levels for new and existing construction presented later in
852 this section should be reviewed prior to completing a performance goals matrix for a community.

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015
Energy Systems, Performance Goals

853

Table 7-3. Example Electrical System Performance Goals for Routine Event in Centerville, USA

Disturbance			Restoration times			
(1)	Hazard	Any	(2)	30%	Restored	
	Affected Area for Routine Event	Localized		60%	Restored	
	Disruption Level	Minor		90%	Restored	
			(3)	X	Current	

854

Functional Category: Cluster	(4) Support Needed	(5) Target Goal	Overall Recovery Time for Hazard and Level Listed								
			Routine Hazard Level								
			Phase 1 – Short-Term			Phase 2 -- Intermediate			Phase 3 – Long-Term		
			0	1	1-3	1-4	4-8	8-12	4	4-24	24+
Power - Electric Utilities											
Generation		1									
Critical Facilities and Infrastructure Systems	R/C		90%								
Emergency Housing and Support Systems	R/C		90%								
Housing and Neighborhood infrastructure	R/C		90%								
Community Recovery Infrastructure	R/C		90%								
Transmission (including Substations)		1									
Critical Response Facilities and Support Systems											
Hospitals, Police and Fire Stations / Emergency Operations Centers			90%								
Disaster debris / recycling centers/ Related lifeline systems			90%								
Emergency Housing and Support Systems											
Public Shelters / Nursing Homes / Food Distribution Centers			90%								
Emergency shelter for response / recovery workforce/ Key Commercial and Finance			90%								
Housing and Neighborhood infrastructure											
Essential city services facilities / schools / Medical offices			90%	X							
Houses of worship/meditation/ exercise			90%	X							
Buildings/space for social services (e.g., child services) and prosecution activities			90%	X							
Community Recovery Infrastructure											
Commercial and industrial businesses / Non-emergency city services			90%	X							
Residential housing restoration			90%	X							
Distribution											
Critical Response Facilities and Support Systems	1										
Hospitals, Police and Fire Stations / Emergency Operations Centers			90%	X							
Disaster debris / recycling centers/ Related lifeline systems			90%	X							
Emergency Housing and Support Systems											
Public Shelters / Nursing Homes / Food Distribution Centers			90%	X							
Emergency shelter for response / recovery workforce/ Key Commercial and Finance			90%	X							
Housing and Neighborhood infrastructure											
Essential city services facilities / schools / Medical offices			90%	X							
Houses of worship/meditation/ exercise			90%	X							
Buildings/space for social services (e.g., child services) and prosecution activities			90%	X							
Community Recovery Infrastructure											
Commercial and industrial businesses / Non-emergency city services			90%	X							
Residential housing restoration			90%	X							

855

Footnotes:

1 Specify hazard being considered

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015
Energy Systems, Performance Goals

Specify level -- Routine, Expected, Extreme

Specify the size of the area affected - localized, community, regional

Specify severity of disruption - minor, moderate, severe

2	30%	60%
3	X	Estimated restoration time for current conditions based on design standards and current inventory

Relates to each cluster or category and represents the level of restoration of service to that cluster or category

Listing for each category should represent the full range for the related clusters

Category recovery times will be shown on the Summary Matrix

"X" represents the recovery time anticipated to achieve a 90% recovery level for the current conditions

4 Indicate levels of support anticipated by plan

R Regional

S State

MS Multi-state

C Civil Corporate Citizenship

5 Indicate minimum performance category for all new construction.

See Section 3.2.6

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015
Energy Systems, Performance Goals

857

Table 7-4. Example Electrical System Performance Goals for Expected Event in Centerville, USA

Disturbance			Restoration times			
(1)	Hazard	Any	(2)	30%	Restored	
	Affected Area for Expected Event	Community		60%	Restored	
	Disruption Level	Moderate		90%	Restored	
			(3)	X	Current	

858

Functional Category: Cluster	(4) Support Needed	(5) Target Goal	Overall Recovery Time for Hazard and Level Listed									
			Expected Hazard Level									
			Phase 1 – Short-Term			Phase 2 -- Intermediate			Phase 3 – Long-Term			
			0	1	1-3	1-4	4-8	8-12	4	4-24	24+	
Power - Electric Utilities												
Generation		1										
Critical Facilities and Infrastructure Systems	R/C		90%	X								
Emergency Housing and Support Systems	R/C		90%	X								
Housing and Neighborhood infrastructure	R/C		90%		X							
Community Recovery Infrastructure	R/C		90%		X							
Transmission (including Substations)		1										
Critical Response Facilities and Support Systems												
Hospitals, Police and Fire Stations / Emergency Operations Centers			90%	X								
Disaster debris / recycling centers/ Related lifeline systems			60%	90%	X							
Emergency Housing and Support Systems												
Public Shelters / Nursing Homes / Food Distribution Centers			60%	90%	X							
Emergency shelter for response / recovery workforce/ Key Commercial and Finance				60%	90%	X						
Housing and Neighborhood infrastructure												
Essential city services facilities / schools / Medical offices				60%	90%	X						
Houses of worship/meditation/ exercise				60%	90%	X						
Buildings/space for social services (e.g., child services) and prosecution activities				60%	90%	X						
Community Recovery Infrastructure												
Commercial and industrial businesses / Non-emergency city services					60%	90%	X					
Residential housing restoration					60%	90%	X					
Distribution												
Critical Response Facilities and Support Systems		1										
Hospitals, Police and Fire Stations / Emergency Operations Centers			60%	90%	X							
Disaster debris / recycling centers/ Related lifeline systems			60%	90%	X							
Emergency Housing and Support Systems												
Public Shelters / Nursing Homes / Food Distribution Centers				60%	90%	X						
Emergency shelter for response / recovery workforce/ Key Commercial and Finance				60%	90%	X						
Housing and Neighborhood infrastructure												
Essential city services facilities / schools / Medical offices				60%	90%	X						
Houses of worship/meditation/ exercise				60%	90%	X						
Buildings/space for social services (e.g., child services) and prosecution activities				60%	90%	X						
Community Recovery Infrastructure												
Commercial and industrial businesses / Non-emergency city services					90%	X						
Residential housing restoration					90%	X						

859

Footnotes: See Table 7-3, page 22.

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015
Energy Systems, Performance Goals

860

Table 7-5. Example Electrical System Performance Goals for Extreme Event in Centerville, USA

Disturbance			Restoration times			
(1)	Hazard	Any	(2)	30%	Restored	
Affected Area for Extreme Event		Regional	60%		Restored	
Disruption Level		Severe	90%		Restored	
			(3)	X	Current	

861

Functional Category: Cluster	(4) Support Needed	(5) Target Goal	Overall Recovery Time for Hazard and Level Listed								
			Extreme Hazard Level								
			Phase 1 – Short-Term			Phase 2 -- Intermediate			Phase 3 – Long-Term		
			Days			Wks			Mos		
			0	1	1-3	1-4	4-8	8-12	4	4-36	36+
Power - Electric Utilities											
Generation		1									
Critical Facilities and Infrastructure Systems	R/C			90%	X						
Emergency Housing and Support Systems	R/C			90%	X						
Housing and Neighborhood infrastructure	R/C				90%	X					
Community Recovery Infrastructure	R/C				90%	X					
Transmission (including Substations)		1									
Critical Response Facilities and Support Systems											
Hospitals, Police and Fire Stations / Emergency Operations Centers				60%	90%	X					
Disaster debris / recycling centers/ Related lifeline systems				60%	90%	X					
Emergency Housing and Support Systems											
Public Shelters / Nursing Homes / Food Distribution Centers				60%	90%	X					
Emergency shelter for response / recovery workforce/ Key Commercial and Finance				60%	90%	X					
Housing and Neighborhood infrastructure											
Essential city services facilities / schools / Medical offices					60%	90%					
Houses of worship/meditation/ exercise					60%	90%					
Buildings/space for social services (e.g., child services) and prosecution activities					60%	90%					
Community Recovery Infrastructure											
Commercial and industrial businesses / Non-emergency city services					60%	90%					
Residential housing restoration					60%	90%					
Distribution											
Critical Response Facilities and Support Systems	1										
Hospitals, Police and Fire Stations / Emergency Operations Centers					60%	90%					
Disaster debris / recycling centers/ Related lifeline systems					60%	90%					
Emergency Housing and Support Systems											
Public Shelters / Nursing Homes / Food Distribution Centers					60%	90%					
Emergency shelter for response / recovery workforce/ Key Commercial and Finance					60%	90%					
Housing and Neighborhood infrastructure											
Essential city services facilities / schools / Medical offices					60%	90%	X				
Houses of worship/meditation/ exercise					60%	90%	X				
Buildings/space for social services (e.g., child services) and prosecution activities					60%	90%	X				
Community Recovery Infrastructure											
Commercial and industrial businesses / Non-emergency city services					60%	90%	X				
Residential housing restoration					60%	90%	X				

862

Footnotes: See Table 7-3, page 22.

863

7.4. Regulatory Environment

864
865
866

The electric utility and liquid fuel industries are highly regulated with the goal of keeping prices low, keeping delivery safe, and providing reliable, quality products to consumers. Regulation occurs at the federal and state levels.

867
868
869
870
871
872
873

The Federal Energy Regulatory Commission (FERC) is the US national regulatory body responsible for interstate transmission of oil, natural gas, and electricity. They are also responsible for reviewing interstate gas pipeline proposals, licensing hydropower plants, and reviewing proposals for developing liquefied natural gas terminals. FERC regulates the interstate wholesale sales and transmission of electricity, reviews and makes decisions on utility mergers and acquisitions, monitors and investigates energy markets, and provides rulings on transmission siting applications. FERC has the authority to provide civil penalties and fines for non-compliance to regulatory rules.

874
875
876
877
878
879
880
881
882

The Western Energy Crisis, the Enron scandal, and a historic East Coast blackout, led Congress to grant broad new authority to the FERC in 2005. After this third event, the Northeast Blackout, a joint US-Canada task force studied the causes and effects of the 2003 blackout and identified the need to make reliability standards mandatory and enforceable with penalties for noncompliance. So, in the Energy Policy Act of 2005 - Public Law 109-58 - (EPAct 2005), Congress entrusted FERC with a major new responsibility to oversee mandatory, enforceable reliability standards for the nation's Bulk Power System—that is, the wholesale power grid. The importance of this change cannot be overstated. The business of reliability became not just a set of industry best practices; it became a matter of national importance.

883
884
885
886
887
888

Through Section 215 of the Federal Power Act, Congress authorized FERC to certify a national electric reliability organization. That ERO is the North American Electric Reliability Corporation (NERC). NERC is a not-for-profit entity whose mission is to ensure the reliability of the Bulk Power System (BPS) in North America. This means that it is the responsibility of NERC to develop and enforce Reliability Standards. Further, they are to annually assess seasonal and long-term reliability, monitor the BPS through system awareness, and educate, train, and certify industry personnel.

889
890
891
892
893
894

Each state has a regulatory commission whose responsibility is to represent the electricity consumers in their jurisdiction. State commissions regulate retail electricity and gas, approve physical construction of infrastructure projects, provide rulings on local distribution of electricity and gas, and provide general regulatory oversight of local utilities and gas distribution companies. The commission meets regularly with state utilities and performs performance assessments. If performance metrics are not met, utilities may be punished or fined.

895

7.4.1. Federal

896
897
898

At the federal level there is regulation by FERC which is “an independent agency that regulates the interstate transmission of electricity, natural gas, and oil.” FERC does not have siting authority for electric transmission facilities, but it does regulate reliability standards through NERC.

899
900
901
902
903
904
905

NERC is also at the federal level which, as defined, is “a not-for-profit international regulatory authority whose mission is to ensure the reliability of the bulk power system in North America. NERC develops and enforces Reliability Standards; annually assesses seasonal and long-term reliability; monitors the bulk power system through system awareness; and educates, trains, and certifies industry personnel. NERC’s area of responsibility spans the continental United States, Canada, and the northern portion of Baja California, Mexico. NERC is the electric reliability organization for North America, subject to oversight by the Federal Energy Regulatory Commission and governmental authorities in Canada.”

906
907
908

The Nuclear Regulatory Commission (NRC), another federal regulator, focuses primarily on nuclear power plants. The NRC is responsible for licensing and inspecting nuclear reactors, and providing regulations, guidelines, and best practices for their operation. They are also responsible for any nuclear

909 fuel manufacturing oversight and for coordinating and participating in nuclear energy research and
910 development.

911 Each of the various state and federal authorities regulates different and overlapping aspects of the electric
912 system. The requirements, standards and codes for each are lengthy and complex and are ever evolving
913 but it is these that must form the basis for future refinements to facilitate reliability and preparedness
914 improvements.

915 7.4.2. State

916 The utilities are constantly in a complex regulatory dance with state public service commissions,
917 regarding the rapidly changing rules governing their roles and responsibilities. Recently, one of the
918 biggest issues for utilities and commercial generators, particularly rooftop solar companies, involves the
919 regulation of “behind the meter” load (such as rooftop solar) and their ability to sell power back into the
920 grid to the utility. This is referred to as “net metering” and, again, the rules vary from state to state. The
921 concern from utilities is that they remain responsible for upgrade and maintenance of a grid
922 interconnection system that would receive less revenue and would also need to handle the varying bi-
923 directional load demands that can add complexity to an already stressed infrastructure.

924 Although the push to lower greenhouse gas emissions and increase self-reliance using on-site methods,
925 such as roof-top solar (and potentially storage), has merit, so does improving the backbone and efficiency
926 of our electric grid. Grid improvements can also dramatically reduce line loss, thereby increasing
927 environmental benefits and reliability; but those improvements are expensive and require significant
928 investment. The debate is escalating as additional unique and beneficial “generation” and “virtual
929 generation” options arise.

930 This push-pull is being played out right now in the headlines and before state public service commissions
931 (PSCs) and utilities across the country. It is therefore imperative that these evolving rules of conduct be
932 formulated with an eye to cost, reliability, safety, disaster preparedness and environmental benefit. The
933 rules themselves will be primarily administered by state PSCs and utilities; but the oversight roles of the
934 regional Independent System Operators (ISOs) and the Regional Transmission Organizations (RTOs) is
935 also key, particularly with respect to cost and reliability.

936 The ISOs and RTOs serve much the same function, though the RTOs have greater responsibility for their
937 regional transmission network as established by FERC. However, both the ISOs and RTOs operate
938 regional electricity grids, administer the wholesale electricity markets, and provide reliability planning for
939 the bulk electric system. Some of these systems such as the New York ISO (NYISO) are single state
940 systems, and some are more regional such as the ISO New England (ISO-NE) system and the Southwest
941 Power Pool (SPP). Due to the inter-relatedness of the North American grid, the ISO/RTO systems are
942 international and include for example, the Alberta Electric System Operator.

943 7.4.3. Local

944 At the State and Local levels, codes and standards are adopted by the State PSCs, PUCs, ISOs, and RTOs
945 to govern design and construction of the infrastructure. There is a wide variation in the level of design
946 guidance that is provided by the codes and standards adopted by these entities. While some have best-
947 practices, others reference ANSI-approved, consensus codes and standards. But even when the codes and
948 standards are adopted, there is an apparent lag in adopting the most current version of these standards.

949 7.5. Codes and Standards

950 A number of codes and standards are used in the power industry for design and construction of
951 generation, transmission, stations/substations, and distribution assets. While ASCE 7 (mentioned earlier
952 in this document) is now incorporated by reference and used more frequently than in the past, most of the
953 Transmission and Distribution assets are designed to the National Electric Safety Code (NESC) or the
954 Rural Utilities Service (RUS), respectively. There are many variables related to design and construction

955 of these assets. As such, not all elements may be addressed here or will require additional cross checking
956 with additional codes, standards, and regulations.

957 In 2009, NIST established the Smart Grid Interoperability Panel (SGIP). The SGIP is a private-public
958 partnership that identifies electricity delivery standards gaps, fills the gaps through requirements analysis,
959 and coordinates with Standards Setting Organizations (SSOs) to create or modify interoperability
960 standards and guidelines. The SGIP maintains a [Catalog of Standards \(CoS\)](#) that lists many standards that
961 have been vetted through a regimented process with regards to cybersecurity and architectural integrity.

962 The electric code that is adhered to by the Investor-Owned Utilities (IOUs), who design and construct the
963 Transmission assets, is the National Electric Safety Code (NESC); Sections 24 (Grades of Construction),
964 25 (Loading Requirements) and 26 (Strength Requirements). NESC Rules 215 (grounding) and 218
965 (trees) present information important to vegetation management. While this is truly a safety code, it is
966 used as a design code in lieu of other guidance. Each utility also has a Standards department that
967 evaluates the various codes and standards (safety or design) that are applied during design and
968 construction of their assets. They evaluate any new equipment to ensure it meets or exceeds these
969 standards. From the baseline set forth in the NESC, it is important to note that all IOUs have developed
970 their own standards for their respective systems. While most of these standards exceed the minimums set
971 forth by the NESC, the question that exists is whether the baseline set forth in the NESC addresses the
972 performance desired for resiliency when considering all hazards (flood, wind, seismic, ice, and other
973 natural hazards and man-made threats).

974 In a similar fashion, but working from a different set of criteria, the Co-operatives and Municipalities
975 responsible for Distribution assets use the design manuals/standards from the Rural Utilities Service
976 (RUS). The RUS distribution line design manuals consist of RUS bulletins 1724-150 through 1724-154.
977 These refer to the identification of critical loads/customers and poles/equipment. In all cases, each utility
978 is applying more stringent wind and ice loading conditions from these codes.

979 The information in the following subsections is provided to help communities better develop their own
980 performance metrics for new (or recent) construction by identifying some of the performance criteria that
981 was likely considered in the design of these assets.

982 **7.5.1. New Construction**

983 For some elements of the energy system, the design criteria for hazards have been aligned with building
984 standards such as ASCE 7 Minimum Design Loads for Buildings and Other Structures. However,
985 performance goals for these systems for each event are less defined. Definitions are also less clear
986 regarding what are considered “routine,” “expected,” “extreme,” or “catastrophic” events. As resilience
987 becomes better defined, this framework is working to bring together different interpretations and
988 definition of these events as they are defined and used in practice within the existing industries and
989 codes/standards used in each industry.

990 The following is a summary of hazards considered by the NESC (Part 2, Section 25):

- 991 • **250B – Combined Ice and Wind** – This is the basic loading criteria and is known as the District
992 Loading. It incorporates both wind and ice with overload and strength factors. This applies to all
993 structures and references the map presented in Figure 250-1. The boundaries of the districts
994 follow county lines. Data was obtained from a small number of weather stations which were far
995 apart. While the industry has discussed replacing this map with appropriate maps from ASCE 7,
996 this issue is still being evaluated.
- 997 • **250C – Extreme Wind** – These criteria account for the higher winds typically found along the
998 coastline and during extreme events. These criteria are only used for structures that are higher
999 than 60' above ground (70' pole and longer). Appropriate maps are Figures 250-2a through 250-
1000 2e. Due to their typical tower height, transmission lines are designed to these criteria. The
1001 overload and strength factors used are generally 1 since this is an extreme event map (note, the

1002 nomenclature of “extreme wind” used here is not consistent with the extreme wind event used for
1003 the design and construction of buildings or storm shelters per the *ICC-500 Standard for the*
1004 *Design and Construction of Storm Shelters*). These criteria were first introduced into the NESC in
1005 1977. The 2002 NESC incorporated the wind maps from ASCE 7-98; where the wind data was
1006 much more comprehensive. The 2012 NESC uses the wind maps from ASCE 7-05. The ASCE 7-
1007 10 wind maps were revised to better represent the wind hazard. The maps now are based on new
1008 modeling efforts, refinements to understanding of wind performance, and incorporation of the
1009 contribution of the Importance Factor [I] into the data presented by the maps. However, these
1010 maps are currently not used by the NESC based on a decision by their code committee to retain
1011 the use of the ASCE 7-05 wind maps.

1012 Most distribution structures are lower than the 60 ft. height limitation; therefore, most utilities will not
1013 design their distribution lines to the ASCE 7 criteria (something that may need to be reconsidered
1014 depending upon performance of these systems during hurricanes and tornadoes over the past 2 decades).

- 1015 • **250D – Combined Ice and Wind** – This criterion was added in the 2007 NESC to account for
1016 extreme ice events. This criterion is similar to the Extreme Wind loading. Most Transmission
1017 assets will be designed to this criterion while distribution assets will not. Over the years most
1018 utilities had their own extreme ice loading for the design of Transmission assets. The maps from
1019 ASCE 7-05 have been retained and referenced for this criterion.
- 1020 • Additional Standards related to hazard-resistant design include:
 - 1021 □ ASCE 7-10 exempts electrical lines from seismic design
 - 1022 □ ASCE 113 applies design criteria for stations. Seismic design is addressed in this standard
 - 1023 □ ANSI O5 applies to wood poles
 - 1024 □ ANSI C29 applies to insulators

1025 Some utilities on the east coast are now starting to look at station hardening due to hurricane Sandy. This
1026 includes raising structures and control buildings at existing stations, or relocating the station outside the
1027 flood zone. Much of this guidance is a result of state and local floodplain management practices and
1028 requirements as opposed to specific codes, standards, or regulations from the energy industry itself. And
1029 while NSEC rules exist for vegetation management, there is a lack of Codes, Standards, and industry-
1030 accepted Best Management Practices that consistently address maintenance requirements.

1031 7.5.1.1. Implied or stated Performance Levels for Expected Hazard Level

1032 As discussed in the previous section, structures greater than 60 feet tall are designed for ASCE 7 wind
1033 and ice hazards. Though the NESC defines these as an “extreme” loading case, these loads are consistent
1034 with the expected event as defined in this framework. Therefore, new/future energy infrastructure greater
1035 than 60 feet tall should experience very few failures in an expected event. However, energy infrastructure
1036 less than 60 feet tall (i.e., most distribution structures) is not required to be designed to the NESC
1037 “extreme” loads. Rather, they are designed to Rule 250B criteria, which is less than an expected event as
1038 defined in Chapter 3. Therefore, failures in the energy distribution system are likely to occur in an
1039 expected ice or wind event. As seen in the example performance goals in Section 7.3, it is anticipated that
1040 some failures in the distribution system would also occur to the routine wind or ice event, though these
1041 will likely be limited, resulting in less outages.

1042 Many failures of the energy infrastructure are due to tree fall or debris impact rather than direct wind/ice
1043 loading itself. Therefore, the electric utility’s ability to maintain an effective tree-trimming program will
1044 greatly impact the performance levels of the infrastructure when a hazard event does occur.

1045 7.5.1.2. Recovery levels

1046 As discussed, failures of energy infrastructure less than 60 feet are likely to occur in an expected event,
1047 particularly wind and ice events. The time to recover and restore service so the system is fully functional

1048 will depend on a number of factors, such as whether distribution lines are overhead or underground,
1049 effectiveness of the energy utility tree-trimming program, mobility of emergency repair crews,
1050 availability of resources for repair, and size of the impacted area. Overhead distribution lines may fail
1051 more frequently due to wind or ice events. However, these failures are easier to access and repair than
1052 underground lines, which may occur due to other events.

1053 For earthquakes, overhead structures would be anticipated to perform well due to their flexibility.
1054 However, buried distribution lines may fail due to liquefaction or if there is not enough slack in the lines
1055 to resist the forces from earthquakes. Flooding may also lead to failure of underground infrastructure if
1056 not adequately protected. As previously stated, underground infrastructure damage is more difficult to
1057 access and fix. Therefore, while overhead distribution infrastructure may have more widespread failures,
1058 it will only take days to weeks to recover, whereas only a few underground failures may result in the same
1059 recovery time. However, widespread underground failures may result in weeks (rather than days) of
1060 recovery time to achieve full functionality of the system.

1061 **7.5.2. Existing Construction**

1062 For the older infrastructure elements of the energy system, the design criteria used for hazards varies
1063 greatly. In many cases, little to no consideration was given to the forces and loads imparted onto this
1064 infrastructure because the infrastructure pre-dated the modern codes such as ASCE 7 Minimum Design
1065 Loads for Buildings and Other Structures that provide criteria to calculate and apply such loads. In some
1066 instances, most hazard resistance was incorporated through anecdotal information such as siting of critical
1067 infrastructure based on past-historical storms or it was provided through conservative design approaches
1068 and uses of materials that, by their nature, happen to provide some level of resilience. Further,
1069 performance goals for these systems were likely never considered or defined. As a result, old
1070 infrastructure has inherent vulnerabilities because many of the systems were not designed for these
1071 specific hazard loads. This section discusses the anticipated or implied performance from existing
1072 infrastructure elements to help develop better performance metrics for communities.

1073 Existing infrastructure in the energy system was designed and constructed to codes and standards that did
1074 not address hazards to the level of current codes and standards. Because of this a number of
1075 vulnerabilities exist in both the electrical system, and the communications infrastructure used to control it.
1076 As a result, these older assets remain vulnerable (with existing equipment and systems) unless the
1077 equipment is replaced due to age or new codes/regulations or enforced internal utility best practices
1078 require an upgrade. Examples of these vulnerabilities are:

- 1079 • ***Clustered, below grade transformers.*** Transformers tightly clustered in underground vaults and
1080 small substation yards – many at or below grade (to hide the ugly infrastructure). These below
1081 grade vaults often fill with water and debris during floods, mud slides, and earthquakes.
1082 Redundant means must be provided to mitigate these hazards to enjoy the otherwise substantial
1083 benefit of below grade, protected infrastructure.
- 1084 • ***Single pole substation high and low voltage feeds.*** Using single poles to take both the incoming
1085 and outgoing lines from substations add a potential single point of failure. If separated and the
1086 incoming high voltage pole/tower fails, distributed generation may still be able to feed the station.
1087 If a low side feeder exit pole fails, the incoming high voltage feed remains as do other low
1088 voltage feeder poles.
- 1089 • ***Fuses, not breakers in many locations.*** Using fuses rather than breakers/reclosers in different
1090 parts of a distribution system is cost based. Using more breakers and reclosers may be a new best
1091 practice when considering resiliency. Also, the lack of sectionalizers in many utility systems can
1092 mean that a single fault prevents all customers from having power turned back on while the
1093 damaged circuit is being repaired.
- 1094 • ***Underground ducts run close together and crossing in many shallow manholes.*** A potential
1095 common mode failure challenge not generally considered in existing design practices.

1096 • **Lack of automation.** Most switching in the distribution grid today is local and manual – meaning
1097 that to turn on power using alternate configurations, a person has to get to the gear when staff to
1098 do that is the most scarce.

1099 Other vulnerabilities present in existing communications and control equipment include supporting the
1100 energy system:

1101 • **Single communications card/frequency in devices.** Single point of failure issue and potential
1102 interference issue with increased radio traffic used in major disaster response scenarios.

1103 • **Single encryption key or worse (default passwords) for all devices in a system.** This is a well-
1104 known security issue being addressed in critical infrastructure – but presently most distribution
1105 systems are not considered critical infrastructure.

1106 • **Very small batteries/super capacitors in devices.** This leads to very short communications
1107 windows – on narrow channels – which progresses to notable numbers of dropped or missed
1108 communications during outages limiting the ability to optimize crew dispatch.

1109 • **Mesh networks performance on cold start.** Some mesh network implementations being used for
1110 field area networks tend to be very fragile when the system starts to have outages, and take time
1111 to reform after an outage – while the mesh design is supposed to be highly resilient in the most
1112 critical moments – it can be its own worst enemy as implemented today (e.g. small batteries, deep
1113 mesh designs, lack of stored cold start parameters, etc.)

1114 • **Common right of ways.** Fiber and other communication circuits tend to run in the same rights of
1115 ways (on the same poles) as the electrical service – breaking one normally breaks both.

1116 • **Telecommunications Route Diversity.** This concept is often a myth because of the small number
1117 of telecomm switches/and actual central offices/as well as multiplexing thousands of VPNs in a
1118 single fiber

1119 • **Cellular Communications Emergency Operating Practices.** While cellular towers offer dual
1120 coverage in many places, the tendency is to only put batteries at some and back up generation at
1121 fewer locations – so the towers revert to emergency calling only when the grid goes down –
1122 locking out grid communications that use cellular communications for backhaul.

1123 • **Digital Phone System Powering Requirements.** Unlike the POTS system – the new digital phone
1124 systems require power at each street box – in some cases there are batteries, in others there are
1125 not – Cable companies have the lowest installation of batteries in their VOIP = data systems
1126 compared to other telecomm providers

1127 • **Wireless Communications Spectrum Clustering and Frequency Agility.** Wireless frequencies
1128 tend to be highly clustered, meaning that even low power jammers can disrupt all of the wireless
1129 related communications to the grid (e.g. Push to talk and DA/SA/AMI, etc.)

1130 • **Signaling System Security Vulnerabilities.** SS7 vulnerabilities have not been closed for G3 or
1131 G4 cellular systems – meaning that they can be jammed or intercepted by a knowledgeable
1132 person with little in the way of specialized equipment in an unencrypted form.

1133 Most of these issues do not have explicit codes and regulations – but some do. Most come under
1134 the category of best practices on both customer and utility sides of the meter. These
1135 vulnerabilities will remain until new construction undertaken using new codes and best practices
1136 that consider resilience replaces the older infrastructure.

1137 **7.5.2.1. Implied or stated Performance Levels for Expected Hazard Level**

1138 Some existing utility infrastructure is up to 30 years in age and most infrastructure 10 years or newer are
1139 highly dependent on communications and control networks to operate effectively in adverse conditions.
1140 This is especially true for those systems with some level of automation that permit automatic or remote
1141 controlled circuit switching, sectionalizing and reconfiguration. Situational awareness to know the
1142 availability and operational state of field assets is also directly impacted by the availability of
1143 communications equipment.

1144 There are multiple failure modes for communications and control equipment. One that is addressed by
1145 codes and standards for new construction is the ability of this electronic equipment to operate correctly in
1146 harsh environmental conditions. Early implementations of network gear in substations were based on
1147 consumer gear (think LinkSys) that had very low tolerance for temperature, humidity, shock, vibration,
1148 and the electromagnetic environment. Even first generation industrial quality gear intended for utility
1149 applications did not consider the environment found in substation and feeder applications. New standards,
1150 such IEC 61850-3 and IEEE 1613, begin to address these concerns. The IEC standard used around the
1151 world, but especially in Europe, have good environmental (temperature, shock, and vibration) guidelines
1152 – but the equivalent IEEE standard used primarily in North America does not. In North America there is
1153 presently no code or regulation that requires communications and control equipment to comply with any
1154 standard – and utility enforced best practices are still emerging. The bottom line is that the system will be
1155 vulnerable to communications and control failures in extreme conditions for some time to come.

1156 **7.5.2.2. Recovery levels**

1157 When events do occur and recovery efforts are required, the priorities and restoration efforts should
1158 address emergency-related societal needs first and progress through a tiered response. While the model of
1159 recovery can be complex, for simplicity, three general tiers to focus on are the restoration of services for
1160 emergency facilities and services (Critical and Essential Facilities), for critical public works and right of
1161 way (access) for critical infrastructure restoration crews, and then the systematic restoration of the
1162 community at large. Samples of how the infrastructure elements may (and could) perform was discussed
1163 in Section 7.3. Additional suggestions for how the infrastructure and facilities should respond when
1164 impacted by a Routine, Expected, or Extreme event are also expanded upon below:

- 1165 1. ***Emergency Facilities and Services Restoration:*** Technologies and systems that address core
1166 emergency services should be properly planned, tested, maintained, and restored first. These
1167 facilities normally include 911 call centers, police, fire, and emergency medical dispatch stations.
1168 They also include centers identified for emergency shelter, food, and water, such as community
1169 centers, schools, and stadiums. When planning for disaster responsiveness, also consider
1170 communication infrastructure that links critical emergency resources (wire line communications,
1171 cellular radio, and third party managed radio systems).
- 1172 2. ***Critical Rights of Way and Infrastructure Restoration:*** The next priorities to address include
1173 systems necessary to dispatch and manage road and right of way clearing crews, electric repair
1174 crews, and other non-emergency yet vital restoration related organizations and services. This list
1175 includes critical government facilities and communications paths to allow government to function
1176 effectively, manage the crisis, and maintain civil order. Energy resiliency in this sense covers
1177 emergency power for utility crew dispatch centers, key city buildings such as city hall, public
1178 works crew facilities. It also covers the business processes in place to ensure generators and UPS
1179 systems in these facilities are sized appropriately and tested periodically.
- 1180 3. ***Socio-Economic Continuity Restoration:*** The next priority is to support socio-economic
1181 continuity. Full restoration typically requires days or even weeks. This aspect of restoration is
1182 often unplanned and the biggest utility clients or loudest complainers often move to top of the
1183 priority list. This element should be carefully prioritized and integrated into a community
1184 resilience plan. First, ensure citizens outside of the community shelters have access to food,
1185 water, fuel/energy, and communications. After these immediate needs are met, identify
1186 businesses supporting the basic needs of citizens such as water and sewage utilities, grocery
1187 stores, gas stations, drug stores, internet and telephone service providers, and make them
1188 priorities for restoration.
- 1189 4. Mitigation projects or resiliency efforts may include hardening distribution systems and
1190 employing technologies such as backup generation, renewable energy, or microgrids to ensure
1191 these facilities remain online throughout the event or can be rapidly restored. Key infrastructure

Energy Systems, Strategies for Implementation of Community Resilience Plans

1192 elements also need protecting, such as sewage lift stations and water pumping stations. All these
1193 equipment and systems should be periodically tested and properly maintained in order to achieve
1194 the economic and societal benefit of the investment.

1195 7.6. Strategies for Implementation of Community Resilience Plans

1196 Section 7.2 discusses components of the energy infrastructure system. The discussion includes some
1197 potential vulnerabilities observed in the past encouraging the reader to think about the different hazards
1198 that could impact the energy infrastructure in their community. The number, types, and magnitudes of
1199 hazards that need to be considered will vary from community to community.

1200 Section 7.3 discusses the performance goals of the energy infrastructure strived for by the community.
1201 Section 7.3 does provide example performance goals for the routine, expected and extreme event.
1202 However, the performance goals should be adjusted by the community based on its social needs.

1203 Sections 0 and 7.5 outline some of the regulatory levels and issues, and codes and standards that the
1204 reader should keep in mind when planning to make upgrades/changes to existing energy infrastructure.
1205 The objectives of this section are to use the information from Section 7.2 through 7.5 and provide
1206 guidance on how a community should work through the process of assessing their energy infrastructure,
1207 define strategies to make its infrastructure more resilient, and narrow the resilience gaps.

1208 7.6.1. Available Guidance

1209 Another term is often used to describe energy system resiliency and reliability – Energy Assurance.
1210 Energy Assurance refers to the entire process of managing all aspects of energy delivery, resiliency and
1211 reliability to ensure a desired outcome for how energy services will perform during normal and abnormal
1212 situations.

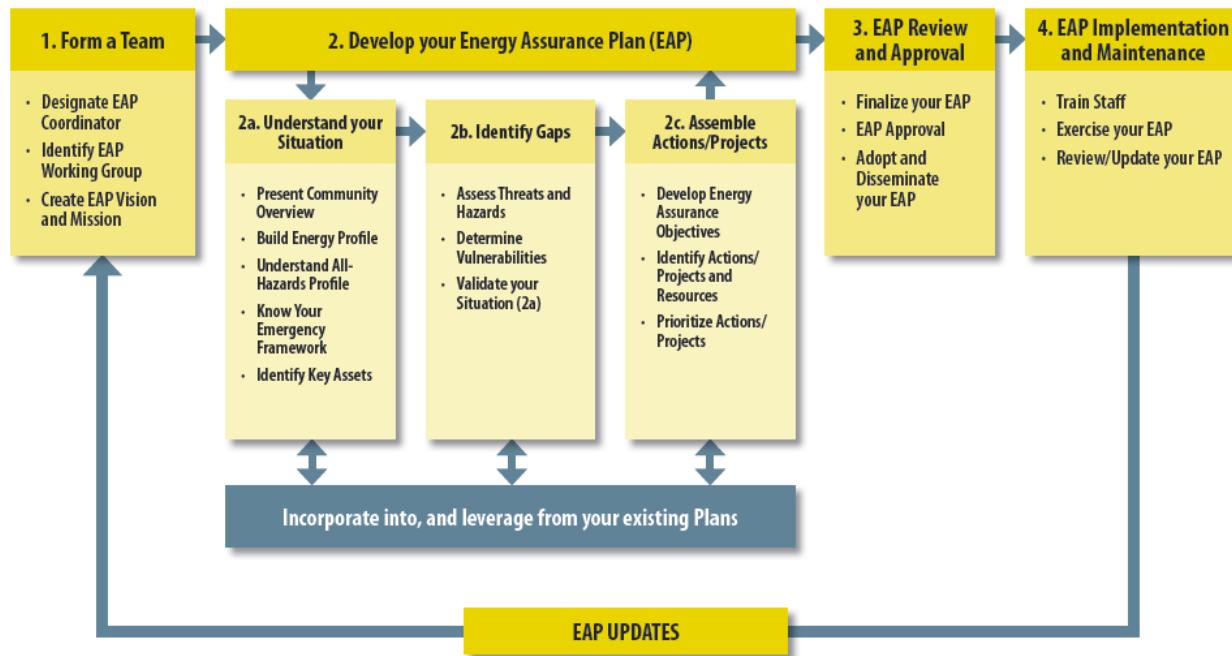
1213 Energy Assurance is often focused on assisting local governments to become more resilient to loss of
1214 energy. Becoming more energy resilient will help local governments prepare for, respond to, recover
1215 from, and mitigate against potential emergencies that impact energy while minimizing economic loss and
1216 protecting public health and safety. For the purposes of this framework, Energy Assurance is about:

- 1217 • Ensuring “key assets” are functional when needed;
- 1218 • Fostering critical public-private partnerships before incidents happen;
- 1219 • Gaining awareness of energy dependencies; and,
- 1220 • Identifying actions and projects to move toward increased energy resiliency.

1221 Examples of how Energy Assurance is used as a means to collect the multitude of disciplines,
1222 characteristics and dimensions of energy delivery, resilience, and reliability planning processes together
1223 include the DOE’s Energy Assurance program (<http://energy.gov/oe/services/energy-assurance>), The
1224 National Association of State Energy Officials (NASEO) State Energy Assurance Guidelines
1225 (http://www.naseo.org/Data/Sites/1/documents/publications/State_Energy_Assurance_Guidelines_Version_3.1.pdf), and the California Local Energy Assurance Planning (CaLEAP) process
1226 (<http://www.caleap.org>).

1227 Energy Assurance, as a whole, is about assuring that essential services are maintained in the event of an
1228 energy disruption. The first step is to identify the “key assets” of the essential services in the community
1229 and determine their vulnerabilities. The key assets could be as big as an entire building (e.g., Police or
1230 Fire Station) or as small as an element within a building (e.g., communications or HVAC system).

1232 Building relationships is another part of Energy Assurance. Many emergency managers know that
1233 building partnerships after a disaster is too late. Attempting to identify who to reach and working around
1234 potential obstacles to reach them (e.g., limited or down telecommunications) is difficult. Establishing
1235 these relationships helps local governments anticipate actions and clarify roles and responsibilities prior
1236 to events; thus increasing the likelihood of a successful and efficient response and recovery.


Energy Systems, Strategies for Implementation of Community Resilience Plans

1237 Gaining an awareness and/or understanding of energy interdependencies is also a very important piece of
 1238 energy assurance. Our communities have become very complex and many elements within them rely
 1239 upon another element within the community. In some instances, water systems need energy for their
 1240 services, but energy providers also need water to produce energy. Understanding these relationships is
 1241 vital in decision making.

1242 With a good understanding of the key assets and interdependencies, a local government, working with the
 1243 local energy provider, can identify actions and projects to become more energy resilient.

1244 Because resilience is new, there is a significant need for tools to help both the community and the
 1245 industry assess resilience. Tools and methods exist to measure reliability, but again, these calculated
 1246 values typically look at systems during blue sky events and not during natural hazard events.

1247 An example of how resilience has been addressed during recent initiatives is found in energy assurance
 1248 planning programs. A first step toward implementing resilience in the energy industry is to develop an
 1249 Energy Assurance Plan tailored for a community. The flowchart developed by the CaLEAP program
 1250 illustrates the overall approach for developing such a plan including forming an EAP team. Notice that
 1251 this flowchart is similar to that shown in Chapter 3 of this document outlining the approach to achieve
 1252 community resilience.

1253
 1254 **Figure 7-3: Energy Assurance Flowchart Developed by CaLEAP**

1255 Thinking about resilience as an aspect of reliability might be the quickest means to develop assessment
 1256 methodologies to assess and score resilience – especially from the energy service provider perspective. It
 1257 may allow the ability to explicitly consider large-scale events and non-traditional hazards that were
 1258 sometimes neglected in previous assessments. It would also set up a means to consider resilience in the
 1259 current industry mode that allows for variable pricing for duration and a better understanding of scale by
 1260 adapting to risk-based frameworks that capture interdependencies and likelihood. By assimilating
 1261 resilience into the factors that assure reliability, regulators might not be charged with setting new criteria
 1262 for utility performance.

1263 The length of time to restore electric service is a traditional metric of grid reliability. Similarly, the grid's
 1264 ability to ride through minor disturbances or avoid cascading outages is already considered within
 1265 existing grid reliability indices. While these metrics and indices (such as System Average Interruption

1266 Duration Index [SAIDI], the Customer Average Interruption Duration Index [CAIDI], the System
1267 Average Interruption Frequency Index [SAIFI], the Customer Average Interruption Frequency Index
1268 [CAIFI], and others) exist, there are limitations to how these apply to the grid, including the fact that most
1269 reliability indices and metrics are blue-sky indicators. When looking at and defining resilience, the events
1270 that cause us to measure and evaluate the performance of the grid take place in much harsher and
1271 significant conditions (such as natural hazard events and acts of vandalism, crime, and terrorism).
1272 Performance goals tables, such as those in Section 7.3, can be used by communities and energy utility
1273 providers to set goals for recovery times during hazard events. However, these tables can also be used
1274 define to determine the anticipated performance of the infrastructure (i.e., the “X” in the performance
1275 goals tables) for a given event. The community or utility can then define the resilience gaps (i.e., the
1276 difference between the “90%” and “X” in the performance goals tables) and prioritize strategies for
1277 enhancing the resilience of the energy infrastructure system.

1278 **7.6.2. Strategies for new/future Construction**

1279 In general, when identifying equipment, and other components within the energy system, one of the
1280 qualifying criterion should focus on resiliency. When evaluating different vendors and system
1281 components, check their track record and references, and collaborate with others.

1282 **Construction Strategies.** There are several construction strategies that can be used to help improve
1283 resilience of energy infrastructure from hazard events, including the following:

- 1284 • Strengthening and reinforcing critical lines leading to population centers or other critical loads.
1285 For instance, adding line reinforcements to lines that serve a hospital or fire station makes them
1286 more resilient to wind, ice, and branch loads.
- 1287 • Establish pole depth standards based on local soil conditions for each pole height. Ensure that
1288 poles are planted to the correct depth and the foundation will support the loads.
- 1289 • Do not overload poles.
- 1290 • Consider using National Electrical Safety Code (NESC) Grade B construction standards for
1291 critical distribution lines. This grade of construction is commonly used in the utility industry and
1292 utility surveys show that using Grade B for storm hardening is a popular and effective resiliency
1293 construction strategy.
- 1294 • Consider undergrounding. There are definite pros and cons to using undergrounding. They are
1295 less vulnerable to weather, fire, and man-made hazards, but certainly not earthquakes. It is
1296 expensive and when faults do occur, they are difficult to locate, take much longer to get to, and
1297 are expensive to fix. For an event like Hurricane Sandy or the ice storms of 2012 and 2013,
1298 underground cables would have dramatically reduced the amount of damage and restoration
1299 times. For an earthquake in California, it could have the opposite effect. Due to the increased
1300 costs associated with undergrounding, some options include:
 - 1301 • Underground circuits based on the largest number of customers services.
 - 1302 • If there are circuits that will be difficult to access (especially during weather-related hazard
1303 events), underground those circuits.
 - 1304 • If there are circuits whose terrain and surrounding environment make it relatively easy and
1305 inexpensive to install underground cable, underground those circuits.
- 1306 • Consider Covered aerial medium-voltage (CAMV) systems. This hardware attaches to poles and
1307 overhead wires to add strength and stability to the wires. The added stability makes the
1308 distribution network more resilient to contact with trees and debris, and is especially useful in
1309 narrow rights of way with large concentrations of trees.
- 1310 • Other potential solutions include various pole line configurations that can help minimize
1311 restoration efforts.

1312 • In fire prone areas, consider using concrete, heavy steel, or other non-flammable and warp
1313 resistant structures to put conductors and equipment overhead. This makes the survival of the line
1314 more likely. However, consider driver safety in this upgrade. Because these structures are
1315 stronger, consider moving them further from the road rights-of-way so the likelihood of hitting a
1316 pole is reduced if an automobile leaves the road.

1317
1318 **Non-Construction Strategies.** As discussed in Section 7.2, the effects of a number of natural hazards can
1319 be mitigated without hardening or other construction strategies of the infrastructure. Some possible non-
1320 construction strategies for improving the resilience of energy infrastructure include the following:

1321
1322 • Trim trees and other potential obstructions as far as practical within the right of way.
1323 • Use submersible equipment in underground substations, which can be accomplished in the case of
1324 city-run electric utilities or city-owned substations. Submersible equipment stops almost any
1325 water-based issue with substation operation, whether from weather events, water main breaks or
1326 flooding from other sources.
1327 • Minimize the number of splices in conductors and in ducts that carry the splices. Where possible,
1328 position splices in conductors and ducts as far away from water mains as possible and in easily-
1329 accessible locations. Note: in high volume rain areas, storm drains can be as large an issue as
1330 water mains.
1331 • Consider heavy wall insulation cables, type TC cables, and type MC cables. Heavy wall
1332 insulation cables are more resistant to physical damage and moisture, providing better resilience
1333 to severe weather conditions than thin wall insulation cables. Type TC cables are used in
1334 industrial applications for power and control applications. TC cables have a moisture-resistant
1335 jacket and are rated for use in wet conditions. Type MC cables are also moisture-resistant and
1336 rated for use in wet conditions. In addition, MC cables are also crush-resistant.

1337 **Electrical Infrastructure in Buildings.** Specific to energy infrastructure in buildings, the National
1338 Institute of Building Sciences recommends that “during the facility design and/or re-build development
1339 process, building projects have a comprehensive, integrated perspective that seeks to:

1340 • **Reduce Heating, Cooling, and Lighting Loads through Climate-Responsive Design and
1341 Conservation Practices**
1342 ▪ Use passive solar design; orient, size, and specify windows; and locate landscape elements
1343 with solar geometry and building load requirements in mind.
1344 ▪ Use high-performance building envelopes; select walls, roofs, and other assemblies based on
1345 long-term insulation and durability requirements.

1346 • **Employ Renewable or High-Efficiency Energy Sources**
1347 ▪ Renewable energy sources include solar water heating, photovoltaic (PV), wind, biomass, and
1348 geothermal.
1349 ▪ Evaluate the use of building scale to take advantage of on-site renewable energy technologies
1350 such as day lighting, solar water heating, and geothermal heat pumps.
1351 ▪ Consider the use of larger scale, on-site renewable energy technologies such as photovoltaics,
1352 solar thermal, and wind turbines.
1353 ▪ Evaluate purchasing electricity generated from renewable sources or low polluting sources
1354 such as natural gas.

1355 • **Specify Efficient HVAC and Lighting Systems**
1356 ▪ Use energy efficient HVAC equipment and systems that meet or exceed 10 CFR 434.
1357 ▪ Use lighting systems that consume less than 1 watt/square foot for ambient lighting.

Energy Systems, Strategies for Implementation of Community Resilience Plans

1358 ▪ Use Energy Star® approved and/or FEMP-designated energy efficient products or products
1359 that meet or exceed Department of Energy standards.

1360 ▪ Evaluate energy recovery systems that pre-heat or pre-cool incoming ventilation air in
1361 commercial and institutional buildings.

1362 ▪ Investigate the use of integrated generation and delivery systems, such as co-generation, fuel
1363 cells, and off-peak thermal storage.

1364 • ***Optimize Building Performance and System Control Strategies***

1365 ▪ Employ energy modeling programs early in the design process.

1366 ▪ Use sensors to control loads based on occupancy, schedule and/or the availability of natural
1367 resources such as daylight or natural ventilation.

1368 ▪ Evaluate the use of modular components such as boilers or chillers to optimize part-load
1369 efficiency and maintenance requirements.

1370 ▪ Evaluate the use of Smart Controls that merge building automation systems with information
1371 technology (IT) infrastructures.

1372 ▪ Employ an interactive energy management tool that allows you to track and assess energy
1373 and water consumption.”⁵

1374 The CaLEAP organization has identified additional recommendations for building and retail owners,
1375 including:

1376 • Ensuring emergency, life safety, high priority, and general building circuits are well segregated in
1377 building wiring design and breaker panel layouts.

1378 • Ensuring building automation systems take advantage of segregated load grouping mentioned
1379 above, are standards based (e.g. BACNet), and are capable of accepting utility load control
1380 signals (e.g. OpenADR).

1381 • Key community facilities necessary to ensure socio-economic continuity without internal backup
1382 generation capability are configured to permit easy, safe connection to external mobile generation
1383 (e.g. through standardized connectors at the outside service entrance)

1384 **7.6.3. Strategies for Existing Construction**

1385 The previous section on strategies for new construction discussed recommendations by the National
1386 Institute of Building Sciences in detail. Most of the ideas expressed also apply to existing construction
1387 strategies. However, in new construction, there is a larger set of opportunities for energy efficiency and
1388 resiliency since nothing has been built yet.

1389 In general, when replacing equipment, and other components within the energy system, each component
1390 should be considered and, where more resilient, better reliability choices are available, communities
1391 should not replace with the same equipment when practical.

1392 **Construction Strategies.** Similarly to new/future infrastructure, construction strategies, including the
1393 following, can be used to enhance the resilience of existing infrastructure:

1394 • Strengthen and reinforce critical lines leading to population centers or other critical loads. For
1395 instance, adding line reinforcements to lines that serve a hospital or fire station makes them more
1396 resilient to wind, ice, and branch loads.

1397 • When adding new equipment to poles, perform loading assessment to ensure that the pole is not
1398 over-stressed.

1399 • Consider Covered aerial medium-voltage (CAMV) systems.

1400 • Consider replacing overhead lines with underground systems. As discussed previously, this
1401 requires careful consideration and a cost/benefit analysis. However, in many cases, the ability of

⁵ Source: National Institute of Building Sciences, http://www.wbdg.org/design/minimize_consumption.php

Energy Systems, Strategies for Implementation of Community Resilience Plans

1402 underground systems to provide uninterrupted service (or service with limited outages) during
1403 severe weather events has societal and economic benefits that deserve consideration. Due to the
1404 increased costs associated with undergrounding, some options include:

- 1405 ▪ Underground only the worst performing circuits, or section(s) of a circuit.
- 1406 ▪ Underground circuits based on the largest number of customers services.
- 1407 ▪ Underground circuits that are difficult to access (especially during weather-related hazard
1408 events).
- 1409 • Consider moving overhead equipment higher so the fire has to reach further to do significant
1410 damage.
- 1411 • A second electrical system path to critical buildings is a resilient design. The alternative electrical
1412 path can be from local generation or from an independent path into the area that can be traced
1413 back to a power source without crossing the other path.
- 1414 • Make sure the soil types and insulation properties of the soils are known when burying a line. If
1415 the line is buried too shallow, the line will end up out of commission as often as an overhead
1416 system and the resulting problems will take far longer to find and fix. Broken overhead
1417 infrastructure is typically found by simple visual inspection, while failed underground
1418 infrastructure requires investigation by digging or specialized equipment. In some instances, one
1419 costly option is to abandon in place and replace the whole distance of the splice to restore the
1420 system quickly.
- 1421 • Use modern flexible fuel lines for the run between the fuel tank and the shelter or skid upon
1422 which the generator sit. This installation not only minimizes leaks from vibration, but keeps pipes
1423 with lower thermal tolerance away from hot parts of the generator. A cracked or broken insulated
1424 fuel line may take hours to detect in an emergency situation because of the chaos. Typically the
1425 leak gets worse as the generator vibrates, and the loss of fuel can become significant. A visual
1426 inspection of the fuel lines after an earthquake should be conducted as quickly as possible to
1427 prevent a hazmat event, fire, or an early shutdown of a back-up generator.

1428 **Non-Construction Strategies.** In many cases, improving the resilience of existing infrastructure may be
1429 more easily accomplished through non-construction strategies. Some possible non-construction strategies
1430 for improving the resilience of existing energy infrastructure include the following:

- 1431 • Trim trees and other potential obstructions as far as practical within the right of way.
- 1432 • Perform regular tree trimming and line inspections.
- 1433 • Perform regular pole inspections. Look for excessive pole loading due to telephone, cable
1434 (television), and internet-related equipment. If the pole is wooden, check for decay. Check the
1435 foundation of the poles to ensure they are properly embedded and stable. If there is erosion
1436 around the footing or the pole is leaning, add guy wires or reset/replace the pole. Consider heavy
1437 wall insulation cables, type TC cables, and type MC cables.
- 1438 • Inspect underground splices and equipment on a scheduled basis to make sure seals are intact and
1439 that nothing has destroyed the waterproof capability of the connections.
- 1440 • Using bulkheads that are strong enough to resist the water pressure on the other side in ducts can
1441 help protect equipment and minimize damage as well as close off a path of least resistance that
1442 will spread the damage from a break. If a duct runs down a 200 foot high hill and the main breaks
1443 at the top, the bulkhead would have to resist approximately 400 psi of pressure in the duct.
1444 Understanding this in inspection and design is useful. A strong bulkhead at the top of the hill can
1445 provide a simple solution that ensures the duct never fills with water.
- 1446 • Have an adequate stock of spares (poles, transformers, line, etc.) on hand for fire prone areas, and
1447 do not use them for routine work. If emergency spares are used in routine work, then it will take
1448 even longer to do restoration.

- 1449 • Aggressive vegetation management is critical to the safety of both overhead and underground
1450 infrastructure⁶. This includes removing trash that is illegally dumped on rights-of-way. Recently,
1451 over 200 tires were removed from an illegal dumping pile on a right-of-way. These tires would
1452 have burned hot enough to destroy the line if they had ignited.
- 1453 • If possible, cutting off power before wildfire gets to the line allows equipment and lines time to
1454 cool and may save the system from destruction. If people have been removed from an area, do not
1455 hesitate to turn off power a couple of hours before the fire reaches the area, allowing equipment
1456 maximum time to cool. This proactive action can also avoid having fires start as the result of a
1457 power line going down or overheating equipment, thereby negating any perimeter that may have
1458 been created.
- 1459 • Controlled burns for vegetation management and invasive species reduction can impact
1460 infrastructure if vegetation is close to rights of way. Ensure that precautions are taken prior to
1461 controlled burns – about 20% of electrical outages from fires are from controlled burns.
- 1462 • Proper grounding and inspections of grounding equipment greatly minimize the chance
1463 transformer fire can occur from lightning. Standards exist both for how to ground and how to
1464 inspect the grounding. Poles in areas that are susceptible to fire should be inspected more often
1465 or, the use of non-flammable poles, like concrete, is an intelligent hardening mitigation effort.

1466 Installing and maintaining lightning arrestors and cut outs in the distribution grid can minimize the area
1467 that a single lightning strike affects but, in the case of cut-outs, once it is triggered, manual fuse
1468 replacement is required. Replacing cutouts with sectionalizers means that the equipment has a chance to
1469 stop the lightning and automatically attempt a reset to restore power. On the customer side of the meter,
1470 existing construction can be readily retrofit with external generation support connectors as previously
1471 noted for new construction. If an existing facility is considering adding any form of self-generation
1472 systems, consider upgrading building circuits at the same time to segregate load types. If a building
1473 automation upgrade is being considered, ensure that it meets the suggestions previously noted for new
1474 construction. As noted previously, consider using the USACE Emergency Power Facility Assessment
1475 Tool (EPFAT), which allows public entities to input generator and bill of material requirements to
1476 expedite temporary power installation support services.

1477 **7.7. References**

1478 ALA 2005. *Guidance for Assessing the Performance of Oil and Natural Gas Pipeline Systems in Natural*
1479 *Hazard and Human Threat Events*, American Lifelines Alliance draft report to the Federal Emergency
1480 Management Agency and the National Institute of Building Sciences.

1481 ALA 2006. *Power Systems, Water, Transportation and Communications Lifeline Interdependencies*,
1482 American Lifelines Alliance draft report to the Federal Emergency Management Agency and the National
1483 Institute of Building Sciences.

1484 ASCE 2013. "2013 Report Card for America's Infrastructure," American Society of Civil Engineers.

1485 Andrews, E., M.A. Lazurus, and J. Aliberti. 2013. "Community Resilience: Reliable Back-up Power."
1486 Saint Louis University Center for Sustainability, 2013 SDRC. <http://www.slu.edu/sustainability/events/events-archive/2013-sdrc/2013-sdrc-presentations>

1488 Fuel Cell and Hydrogen Energy Association 2014. "Resiliency of Stationary Fuel Cells and the Natural
1489 Gas Grid," National Institute of Building Sciences.

1490 Hampson, A., T. Bourgeois, G. Dillingham and I. Panzarella. 2013. *Combined Heat and Power: Enabling*
1491 *Resilient Energy Infrastructure for Critical Facilities*, ONRL/TM-2013/100, Oak Ridge National
1492 Laboratory.

⁶"Enhancing Distribution Resiliency", whitepaper prepared by Electric Power Research Institute, January 2013

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015
Energy Systems, References

1493 IEEE 1995. *Recommended Practice for Emergency and Standby Power Systems for Industrial and*
1494 *Commercial Applications*, IEEE Std. 446-1995.

1495 McDonough, P. W. 2013. "Post-Earthquake Checklist for Natural Gas Systems," American Society of
1496 Civil Engineers.

1497 Nadeau, J. P. 2007. "Improving the Resiliency of the Natural Gas Supply and Distribution Network,"
1498 Naval Postgraduate School.

1499 NFPA 2005. *NFPA 70: The National Electrical Code*, National Fire Protection Association.

1500 NFPA 2013a. *NFPA 110: Standard for Emergency and Standby Power Systems*, National Fire Protection
1501 Association.

1502 NFPA 2013b. *NFPA 111: Standard on Stored Electrical Energy Emergency and Standby Power Systems*,
1503 National Fire Protection Association.

1504 NJOEM. 2014. *Retail Fuel Station Energy Resiliency Program*, New Jersey Office of Emergency
1505 Management, <http://www.ready.nj.gov/programs/retail-fuel-station.html>

1506 Oregon Seismic Safety Policy Advisory Commission (OSSPAC). 2013. *The Oregon Resilience Plan*,
1507 Salem, Oregon.

1508 USEIA 2009. "Residential Energy Consumption Survey: Space Heating by Type of Housing Unit
1509 (HC6.1)," U.S. Energy Information Administration, <http://www.eia.gov/consumption/residential/data/2009/index.cfm#undefined> .

1511 USEIA 2014a. "High cost, oil-fired generation crates potential for shift in Hawaiian electric sources,"
1512 U.S. Energy Information Administration, <http://www.eia.gov/todayinenergy/detail.cfm?id=15091>.

1513 USEIA 2014b. "U.S. Percent Utilization of Refinery Operable Capacity," U.S. Energy Information
1514 Administration, <http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=MOPUEUS2&f=A>.

1515 Clark, Tony, and Meidhof, Robin Z. 2013, "Ensuring Reliability and a Fair Energy Marketplace: Energy
1516 Innovation Series and Sixth Annual Schultz Lecture, University of Colorado, Boulder, Colorado (October
1517 22, 2013

1518 Pentland, William, 2013, "Rethinking Grid Resilience: Are we Gold Plating the Electric Grid?" October
1519 11, 2013 (<http://www.forbes.com/sites/williampentland/2013/10/18/rethinking-grid-resilience-are-we-gold-plating-the-electric-grid/>)

1521 NARUC 2013, Keogh, Miles and Cody, Christina. The National Association of Regulatory Utility
1522 Commissioners, NARUC Grants & Research "Resilience in Regulated Utilities" November 2013

1523 NIST Special Publication 1108R2: NIST Framework and Roadmap for Smart Grid Interoperability
1524 Standards, Release 2.0, Office of the National Coordinator for Smart Grid Interoperability February 2012

1525 10-21-2014, National Institute of Building Sciences,
1526 http://www.wbdg.org/design/minimize_consumption.php

8. Communication and Information Systems

8.1. Introduction

PPD-21 identifies “energy and communications systems as uniquely critical due to the enabling functions they provide across all critical infrastructure sectors.” These two infrastructure systems are highly interdependent. Communication and information systems, the focus of this chapter, are increasingly critical parts of our daily lives. For example, the banking system relies on the Internet for financial transactions, documents are transferred via Internet between businesses, and e-mail is a primary means of communication. When Internet is not available, commerce is directly affected and economic output is reduced.

Communication and information systems have seen incredible development and use over the past 20-30 years. In terms of system types, functionality, and speed, some of the most notable changes of communication and information systems over the past few decades are:

- Moving from a society that relies on fixed line (i.e., landline) telephones as the primary means of two-way voice communication to one that relies heavily on mobile devices (e.g., cell phones) and Internet (Voice over Internet Protocol, VoIP) for voice communication, text messages, and e-mail. Many now have abandoned traditional landlines in favor of mobile phones and VoIP.
- Moving from a society where large personal computers were used to communicate via e-mail and access information via the Internet to a society where smaller mobile devices, such as laptops and cell phones, are used for the same purpose
- More and more people now use laptops, smart phones, and tablets to read news on the Internet and watch movies and television shows, instead of using traditional methods such as television
- More recently, businesses have begun to use social networking sites for collaboration, marketing, recruiting, etc.

As in many other developed countries, most people in the United States take these services for granted until they are unavailable. Unfortunately, communication and information systems are often lost in the wake of natural disasters—a time when they are needed most for:

- Relaying emergency and safety information to the public
- Coordinating recovery plans among first responders and community leaders
- Communication between family members and loved ones to check on each other’s safety
- Communication between civilians and emergency responders

When addressing resilience, communities must also think about the longer term and improving performance of the built environment in the next hazard event. Intermediate and long-term communications and information infrastructure needs of communities include:

- The ability to communicate with employers, schools, and other aspects of individuals’ daily lives
- Re-establishing operations of small businesses, banks, etc., via Internet and telecommunications so they can serve their clients
- Restoration, retrofits, and improvements to infrastructure components so it will not fail in the same way in future events (i.e., implement changes to make infrastructure more resilient).

To address resilience of communication and information infrastructure, service providers should work with other stakeholders in the community to establish performance goals for their infrastructure. Example performance goals for the fictional town of Centerville, USA are provided in this chapter to illustrate the process of setting performance goals, evaluating the state of existing communication and information infrastructure systems, identifying weak links in the infrastructure network, and prioritizing upgrades to improve resilience of the network. The example performance goals tables are for a generic hazard, but can

45 be developed by a community/service provider for any type and magnitude of hazard in rural or urban
46 communities.

47 The goal of this chapter is to provide guidance for the reader that can be used to understand the potential
48 forms of damage to infrastructure and develop plans to improve communication and information
49 infrastructure resilience. Damage observed in past events and success stories are used to show that service
50 providers have many opportunities to become more resilient. Guidance for planning of logistics and
51 personnel are outside the scope of this chapter. Communities and service providers have their own
52 challenges and solutions to accomplish their goals.

53 **8.1.1. Social Needs and System Performance Goals**

54 As discussed in Chapter 2, the social needs of the community drive performance goals that are to be
55 defined by each community and its stakeholders. Social needs of the community include those of citizens,
56 businesses (both small/local and large/multi-national), industry, and government. Each community should
57 define its performance goals in terms of the time it takes for its critical infrastructure to be restored
58 following a hazard event for three levels of event: routine, expected, and extreme, as defined in Chapter 3.

59 The community has short (0-3 days), intermediate (1-12 weeks), and long-term (4-36+ months) recovery
60 needs. Specific to communications, communities traditionally think about recovery in terms of emergency
61 response and management goals, which include communication between:

- 62 • Citizens and emergency responders
- 63 • Family members and loved ones to check on each other's safety
- 64 • Government and the public (e.g., providing emergency and safety information to the public)
- 65 • First responders
- 66 • Government agencies

67 However, as discussed in the introductory section, communities must think about their long-term social
68 needs when addressing resilience. The community's intermediate goal is to recover so people and
69 businesses can return to their daily routine. To do this, people need to be able to communicate with their
70 employers, their children's schools, and other members of the community. Businesses need to have
71 Internet and telephone service to communicate with their clients and suppliers. In the long term,
72 communities should strive to go beyond simply recovering by prioritizing and making improvements to
73 parts of the communications infrastructure that failed in the disaster.

74 **8.1.2. Availability, Reliability, and Resilience**

75 Availability and reliability are terms often used by industry when referring to communications networks.
76 **Availability** refers to the percentage of time a communications system is accessible for use. The best
77 telecommunications networks have 99.999 percent availability, which is referred to as "five 9's
78 availability" (CPNI 2006). This indicates a telecommunications network would be unavailable for only
79 approximately five minutes/year.

80 **Reliability** is the probability of successfully performing an intended function for a given time period
81 (Department of the Army 2007). Therefore, though reliability and availability are related, they are not the
82 same. A telecommunications network, for example, may have a high availability with multiple short
83 downtimes or failure during a year. This would mean the reliability is reduced due to incremental
84 disruptions (i.e., failures) in service. Reliability will always be less than availability.

85 Whether the type of communications system is wireline or wireless telephone, or Internet, service
86 providers market their reliability to potential customers. Service providers think about the
87 communications system itself in terms of the services they provide to the end user rather than the
88 infrastructure (i.e., built environment) that supports the service.

89 **Resilience** is closely related to availability and reliability. Like availability and reliability, resilience
90 includes the ability to limit and withstand disruptions/downtime. However, resilience also involves
91 preparing for and adapting to changing conditions to mitigate impacts of future events so disruptions
92 occur less frequently, and, when they do occur, there is a plan to recover quickly. Resilience is also the
93 ability to recover from a disaster event such that the infrastructure is rebuilt to a higher standard.
94 Consequently, by enhancing the resilience of communications infrastructure, availability (amount of
95 downtime) and reliability (frequency of downtime) can be improved. Note that availability will never
96 reach 100 percent because maintenance, which requires downtime, will always be needed.

97 **Capacity.** Resilience of communications infrastructure is dependent on the network's capacity. As is often
98 seen during and immediately after disaster events, there is an increase in demand of the communication
99 and information systems (Jrad et al. 2005 and 2006). Section 8.1 points out that, during and immediately
100 after a disaster event, the system is used extensively for communication between family and loved ones,
101 communication with vulnerable populations (e.g., ill or elderly), civilians and first responders, and
102 customers and service providers when outages occur.

103 Unfortunately, the capacity of a system is not immediately increased for disasters and so cellular phones,
104 for example, may not appear to immediately function properly due to high volume use. This is especially
105 true in densely populated areas, such as New York City, or around emergency shelter or evacuation areas.
106 The latter is an especially important consideration, because some facilities used as emergency shelter and
107 evacuation centers are not designed with that intent.

108 For example, the Superdome in New Orleans, LA was used as emergency shelter during Hurricane
109 Katrina. Although this was an exceptionally large facility used for sporting and entertainment events,
110 these facilities can be overwhelmed prior to, during, and after disaster events because of the influx of
111 civilians seeking shelter. This results in increased demand on the wireless/cellular network.

112 With the expansion of technology and the massive growth of cellular phone use, the wireless
113 telecommunications network around emergency shelter facilities will become more stressed in disaster
114 events until augmented by additional capacity.

115 Jrad et al. (2005) found that for an overall telecommunications infrastructure network to be most resilient,
116 an approximately equal user base for wireline and wireless communications was best. The study found
117 that if one network is significantly greater than the other and the larger one experiences a disruption,
118 increased demand will switch to the smaller network and lead to overload. As a simple example, if
119 landline demand is 1,000,000 users, cellular network demand is 500,000 users, and the landline network
120 experiences a disruption in a disaster event, some landline demand will transfer to the cellular network
121 (Jrad et al. 2005). The increased demand would then stress the wireless network and likely result in
122 perceived service disruptions due to overloading of the network when many calls cannot be completed.

123 Historically, network connectivity (e.g., reliability or availability) has been a primary concern for
124 communications. However, because of the increased multiuse functionality of mobile communications
125 devices (e.g., cellular phones and iPads), communications network resilience also needs to consider the
126 type of data being used, and hence capacity of the network.

127 Capacity will become an even greater challenge for communications service providers in the wake of
128 future hazard events. Additional capacity is needed to support service for non-traditional functionality of
129 mobile devices such as sending photographs, watching movies on the Internet, etc. Furthermore, some 9-
130 1-1 centers have the ability to receive photo submissions, which may require more capacity than a phone
131 call. On the other hand, if 9-1-1 call centers can receive text messages, this may also be useful because
132 text messages take up a very small amount of data (i.e., less capacity) and can persist until they get into
133 the network and delivered.

134 **8.1.3. Interdependencies**

135 Chapter 4 provides details of the interdependencies of all critical infrastructure systems in a community.
136 The built environment within communities is continually becoming more complex and different systems
137 are becoming more dependent on one another to provide services. Specific to the communications and
138 information system, the following interdependencies must be considered:

139 **Power/Energy.** The communication and information system is highly dependent on the power/energy
140 system. For current high technology and data services, the end user needs external power for
141 telecommunications, Internet, and cable. Loss of external power means loss of
142 communication/information services, except for cellular phones which will likely be able to function until
143 their battery is diminished in the absence of standby power. For use beyond the life of the battery, the cell
144 phone must be charged using an external power source. Furthermore, distribution of communications and
145 power service is often collocated (e.g., wires traveling along utility poles). Failure of these systems can
146 happen simultaneously due to tree fall severing both types of lines. In the wake of a disaster event where
147 external power is lost, communications infrastructure needs continuous standby power to ensure
148 continued functionality.

149 External power is also critical for cooling critical equipment inside buildings. Air conditioning systems,
150 which keep critical equipment from overheating, are not typically connected to standby power. Therefore,
151 although critical communication equipment may continue to function when a power outage occurs, it may
152 become overheated and shutdown (Kwasinski 2009).

153 Conversely, emergency repair crews for power utilities need to be able to communicate so they can
154 prioritize and repair their network efficiently. The power provider controls the rights of the utility poles;
155 therefore, the design, construction, routing, and maintenance of telecommunication lines are dependent on
156 the requirements and regulations of the power utility provider.

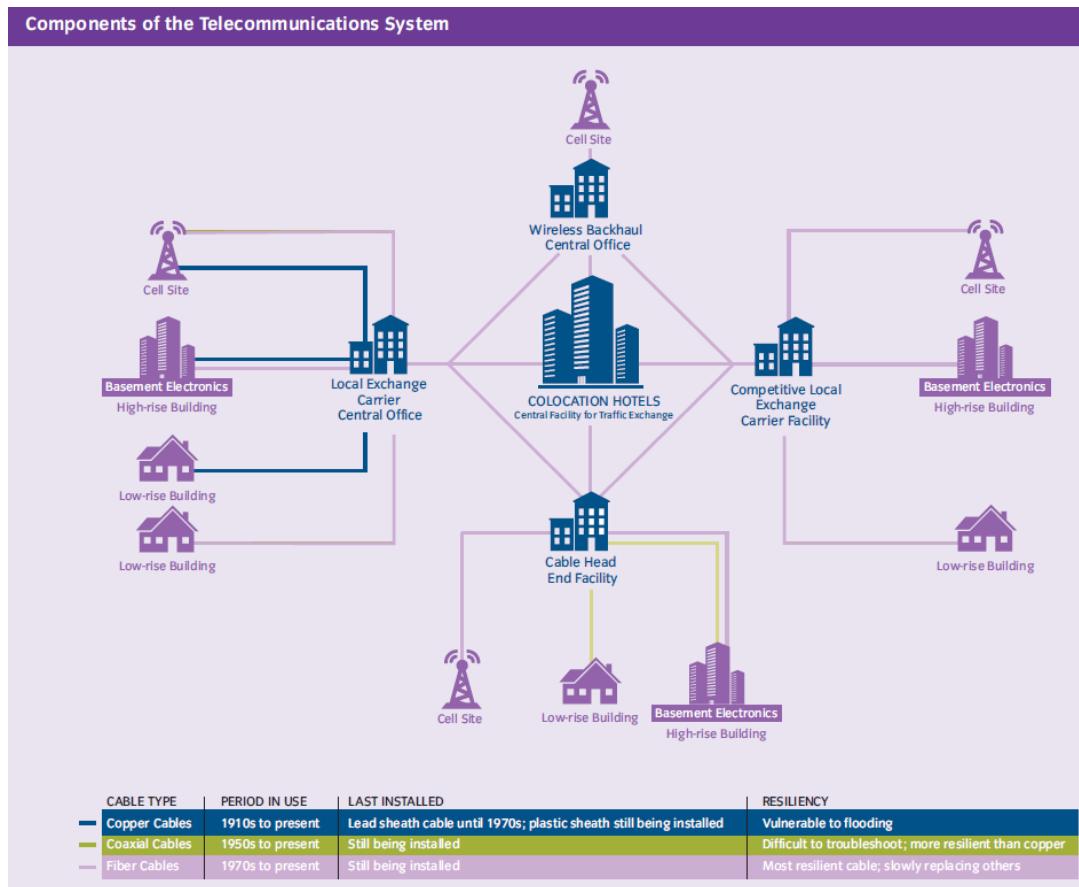
157 **Transportation.** A common problem after disaster events is that roadways and other parts of the
158 transportation system needed in recovery of infrastructure become impassable. Specifically, tree fall and
159 other debris resulting from high wind events (e.g., hurricanes and tornadoes), storm surge/flooding, and
160 ice storms prevent emergency crews from reaching the areas where they need to repair damaged
161 communications infrastructure. Moreover, standby generators cannot be refueled because roads are
162 impassable. Transportation repair crews, including those for traffic signals, need to be able to
163 communicate to ensure their system is fixed. Traffic signals and transportation hubs also rely on
164 communications systems. Traffic signals use communication systems for timing and synchronization of
165 green lights to ensure smooth flow of traffic and transportation hubs use communications system to
166 communicate schedules for inbound/outbound passenger traffic.

167 **Building/Facilities.** Buildings and facilities need their communications and information systems to
168 function properly. Buildings used for business and industry communicate with clients, suppliers, and each
169 other via telephone and e-mail. Residential buildings need these services to communicate with employers,
170 loved ones, banks, and services. Currently, money is transferred between businesses, bills are paid to
171 services/businesses and personal banking is completed online or, less commonly, by telephone.

172 Individuals inside buildings in the immediate aftermath of sudden, unexpected events (e.g., blast events)
173 also need the communications network to learn what is happening.

174 In large urban centers, service providers often have cell towers on top of buildings. If these buildings fail,
175 an interruption in service may occur due to the loss of the cell tower.

176 **Water and Wastewater.** Water and wastewater utilities rely on communications amongst operations staff
177 and emergency workers in the recovery phase. If the communications network, including the cellular


178 network, is down for an extended period of time following a disaster event, the recovery process can take
179 longer since there will be limited coordination in the efforts.

180 Similar to power/energy, water is needed for cooling systems in buildings that house critical equipment
181 for the communications and information systems. Furthermore, water and wastewater systems are needed
182 in buildings that house critical equipment for technicians.

183 **Security.** Security is an important consideration, particularly in the immediate (emergency) recovery after
184 a disaster event. Service providers will not endanger employees. In cases where power and
185 communications systems fail, security becomes an issue because small groups of citizens may use it as an
186 opportunity for looting and violence. Communication and information service providers must be able to
187 work with security to control the situation and begin the recovery process in a timely manner.

188 8.2. Critical Communication and Information Infrastructure

189 This section discusses some of the critical components in the communication and information system
190 infrastructure, their potential vulnerabilities, and strategies used in the past to successfully mitigate
191 failures. Figure 8-1 presents components of a telecommunications system.

192
193 *Figure 8-1. Components of the Communications System (City of New York, 2013)*

194 8.2.1. Landline Telephone Systems

195 Most newer, high technology communication systems are heavily dependent on the performance of the
196 electric power system. Consequently, these newer communication systems are dependent on the
197 distribution of external power to end users, which often is interrupted during and after a disaster. Hence,
198 reliable standby power is critical to the continued functionality of the end user's telecommunications.

199 Conventional analog landlines (i.e., not digital telephones) operate on a separate electric supply that may
200 be impacted by the event, but service providers often use their own standby power to minimize disruption
201 at end user locations. Hence, landline telephones are generally a more resilient option for telephone
202 communication if commercial power loss is the only impact from a disaster event.

203 The American Lifelines Alliance (ALA 2006) recommends that landline systems should be retained or
204 reinstated for standby service to reduce vulnerability. However, failure of utility poles or trees onto wires
205 can result in lines for power, cable, and telecommunications being cut, resulting in loss of service.

206 **8.2.1.1. Central Offices**

207 Central Offices, also known as telephone exchanges, are buildings that house equipment used to direct
208 and process telephone calls and data. Maintaining the functionality of these facilities is critical to the
209 timely recovery from an event. These facilities are designed as occupancy Category III (in some cases IV)
210 buildings in ASCE 7 and, consequently, are expected to be fully functional after an expected event.

211 The primary resiliency concerns for Central Offices are:

- 212 • Performance of the structure
- 213 • Redundancy of Central Offices/nodes within network
- 214 • Placement/protection of critical equipment
- 215 • Threat to/from interdependent services

216 ***Performance of the Structure.*** The design of Central Offices is extremely important for continued service
217 of the telecommunications system. These buildings are to be designed as an Occupancy Category III
218 building per ASCE 7, and consequently the design of equipment and standby power must be consistent
219 with that of the building design.

220 Depending on the location of the community, the design considers different types and magnitudes of
221 disasters. For example, the design of Central Offices in California may be mainly concerned with
222 earthquake loading, whereas Central Offices on the east coast may be concerned mainly with hurricane
223 force winds and/or flooding (especially if it is located in the floodplain as are many Central Offices in
224 coastal communities). In place of providing redundancy of Central Offices, these structures should be
225 designed to resist more severe environmental loads. In cases where Central Offices are located in older
226 buildings that were built to codes and standards that are less stringent than current day standards, it is
227 important to bring these buildings up to modern standards or harden the sections of the building
228 containing critical telecommunications equipment to achieve the desired performance level.

229 Partial failure of a Central Office can result in the loss of switches and other critical equipment, which
230 results in damage to the communications infrastructure network and loss of functionality. On September
231 11, 2001 (9/11), four switches were lost in the Verizon Central Office located at 140 West Street (Jrad et
232 al. 2006).

233 Complete collapse of a Central Office or other building containing a node/exchange in the network would
234 result in loss of all switches and critical equipment. On 9/11, two switches were lost in the World Trade
235 Center Buildings that collapsed (Jrad et al 2006). Though these were not Central Offices, the loss of the
236 nodes could not be recovered. The loss of an entire Central Office would bring the service provider's
237 network to a halt, particularly if no redundancy or backup/restoration capability was built into the network
238 of Central Offices.

239 Since communities are ultimately responsible for updating, enforcing, and making amendments to
240 building codes, it is important that the most up-to-date building codes be used in the design of new
241 buildings that are used as a part of the communication network. In cases where existing buildings house
242 Central Offices, these buildings should be evaluated and hardened as needed to ensure the critical
243 equipment within the structure is protected.

244 *Redundancy of Central Offices.*

245 As learned after the 9/11 terrorist
 246 attacks on the World Trade Centers in New York City,
 247 redundancy of Central Offices is
 248 vital to continued service in the
 249 wake of a disaster. On September
 250 11, almost all of Lower
 251 Manhattan (i.e., the community
 252 most immediately impacted by
 253 the disaster) lost the ability to
 254 communicate because World
 255 Trade Center Building 7
 256 collapsed directly onto Verizon's
 257 Central Office at 140 West Street,
 258 seen in Figure 8-2 (Lower Manhattan Telecommunications Users' Working Group, 2002). At the time,
 259 Verizon did not offer Central Office redundancy as part of its standard service. Furthermore, customers of
 260 other service providers that leased Verizon's space lost service as well since they did not provide
 261 redundancy either.

Figure 8-2. Damage to Verizon Building on September 11, 2001 (FEMA 2002)

262 Verizon made a significant effort to restore their services rapidly after the attacks and have since
 263 improved their system to use multiple Central Offices for additional reliability. AT&T also endured
 264 problems as they had two transport nodes located in World Trade Tower 2, which collapsed and was
 265 restored in Jersey City, NJ with mobilized recovery equipment. Overall, almost \$2 billion was spent on
 266 rebuilding and upgrading Lower Manhattan's telecom infrastructure after 9-11 (Lower Manhattan
 267 Telecommunications Users' Working Group, 2002).

268 Although this was an extremely expensive venture, it is an example that shows building a telecom system
 269 with redundancy can eliminate expensive upgrading/repair costs after a disaster event. However, this
 270 magnitude of expense is likely not necessary for many other communities.

271 **Placement/Protection of Critical Equipment.** Although construction of the building is important,
 272 placement and protection of equipment is also an essential consideration if functionality is to be
 273 maintained. For example, any electrical or standby power equipment, such as generators, should be placed
 274 above the extreme (as defined in Chapter 3)
 275 flood level scenario. They should also be
 276 located such that it is not susceptible to other
 277 environmental loads such as wind. Flooding
 278 produced by Hurricane Sandy exposed
 279 weaknesses in the location of standby power
 280 (e.g., generators). Generators and other
 281 electrical equipment that were placed in
 282 basements failed due to flooding (FEMA
 283 2013).

284 In recent events where in-situ standby power
 285 systems did not meet the desired level of
 286 performance and failed, portable standby
 287 power was brought in to help bring facilities
 288 back online until power was restored or on-
 289 site standby generators were restored. For
 290 example, Figure 8-3 shows a portable standby generator power unit used in place of basement standby

Figure 8-3. Large Standby Portable Power Unit Used when Basement Generators Failed (FEMA 2013)

292 generators that failed due to flooding of Verizon's Central Office at 104 Broad Street in Manhattan, NY
293 after Hurricane Sandy (FEMA 2013).

294 After 9/11, the Verizon Central Office at 140 West Street (i.e., the one impacted by the collapse of WTC
295 7) was hardened to prevent loss of service in a disaster event (City of New York, 2013). Between 9/11
296 and Hurricane Sandy, the 140 West Street Central Office:

297 • Raised their standby power generators and electrical switchgear to higher elevations
298 • Used newer copper infrastructure (i.e., encased the copper wires in plastic casing)
299 • Provided pumps to protect against flooding

300 The City of New York (2013) compared the performance of this Central Office to the one at 104 Broad
301 Street (also affected by Sandy) that had not been hardened. The 104 Broad Street Central Office
302 positioned its standby power generators and electrical switchgear below grade (i.e., in a basement) and
303 had old copper infrastructure in lead casing (City of New York 2013). While the 140 West Street Central
304 Office (i.e., the hardened Central Office) was operational within 24 hours, the 104 Broad Street Central
305 Office was not operational for 11 days.

306 The success story of the 140 West Street Central Office during and after Hurricane Sandy illustrates that
307 making relatively simple changes in location of equipment can significantly improve
308 infrastructure/equipment performance following a disaster event. This example shows careful planning of
309 critical equipment location and protection is essential to achieving the performance goal of continued
310 service in the wake of a disaster event.

311 An alternative to raising all critical equipment is to protect it so
312 water does not enter the Central Office during a flood event.
313 Sandbags are often used in North America to protect buildings or
314 openings of buildings from flooding. However, these sandbag
315 barriers are not always effective. After the 9.0 magnitude
316 earthquake and tsunami in the Great Tohoku, Japan Region in
317 Kwasinski (2011) observed that watertight doors performed
318 well in areas that experienced significant damage and prevented
319 flooding of critical electronic equipment in Central Offices.
320 Watertight doors, such as that shown in Figure 8-4, can be used in
321 the United States to prevent water from entering a Central Office
322 due to inland (riverine) or coastal (storm surge, tsunami) flooding.
323 Note that other openings, such as windows, may also be vulnerable
324 to flooding and need to be sealed effectively so other failures in
325 the building envelope do not occur (Kwasinski 2011).

326 Placement and protection of critical equipment should be
327 considered for all types of natural disasters a community may
328 experience. As illustrated by the Hurricane Sandy example,
329 different hazard types warrant different considerations. Equipment stability must be considered for
330 earthquakes. Figure 8-5 shows an example of failure inside a telecommunications Central Office in the
331 1985 Mexico City Earthquake (OSSPAC 2013). The building itself did not collapse, but light fixtures and
332 equipment failed. Critical equipment in earthquake prone regions should be designed and mounted such
333 that shaking will not lead to equipment failure.

Figure 8-4. Watertight Door Used on Central Office in Kamaishi, Japan (Kwasinski 2011)

334 As indicated in Chapter 3 and presented in Table 8-1
335 through Table 8-3 (see Section 8.3), the desired
336 performance of the communications system in the
337 routine, expected, and extreme event (as defined in
338 Chapter 3) is little or no interruption of service.
339 These Central Office buildings are considered Risk
340 Category III buildings in ASCE 7 and, consequently,
341 should be designed to remain functional through the
342 1/100 year flood elevation + 1 ft, or the design-
343 based elevation (whichever is higher), the 1,700 year
344 wind event (based on ASCE 7-10), and the 0.2
345 percent earthquake. In the case of Hurricane Sandy,
346 the desired performance with respect to flooding
347 was not achieved.

Figure 8-5. Light Fixture and Equipment Failure inside Central Office in Mexico City 1985 Earthquake (Alex Tang, OSSPAC 2013)

348 Although these facilities are less vulnerable to wind than flood, in the case of routine, expected, and
349 extreme events it is critical that the building envelope performs as intended since failure of the building
350 envelope can allow significant amounts of water to enter the building and damage components.
351 Historically, few building envelopes actually meet anticipated performance levels.

352 **Threat to/from Interdependent Services.** As discussed in Section 8.1.3 and Chapter 4, interdependencies
353 play a big role in the overall performance of communications infrastructure. Central Offices rely on
354 external power for critical equipment and electrical switchgear. The transportation system is needed for
355 workers to maintain and monitor the functionality of equipment. Functioning water is needed for
356 technicians to enter a building, meaning that if water the water system is not functional, repairs cannot be
357 made to critical equipment.

358 Electric power is the most obvious and important dependency of the communication and information
359 system. For Central Offices, external electric power is needed to ensure the air conditioning system is
360 functional so it can serve as a cooling system for critical electrical equipment. Although critical
361 equipment is typically connected to backup batteries and/or standby generators, air conditioning systems
362 are not connected to these standby systems. When there is a loss of electric power, critical
363 telecommunications equipment can overheat and shut down as a result (Kwasinski 2009).

364 Intra-dependencies with the rest of the communications infrastructure network must be considered. A
365 Central Office serves as a switching node in the network and if its functionality is lost, stress is put on the
366 network because the links (distribution system) are not connected as intended.

367 **8.2.1.2. Transmission and Distribution**

368 While the Central Offices of the telecommunications systems play a key role in the functionality of the
369 system, the transmission and distribution system must also be maintained and protected adequately for
370 continued service. There are several components that must be considered for continued functionality:

- 371 • First/last mile transmission
- 372 • Type of cable (copper wires, coaxial cables, fiber optic cables)
- 373 • Overhead vs. Underground Wires
- 374 • Distributed Loop Carrier Remote Terminals (DLC RTs)
- 375 • Cable Television (CATV) Uninterruptible Power Supply (UPS)

376 **First/Last Mile Transmission.** The “first/last mile” is a term used in the communications industry that
377 refers to the final leg of delivering services, via network cables, from a provider to a customer. The use of
378 the term “last mile” implies the last leg of network cables delivering service to a customer, whereas “first

379 mile" indicates the first leg of cables carrying data from the customer to the world (e.g., calling out or
380 uploading data onto the Internet). Although the name implies it is one mile long, this is not always the
381 case, especially in rural communities where it may be much longer (WV Broadband 2013).

382 As learned from the 9/11 attacks, the first/last mile is a key to resilience for telecommunications and
383 information infrastructure, especially for downtown business telecom networks. In urban settings, service
384 providers typically connect Central Offices in a ring, which connects to the Internet backbone at several
385 points (Lower Manhattan Telecommunications Users' Working Group, 2002). Although the first/last mile
386 is beyond this ring of Central Offices, the redundancy results in a resilient method that improves the
387 likelihood that service providers will achieve their systems performance goal of continual service. Path
388 diversity is built into the infrastructure system often using nodes that connect to the network backbone.
389 However, as learned during workshops used to inform this framework, part of the last mile typically does
390 not connect to the network backbone and, thus, is vulnerable to single-point failures. Furthermore, the
391 location of the node failure also impacts service. If the failed node is between a Central Office and the
392 buildings/facilities it services (i.e., first/last mile) the first/last mile customers will be of service.

393 There is likely to be less redundancy in the telecommunication and information network cable systems in
394 rural communities. Historically, rural and remote communities have not used these services as frequently
395 or relied as heavily on them as urban communities. This has been the case because:

- 396 • In the past, technology to send large amounts of data over a long distance had not been available
- 397 • The cost for service providers to expand into remote communities may be too high and have a low
398 benefit-cost ratio

399 As a result of the lack of redundancy in rural and remote communities, a failure of one node in the service
400 cables (single point of failure) may be all that is necessary for an outage to occur. Therefore, it may not be
401 practical, currently, for rural and remote communities to expect the same performance goals as urban
402 communities. As communications technology continues to grow and change, the level of redundancy (or
403 path diversity) in communications infrastructure delivering services to rural/remote communities is likely
404 to increase. In the case where the reason for loss of telecommunication services is the loss of external
405 power rather than failure of the communications system itself, restoration of services may be quicker for
406 rural communities. As learned in stakeholder workshops held to inform this framework, it was observed
407 in Hurricanes Katrina and Sandy that power can be easier to restore in rural areas because in densely
408 populated areas, components tend to be packed in tightly and other systems need to be repaired first
409 before getting to the power supply system.

410 **Copper Wires.** Copper wires work by transmitting signals through electric pulses and carry the low power
411 needed to operate a traditional landline telephone. The telephone company (i.e., service provider) that
412 owns the wire provides the power rather than an electric company. Therefore, the use of traditional analog
413 (i.e., plain old telephone service or POTS) landlines that use copper wire lessens the interdependency on
414 external power (ALA 2006). As a result, in a natural hazard event resulting in loss of external power,
415 communication may still be possible through the use of analog landlines (though this is not guaranteed).

416 Although copper wires perform well in many cases, they are being replaced by fiber optic cables because
417 copper wires cannot support the large amount of data required for television and high-speed Internet,
418 which has become the consumer expectation in the 21st century (Lower Manhattan Telecommunications
419 Users' Working Group 2002).

420 Some service providers are interested in retiring their copper wires. Keeping both fiber optic and copper
421 wires in service makes maintenance expensive for service providers and, hence, for customers (FTTH
422 Council 2013). Copper wire is an aging infrastructure that becomes increasingly expensive to maintain.
423 Verizon reported its operating expenses have been reduced by approximately 70 percent when it installed
424 its FiOS (fiber optic) network and retired its copper plant in Central Offices (FTTH Council 2013).

425 Despite the advantages of traditional copper wire, there are also well-documented problems. As seen
426 during and after Hurricane Sandy, copper wire is susceptible to salt water flooding. Once these metal
427 wires are exposed to salt water, they fail (City of New York 2013). One solution to this problem is to
428 ensure the copper wire is encased in a plastic or another non-saltwater-sensitive material. Furthermore,
429 copper wires are older and generally no longer installed.

430 **Coaxial Cables.** Coaxial cable is a more modern material and commonly used for transmission. It offers
431 more resistance to water and is, therefore, not as susceptible to flood damage as copper wires. After
432 Hurricane Sandy, these coaxial wires generally performed well with failures typically associated with loss
433 of power to the electrical equipment to which they were connected (City of New York 2013). Coaxial
434 cable has been and continues to be primarily used for cable television and Internet services. However,
435 coaxial cables are being replaced by fiber optic cable since fiber optics can carry all types of services.

436 **Fiber Optic Cables.** Fiber optic cables are more resistant to water damage than either coaxial cable or
437 copper wire (City of New York 2013). Fiber optic cables are now commonly used to bundle home
438 services (television, high-speed Internet, and telephone) into one system, and provide ultra-high speed
439 Internet. The use of fiber optic cables allows for transmission of large amounts of data on a single fiber.
440 These cables are fully water resistant (City of New York 2013). Unfortunately, these services rely more
441 heavily on power provided by a power utility instead of the communications provider itself for the end
442 user. Consequently, during and after a natural hazard event where power is frequently interrupted,
443 landline communications using fiber optic cables are lost in the absence of end user standby power
444 equipment (ALA 2006). In fact, some communities turn off the power prior to the arrival of hurricane
445 force winds for safety purposes. This prevents “live” electric lines from falling on roads, homes, etc., but
446 it also eliminates the external power source for telecommunications of the end user. Some service
447 providers provide in-home battery backup for cable and telephone.

448 **Overhead vs. Underground Wires.** Distribution wire can be strung overhead using utility poles, or run
449 underground. There are advantages and disadvantages for both options.

450 Overhead wire failures are relatively easily located and repaired in the wake of a natural hazard event.
451 However, their exposure makes them especially susceptible to high wind (e.g., hurricanes and tornadoes)

452 and ice hazards. In high wind events, overhead wires
453 may fail due to the failure of poles by the direct
action of wind acting on poles and cables, or trees
falling onto the cables. Figure 8-6 shows an example
of a failed cable television (CATV) line due to the
direct action of wind during Hurricane Katrina.

Figure 8-6. Failure of CATV cable due to the
direct action of wind (Kwasinski 2006) 461
462

463

464 branches, to reduce both the likelihood of branches
465 falling on lines and wind-induced forces acting upon
466 the trees, which reduces the blow-down probability. The electric utility that owns the poles performs the
tree trimming. Chapter 7 discusses challenges associated with tree removal and trimming.

467 Ice storms can also result in failure of aboveground communication infrastructure. For example, in
468 January 2009, Kentucky experienced an ice storm in which long distance telephone lines failed due to
469 loss of power and icing on poles, lines, and towers (Kentucky Public Service Commission 2009). Similar
470 to wind hazards, accumulation of ice seen in Kentucky, paired with snow and high winds, led to tree
471 falling onto overhead telephone and power lines. However, unlike power lines, telecommunication lines

472 that have limbs hanging on them or fall to the ground will continue to function unless severed (Kentucky
473 Public Service Commission 2009). Since long distance telecommunications depend on power from
474 another source (i.e., power providers), communication with those outside the local community was lost
475 during the storm. Following the 2009 Kentucky ice storm, many communities became isolated and were
476 unable to communicate their situation and emergency needs to regional or state disaster response officials
477 (Kentucky Public Service Commission 2009). However, as learned in workshops held to inform this
478 framework, long distance communications do have standby power capability.

479 Emergency response and restoration of the
480 telecommunications infrastructure after a hazard
481 event is an important consideration for which the
482 challenges vary by hazard. In the cases of high wind
483 and ice/snow events, tree fall on roads (Figure 8-7)
484 slows down emergency repair crews from restoring
485 power and overhead telecommunications. Ice storms
486 have their own unique challenges in the recovery
487 process. In addition to debris (e.g., trees) on roads,
488 emergency restoration crews can be slowed down by
489 ice-covered roads, and soft terrain (e.g., mud) in
490 rural areas. Emergency restoration crews also face
491 the difficulty of working for long periods of time in
492 cold and windy conditions associated with these
493 events. Communities should consider the conditions
494 under which emergency restoration crews must
495 work in establishing realistic performance goals of telecommunications infrastructure.

496 Although installation of underground wires eliminates the concern of impacts from wind, ice, and tree
497 fall, underground wires may be more susceptible to flood if not properly protected, or earthquake damage
498 and liquefaction.

499 Communities in parts of the United States have debated converting their overhead wires to underground
500 wires to eliminate the impacts from wind, ice, and tree fall. However, converting overhead to
501 underground wires is both challenging and expensive (City of Urbana Public Works Department 2001).
502 The main challenges/issues associated with converting from overhead to underground wires noted in the
503 City of Urbana's Public Works Department (2001) are:

- 504 • Shorter design life of the underground system
- 505 • Lack of maintenance and repair accessibility of the underground facilities
- 506 • Aboveground hardware issues
- 507 • Converting all customers' wiring to accommodate underground in place of aboveground services

508 Service providers, like electric utility providers, would pass the cost associated with converting from
509 overhead to underground wires to their customers (City of Urbana Public Works Department 2001). As
510 discussed in Chapter 7 (Energy Systems), electric utility companies have tree trimming programs (and
511 budgets) to reduce the risk of tree branches falling and damaging their distribution lines. The power utility
512 is also reimbursed by telecommunications service providers since their services also benefit from the tree
513 trimming program. The cost associated with maintaining a dedicated tree trimming program is
514 significantly less than converting from overhead to underground wires because converting to an unground
515 network involves many expensive efforts, including removing the existing system, lost cost resulting from
516 not using the existing system for its design life, underground installation costs, and rewiring each building
517 to accommodate underground utilities (City of Urbana Public Works Department 2001). Since

Figure 8-7. Trees Fallen Across Roads Due to Ice Storm in Kentucky Slowed Down Recovery Efforts (Kentucky Public Service Commission 2009)

518 telecommunications service providers and electric power utilities share infrastructure, they should work
519 together to decide what is best for their distribution system.

520 **Loop Digital Carrier Remote Terminals.** Loop Digital Carrier Remote Terminals (DLC RTs) are nodes
521 in the landline and Internet network that allow service to be distributed beyond the range for a given
522 Central Office or exchange. Historically, copper wires provide service from a Central Office to a
523 customer within approximately 4 kilometers of that Central Office (Kwasinski et al. 2006). The use of
524 fiber optic cables and curbside DLC RTs can extend this range of service to approximately 10 km
525 (Kwasinski et al. 2006). Therefore, DLC RTs provide a possible solution for service providers to reach
526 customers further from their existing Central Offices or exchanges without having to invest in the
527 construction of additional Central Offices. However, these nodes will not always allow sufficient capacity
528 to replace the demand of a Central Office or node. Therefore, the service provider should consider how
529 many customers it needs to serve (i.e., demand) with the node and if that number will grow (e.g., due to
530 expansion of developments in area) or shrink (e.g., customers leave and do not come back as was the case
531 after Hurricane Katrina).

532 DLC RTs can be used to rapidly replace smaller Central Offices or nodes as was done after Hurricane
533 Katrina when less capacity than before the event was needed (Kwasinski 2011). This can help limit
534 downtime of the network, but appropriate planning is needed to ensure the DLC RTs do not fail after the
535 next hazard event. Perhaps the two most important things for service providers to consider when
536 implementing DLC RTs are construction to limit vulnerability to hazards and standby power, which is a
537 crucial consideration for any communications infrastructure.

538 A key lesson learned for DLC RTs from Hurricane
539 Katrina was that nodes should be elevated in storm
540 surge areas so they are not impacted in future hazard
541 events (Kwasinski 2011). The former BellSouth in
542 New Orleans implemented this practice in New
543 Orleans and the surrounding region after Hurricane
544 Katrina. Figure 8-8 shows a DLC RT elevated on a
545 platform. The building in the background of the
546 figure was a small Central Office in which all
547 equipment was damaged during Hurricane Katrina,
548 but never replaced (Kwasinski 2011). When the next
549 set of storms (i.e., Hurricanes Gustav and Ike) passed
550 through the region in 2008, many of the DLC RTs
551 were not physically damaged due to storm surge.

552 Like cell towers, DLC RTs, need standby power to
553 function when external power is disrupted as often
554 occurs in a hazard event (see Section 8.2.3.1). Standby power generators can either be installed
555 permanently, or deployed after a disruption in service. There are challenges associated with both options.

556 Waiting until after an event to deploy standby generators can be difficult because:

- 557 • It can require significant labor support and logistics to mobilize a large number of standby generators
- 558 • Fuel-operated standby generators require refueling during extended outages, which can be
559 problematic due to access to fuel
- 560 • Transportation routes to reach nodes may be impassible due to debris

561 In contrast, permanent generators can be expensive to install and maintain for a large number of sites, and
562 require periodic testing to ensure they will function when needed. Furthermore, permanent generators
563 should also be placed such that they are less vulnerable to the hazards that face the community (e.g.,

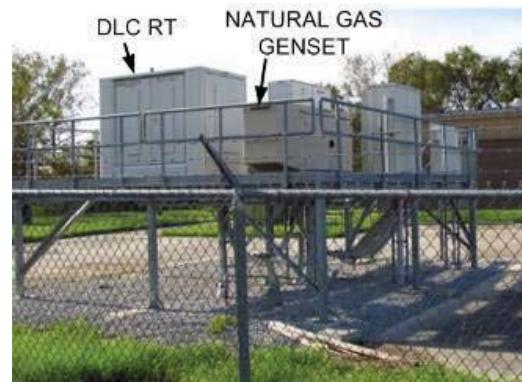


Figure 8-8. Elevated DLC RT with Natural Gas Standby Generator Installed After Hurricane Katrina (Kwasinski 2011)

564 raised above anticipated storm surge levels). The installation of permanent standby generators (and
 565 raising the DLC RTs) after Hurricane Katrina (see Figure 8-8), helped reduce the amount of
 566 telecommunications outages during the 2008 Hurricanes (Gustav and Ike) that struck the same region
 567 (Kwasinski 2011).

568 As discussed in other chapters of this document (e.g., Chapter 7), there are several energy options for
 569 standby generators. The most common is liquid fuel. Fuel is generally widely available, but may not be
 570 immediately after a disaster event which may make refueling challenging if outage times of external
 571 power extend for a long period of time. Permanent natural gas standby generators have also been used in
 572 the past. Natural gas standby generators performed well during Hurricane Gustav (Kwasinski 2011).
 573 However, natural gas generators are not the best option in general because natural gas distribution lines
 574 are often shut down prior to an anticipated hazard event to prevent fire and explosions. As a result, natural
 575 gas may not be the best option for standby power at critical nodes in the communications network.

576 **Cable Television (CATV)**
 577 **Uninterruptible Power Supply (UPS).**

578 Many people receive landline
 579 telephone, Internet, and cable
 580 television through the same service
 581 provider. These services are bundled
 582 and distributed to the customers in a
 583 similar manner to the typical landline
 584 using coaxial cable. UPS systems are
 585 used to inject power into the coaxial
 586 cable so CATV service can be
 587 delivered to customers (Kwasinski et
 588 al. 2006). UPS systems are placed on
 589 a pedestal on the ground or on a utility
 590 pole. Kwasinski (2011) documented
 591 several of the challenges associated
 592 with this infrastructure, including the
 593 placement of UPS' on the ground or
 594 on utility poles, and providing adequate standby power. Like all of other critical equipment discussed in
 595 this chapter, it is important to place UPS systems such that their vulnerability to hazards is minimized.
 596 Figure 8-9 (left) shows two UPS systems after Hurricane Katrina: one that was mounted on a pedestal at
 597 ground level was destroyed due to storm surge, and another that was mounted to a utility pole was not
 598 damaged. However, Figure 8-9 (right) also shows that placing UPS systems too high on utility poles can
 599 interfere with regular maintenance (Kwasinski 2011). As previously mentioned, providing adequate
 600 standby power is a challenge, particularly for a pole-mounted UPS, because the additional load on a
 601 utility pole to provide sufficient standby power may be more than the pole can withstand.

602 **8.2.2. Internet Systems**

603 The Internet has become the most used source of communication over the past couple of decades. It is
 604 continually used for e-mail, online shopping, receiving/reading the news, telephony, and increasingly for
 605 use of social networking. Businesses rely heavily on the Internet for communication, sending and
 606 receiving documents, video conferencing, e-mail, and working with other team members using online
 607 collaboration tools. The Internet is heavily used by financial institutions for transferring funds, buying
 608 and selling stocks, etc. Connectivity is becoming more important in the healthcare industry as it moves
 609 towards electronic medical records.

591 **Figure 8-9. Placement of UPS Systems is an Important
 592 Consideration for Resilience and Periodic Maintenance
 593 (Kwasinski 2009)**

610 High-speed Internet is often tied in with telephone and cable by service providers through coaxial or fiber
611 optic wires. The Internet depends on the electric power system, and loss of power at any point along the
612 chain from source to user prevents data reception. As a result, Internet dependency on the electric power
613 system makes it vulnerable to the performance of the power system in a natural hazard event. A concern
614 for Internet systems, as is the case for landlines, is single points of failure (i.e., an individual source of
615 service where there is no alternative/redundancy).

616 **8.2.2.1. Internet Exchange Points (IXP)**

617 Internet Exchange Points are buildings that allow service providers to connect directly to each other. This
618 is advantageous because it helps improve quality of service and reduce transmission costs. The
619 development of IXPs has played a major role in advancing development of the Internet ecosystem across
620 North America, Europe, and Asia (Kende and Hurpy, 2012). IXPs now stretch into several countries in
621 Africa and continue to expand the reach of the Internet. IXPs facilitate local, regional, and international
622 connectivity.

623 IXPs provide a way for members, including Internet Service Providers (ISPs), backbone providers, and
624 content providers to connect their networks and exchange traffic directly (Kende and Hurpy 2012).
625 Similar to Central Offices for landlines, this results in IXPs being a potential single point of failure.

626 The buildings housing the IXPs would be expected to meet the ASCE 7 requirements for critical
627 buildings (Occupancy Category IV) and, consequently, would be expected to perform with no
628 interruption of service for the “expected” event, or hazard level. The facilities would be expected to have
629 sufficient standby power to function until external power to the facility is brought back online.

630 ***Location of Critical Equipment in IXPs.*** Another similarity to telecommunications Central Offices is
631 that the location and protection of critical equipment is important. Critical equipment should be protected
632 by placing it in locations where it will not be susceptible to expected hazards in the community. For
633 example, inevitably some buildings are in floodplains because many large urban centers are centered
634 around large bodies of water or on the coast. The owner, engineers, maintenance, and technical staff must
635 all be aware of potential hazards that could impact the equipment within the structure. As should be done
636 for telecommunications Central Offices, the following considerations should be taken into consideration
637 for the critical equipment of IXPs:

- 638 • Electrical and emergency equipment should be located above the elevation of an “extreme” flood,
639 which is to be defined by the community (see Chapter 3). Alternatively, tools such as Sea, Lake, and
640 Overland Surges from Hurricanes (SLOSH) maps could be used to define the minimum elevation for
641 electrical and critical equipment.
- 642 • Rooms housing critical equipment should be designed to resist extreme loads for the community,
643 whether it is earthquake, high wind, blast, other hazards, or a combination of hazards. Remember that
644 fire is often a secondary hazard that results from other hazard events.
- 645 • Where possible, redundancy and standby power for critical equipment should be provided.

646 All too often, communities see the same problems and damage in the wake of a natural hazard event (e.g.,
647 loss of power, loss of roof cover and wall cladding leading to rain infiltration in high wind events).
648 Fortunately, many problems can be mitigated by sufficient planning and risk assessment (as previously
649 discussed in the comparison of two telecommunications Central Offices in New York City after Hurricane
650 Sandy). Careful placement and protection of critical equipment can help achieve performance goals of the
651 Internet’s critical equipment. For example, in flood prone regions, critical equipment should be placed
652 above the extreme flood level for the area. In earthquake regions, critical equipment should be designed
653 and mounted such that shaking from earthquake events does not cause failure.

654

8.2.2.2. Internet Backbone

655
656
657
658
659

The Internet Backbone refers to the cables that connect the “network-of-networks.” The Internet is a system of nodes connected by paths/links. These paths run all over the United States and the rest of the world. As a result, many of the same challenges identified for the landline cables for fiber optic cables exist for Internet, namely that it requires power to function. The heavy reliance on power impacts the performance and recovery goals of Internet service for service providers and their customers.

660
661
662

Path Diversity. Path diversity refers to the ability of information to travel along different paths to get to its destination should there be a failure in its originally intended path (i.e., path diversity is synonymous with redundancy). The more diversity that exists, the more reliable the system.

663

8.2.3. Cellular/Mobile Systems

664
665
666
667
668
669

The cellular telephone system has most of the same vulnerabilities as the landline system, including the local exchange offices, collocation hotels, and cable head facilities. Other possible failure points unique to the cellular network include the cell site (tower and power) and backhaul switches at Central Offices. Figure 8-1 (page 5) shows how the cellular phone network fits within the telecommunication network. At the base of a cell tower is switchgear (also known as Cell Site Electronics) and standby power. Damage of switchgear at the base of the tower prevents switching to standby power when commercial power fails.

670

8.2.3.1. Cell Towers

671
672
673

Virtually all natural hazards including earthquake, high wind, ice and flood affect the ability of an individual cell tower to function through loss of external power or failure of cell phone towers themselves.

674
675
676
677
678
679
680
681
682
683

Loss of External Power. Large scale loss of external power occurs relatively frequently in hurricanes (mainly due to high wind and flooding), large thunderstorm events (such as those associated with derechos and tornadoes), ice storms, and earthquakes. Some cell towers are equipped with batteries designed to provide four to eight hours of standby power after loss of external power (City of New York 2013). In the past, the FCC has attempted to mandate a minimum of eight hours of battery standby power, but the requirement was removed by the courts. However, adequate standby power should be provided for cell towers, particularly in areas that serve critical facilities. The functionality of the tower can be extended through use of permanent or portable diesel generators. Portable generators were used in New York following Hurricane Sandy in 2012. The installation of permanent diesel generators has been resisted by the providers due to the high cost and practicality (City of New York 2013).

684
685
686
687
688
689
690
691
692

Recalling that buildings and systems should remain fully functional during and after a routine event (Chapter 3), all cellular towers and attached equipment should remain operational. There is an expectation that the 9-1-1 emergency call system will remain functional during and after the event. Considering the poor performance of the electric grid experienced during recent hurricanes (which produced wind speeds less than the nominal 50 to 100-year values as specified in ASCE 7 [93, 95, 02 and 05]), external power is unlikely to remain functional during the expected, or even routine (as defined in Chapter 3) event. Consequently, adequate standby power is critical to ensure functionality. Recent experience with hurricanes and other disaster events suggest the standby power needs to last longer than the typical current practice of four to eight hours (City of New York 2013).

693
694
695

In flood prone areas, the standby power needs to be located, at a minimum, above the 100-year flood level to ensure functionality after the event. Similarly, the equipment must be resistant to the 50-year earthquake load.

696
697
698

The use of permanently located diesel electric standby power poses significant difficulties due to the initial and ongoing required maintenance costs. Diesel generators are often (though not always) loud and may generate complaints from nearby residents. In the case of events such as hurricanes and major ice

699 storms where advanced warning is available, portable generators can be staged and deployed after the
700 storm. However, for widespread hazard events, such as hurricanes and ice storms, the need often exceeds
701 the ability to deploy all of the portable generators needed. When they are deployed, the portable
702 generators usually require refueling about once per day so continued access is important. Permanent
703 generators also require refueling, but the frequency is variable due to the different capacities of permanent
704 generators. In events where there is little to no warning, such as earthquakes and tornadoes, staging of
705 portable generators cannot be completed ahead of time. However, for localized events that are
706 unpredictable and short duration (e.g., tornadoes, tsunamis), portable generators may be the best approach
707 for quick recovery of the system's functionality.

708 In highly urbanized areas, such as New York City, cell towers are frequently located on top of buildings,
709 preventing the placement of permanent diesel standby generators and making it difficult to supply power
710 from portable generators because of impeded access.

711 Improvements in battery technology and the use of hydrogen fuel cell technologies may alleviate some of
712 the standby power issues. Furthermore, newer cellular phone technologies require less power, potentially
713 leading to longer battery life. Standby battery technology is a key consideration in establishing the
714 performance goals of cellular phones in the wake of a hazard event.

715 ***Failure of Cell Phone Towers.*** Collapse of cell phone towers due to earthquake, high winds, or flooding
716 should not be expected to occur when subject to a natural hazard event of magnitude less than or equal to
717 the expected event. This was not the case in Hurricane Katrina (2005) where cell phone towers were
718 reported to have failed (DHS, 2006), although many failed after being impacted by flood-borne debris
719 (e.g., large boats, etc.), whose momentum was likely well beyond a typical design flood impact. After an
720 event, failed towers can be replaced by temporary portable towers. Similarly, the January 2009 Kentucky
721 ice storm had cell phone tower failures due to the combination of ice accumulation and winds over 40
722 mph (Kentucky Public Service Commission 2009).

723 Cell towers may be designed to either ASCE Category II or ASCE Category III occupancy requirements.
724 The latter is used when the towers are used to support essential emergency equipment or located at a
725 central emergency hub. Consequently, in the case of wind and flood, the towers and equipment located at
726 the base of the tower should perform without any damage during both routine and expected events
727 (Chapter 3).

728 More commonly, cell towers are designed to meet the criteria of TIA/EIT-222-G. Prior to the 2006
729 version of this standard (which is based on the ASCE 7 loading criteria), it used Allowable Stress Design
730 (ASD) rather than Load and Resistance Factor Design, wind loads used fastest mile wind speeds rather 3-
731 second gust, and seismic provisions were not provided. The ice provisions differ from version to version,
732 but no major differences in methodology have been noted. Therefore, cell towers designed to meet the
733 criteria of TIA/EIT-222-G should perform well in an expected wind, ice, or earthquake event. However,
734 older cell towers that have not been retrofitted/upgraded to meet the 2006 version of TIA/EIT-222-G may
735 not perform as well. Specifically, cell towers in earthquake-prone regions may have been designed and
736 built without guidance on the loading, which may have resulted in either over- or under-designed cell
737 towers in these regions.

738 ***Backhaul Facilities.*** Backhaul facilities serve a purpose similar to that of the Central Offices and
739 consequently should meet the same performance goals, including proper design of the standby power
740 system.

741 **8.3. Performance Goals**

742 Although the goal of communities, infrastructure owners, and businesses is to have continued operation at
743 all times, 100 percent functionality is not always feasible in the wake of a hazard event given the current
744 state of infrastructure in the United States. Depending on the magnitude and type of event, the levels of

745 damage and functionality will vary. Most importantly, performance goals of the communications
746 infrastructure will vary from community to community based upon its needs and should be defined by the
747 community and its stakeholders. As discussed in Section 8.2, there are many examples of service
748 providers and other infrastructure owners who have successfully made changes to their infrastructure
749 system such that their downtime has been shortened or even eliminated after a hazard event.

750 This section provides examples of performance goals for the fictional town of Centerville, USA.
751 Communication infrastructure stakeholders and communities can use performance goals tables to assess
752 their infrastructure and take steps in improving their resilience to hazard events. Note that performance
753 goals are specified in terms of recovery time. However, mitigation techniques, including improving
754 design and code/standard enforcement, play significant roles in accomplishing performance goals.
755 Therefore, both mitigation strategies and recovery plans can be used to achieve performance goals.

756 Before establishing performance goals, it is imperative to understand who the owners, regulatory bodies,
757 and stakeholders of the communications infrastructure are and how they operate. All groups should be
758 involved in establishing performance goals and working together to narrow gaps in resilience.

759 ***Infrastructure Owners, Regulatory Bodies, and Stakeholders.*** Ownership and regulation of
760 communication and information infrastructure systems adds a layer of complexity for resilience.
761 Governments typically do not own communication infrastructure other than in their own facilities.
762 However, Federal, State, and Local government agencies are involved in the regulation of
763 communications infrastructure. The Federal Communications Commission (FCC) has an advisory
764 committee called the Communications Security, Reliability, and Interoperability Council (CSRIC) that
765 promotes best practices, although there are limited requirements for compliance with the practices.
766 However, best practices are often implemented by service providers (despite not being standards) because
767 they help mitigate risks, which is a good idea in a competitive industry.

768 The FCC has authority over wireless, long-distance telephone, and Internet services, whereas state
769 agencies have authority over local landlines and agencies at all levels have regulatory authority over cable
[\(City of New York 2013\)](#). Within these three levels of government, there may be multiple agencies
770 involved in overseeing infrastructure. State and local Departments of Transportation (DOTs) control
771 access to roadway rights-of-way for construction. The local Department of Buildings (DOB) regulates the
772 placement of electrical equipment, standby power, and fuel storage at critical telecommunications
773 facilities as specified in their local Building Codes [\(City of New York 2013\)](#).

775 Service providers own communications infrastructure. The Telecommunications Act of 1996 was
776 established to promote competition in the communications industry [\(FCC 2011\)](#), which would result in
777 lower prices for customers. This has resulted in a growing number of industry players who share
778 infrastructure to offer options for their services to customers more efficiently. Service providers can
779 sometimes share infrastructure to provide their services. However, their infrastructure cannot always be
780 shared because different providers use different technology that is not compatible.

781 Telecommunication and Cable/Internet Service Providers, such as AT&T and Verizon, often share
782 infrastructure with providers in the energy industry. For example, utility poles for overhead wires
783 typically serve to transport electric energy, telecommunications, and cable. It is, therefore, essential that
784 key members from these service providers are involved in establishing, or agreeing to, the performance
785 goals for the communications infrastructure. Improved performance of their infrastructure, much like the
786 power industry, will result in improved service in the wake of a hazard event. Moreover, improvements
787 made to achieve performance goals may result in better performance on a day-to-day basis. A service
788 provider may benefit from excellent performance following a hazard event because customers frustrated
789 with their own service may look for other options that are more reliable. Service providers may also
790 experience different damage levels for the same quality infrastructure due to poor fortune, which can
791 provide an inaccurate perception that it is not as reliable as another service provider. However, this may

792 not always be true because some service providers share infrastructure and thus, failures may occur due to
793 interdependencies. Moreover, in a competitive cost-driven industry, the cost to make a system more
794 resilient, which is passed down to customers, may result in losing business. Therefore, including service
795 providers in the group of stakeholders is key because their industry is quite complex.

796 After the AT&T divestiture of 1984, the end user became responsible for the voice and data cabling on its
797 premises (Anixter Inc. 2013). Therefore, building owners are responsible for communications
798 infrastructure within their facilities. As a result, standards have been developed by the American National
799 Standards Institute/Telecommunications Industry Association (ANSI/TIA) for different types of premises,
800 including:

- 801 • Commercial buildings (e.g., office and university campus buildings)
- 802 • Residential buildings (e.g., single and multi-unit homes)
- 803 • Industrial buildings (e.g., factories and testing laboratories)
- 804 • Healthcare facilities (e.g., hospitals)

805 Communications infrastructure has owners and stakeholders from multiple industries that must be
806 included in establishing the performance goals and improving resilience of system components. For
807 resilience of the distribution communication systems, service provider representatives, including designer
808 professionals (engineers and architects for buildings owned by service providers such as Central
809 Offices/data centers), planners, utility operators, and financial decision makers (i.e., financial analysts) for
810 power service providers must be included in the process. Owners of buildings that are leased by service
811 providers to house critical equipment and nodes in their system are important stakeholders. Additionally,
812 representatives of end users from different industries should be included to establish performance goals
813 and improve resilience of communications system transfer from provider to building owner. Specifically,
814 transfer of telecommunications and Internet to a building is often through a single point of failure. Those
815 involved in building design, such as planners, architects, engineers, and owners need to be aware of
816 potential opportunities to increase redundancy and resiliency.

817 **Performance Goals.** Performance goals in this document are defined in terms of how quickly the
818 infrastructure's functionality can be recovered after a hazard event. Minimizing downtime can be
819 achieved during the design process and/or recovery plans. Example tables of performance goals for
820 communications infrastructure, similar to the format presented in the Oregon Resilience Plan (OSSPAC
821 2013), are presented in Table 8-1 through Table 8-3. These tables of performance goals are examples for
822 routine, expected, and extreme events, respectively. Note that these performance goals were developed
823 based on wind events using current ASCE (ASCE 7-10) design criteria, performance seen in past high
824 wind events, and engineering judgment. Thus, these goals can be adjusted by users as necessary for their
825 community to meet its social needs, consider their state of infrastructure, and the type and magnitude of
826 hazard. For example, an earthquake-prone region may have different performance goals because the
827 design philosophy is for life safety as opposed to wind design which focuses on serviceability.

828 The performance goals tables (Table 8-1 to Table 8-3) are intended as a guide that communities/owners
829 can use to evaluate the strengths and weaknesses of the resilience of their communications systems
830 infrastructure. As previously discussed, the performance goals may vary from community-to-community
831 based upon its social needs. Communities/owners and stakeholders should use the table as a tool to assess
832 what their performance goals should be based on their local social needs. Tables similar to that of Table
833 8-1 to Table 8-3 can be developed for any community (urban or rural), any type of hazard event, and for
834 the various levels of hazards (routine, expected and extreme) defined in Chapter 3 of the framework.

835 Representatives of the stakeholders in a given community should participate in establishing the
836 performance goals and evaluating the current state of the systems. The City of San Francisco provides an
837 excellent example of what bringing stakeholders together can accomplish. San Francisco has developed a

838 lifelines council ([The Lifelines Council of the City and County of San Francisco 2014](#)), which unites
839 different stakeholders to get input regarding the current state of infrastructure and how improvements can
840 be made in practice. The lifelines council performs studies and provides recommendations as to where
841 enhancements in infrastructure resilience and coordination are needed ([The Lifelines Council of the City](#)
842 [and County of San Francisco 2014](#)). Their work has led to additional redundancy being implemented into
843 the network in the Bay Area.

844 **Granularity of Performance Goals.** Table 8-1 and Table 8-3 present examples of performance goals for
845 different components of the communications infrastructure when subjected to each hazard level. The list
846 of components for this example is not intended to be exhaustive. These lists vary by community based on
847 its size and social needs. In terms of granularity of the performance goals table, the communications
848 infrastructure system is broken down into three categories (see Table 8-2): 1) Core and Central Offices, 2)
849 Distribution Nodes, and 3) Last Mile.

850 The Core and Central Offices could be split into two different functional categories by nationwide service
851 providers. The Core refers to the backbone of service provider's network that includes facilities that store
852 customer data and information. For larger service providers, these facilities may be geo-redundant and run
853 in tandem so one widespread event, such as a hurricane or earthquake, cannot disrupt the entire network.
854 Central Offices, discussed throughout this chapter, are regional nodes whose failure would result in
855 widespread service disruptions. For this example of performance goals, the Core and Central Offices are
856 treated as one functional category because the performance goals for Centerville, USA are the same (i.e.,
857 no failure of Central Offices or Core facilities).

858 Distribution nodes include the next tier in the communications network that collect and distribute
859 communications at a more local (e.g., neighborhood) level. For Centerville, USA, this includes cell
860 towers. For other communities, this may include DLC RTs and other local hubs/nodes.

861 The last mile refers to distribution of services to the customers. For landline, Internet, and cable, this is
862 impacted by the performance of the distribution wires in a given hazard event. Wireless technology, such
863 as cellular phones, operates using signals rather than physical infrastructure for distribution. Therefore,
864 the last mile distribution is not needed. Although the system's components (e.g., underground cables,
865 overhead cables, etc.) are not specifically included in the performance goals, they must be considered to
866 achieve the performance goals specified by the community or service provider.

867 **Developing Performance Goals Tables.** The community/owners should work to establish their own
868 performance goals. In the example tables (Table 8-1 to Table 8-3), performance goals are established for
869 three levels of functionality. The orange shaded boxes indicate the desired time to reach 30 percent
870 functionality of the component. Yellow indicates the time frame in which 60 percent operability is desired
871 and green indicates greater than 90 percent operability. A goal is not set for 100 percent operability in this
872 example because it may take significantly longer to reach this target and may not be necessary for
873 communities to return to their normal daily lives. The performance of many of the components in the
874 communication network, such as towers and buildings housing equipment are expected to perform
875 according to their design criteria. Recent history, however, suggests this is frequently not the case.

876 The affected area of a given hazard can also be specified, which is often dependent on the type of hazard.
877 For example, earthquakes and hurricanes typically have large affected areas, whereas tornadoes and
878 tsunamis have relatively small affected areas. The affected area is important for a community to consider
879 because it will impact how much of the infrastructure may be damaged, which in turn will impact the
880 duration of the recovery process. The disruption level based on the current state of the communications
881 infrastructure system as a whole should be specified as usual, moderate or severe.

882 An "X" is placed in the each row of Table 8-1 through Table 8-3 as an example of how a community can
883 indicate anticipated performance and recovery of the infrastructure in their evaluation. As seen in the

884 tables, the hypothetical “X” indicates there is a significant gap between what is desired and what reality is
885 for all of the components. This is a resilience gap. If the community decides that improving the resilience
886 of their Central Offices is a top priority after its evaluation of their infrastructure, the next step would be
887 to determine how to reduce this resilience gap. For Central Offices and their equipment, there are a
888 number of solutions that can help narrow the gap in resilience, including hardening the building to resist
889 extreme loads and protecting equipment from hazards such as flooding by elevating electrical equipment
890 and emergency equipment above extreme flooding levels.

891 These lessons have been learned through past disasters, including the 9/11 terrorist attacks, Hurricanes
892 Sandy and Katrina, etc. Section 8.6.1 discusses potential methods to evaluate the anticipated performance
893 of existing communications infrastructure. Sections 8.6.2 and 8.6.3 provide mitigation and recovery
894 strategies that can be used to achieve the performance goals set by the community or service provider.
895 The strategies in these sections also recognize it will take communities/owners time and money to invest
896 in solutions, and provides possible long and short term solutions.

897 ***Emergency Responder Communication Systems.*** The performance goals include distribution
898 infrastructure to critical facilities such as hospitals, fire and police stations, and emergency operation
899 centers. However, the example performance goals for communication infrastructure do not include
900 communication systems between emergency responders (fire/police/paramedics), which have their own
901 communications networks and devices. Community emergency response providers should ensure their
902 networks and devices remain functional in the immediate aftermath of a disaster event (i.e., there should
903 not be any downtime of emergency responder communication networks). After a disaster event,
904 functionality of critical services communication networks is essential to coordinating response to people
905 who are injured, and fire or other hazard suppression.

906

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015
Communication and Information Systems, Performance Goals

907

Table 8-1. Example Communications Performance Goals for Routine Event in Centerville, USA

Disturbance			Restoration times		
(1)	Hazard	Any	(2)	30%	Restored
	Affected Area for Routine Event	Localized		60%	Restored
	Disruption Level	Minor		90%	Restored
			(3)	X	Current

908

Functional Category: Cluster	(4) Support Needed	(5) Target Goal	Overall Recovery Time for Hazard and Level Listed								
			Routine Hazard Level								
			Days			Wks			Mos		
Nodes/Exchange/Switching Points		A	0	1	1-3	1-4	4-8	8-12	4	4-24	24+
Central offices			90%		X						
Buildings containing exchanges			90%		X						
Internet Exchange Point (IXP)			90%		X						
Towers		A									
Free standing cell phone towers			90%		X						
Towers mounted on buildings			90%		X						
Distribution lines to ...											
Critical Facilities		1									
Hospitals			90%		X						
Police and fire stations			90%		X						
Emergency operation center			90%		X						
Emergency Housing		1									
Residences			90%		X						
Emergency responder housing			90%		X						
Public shelters			90%		X						
Housing/Neighborhoods		2									
Essential city service facilities			60%	90%		X					
Schools			60%	90%		X					
Medical provider offices			60%	90%		X					
Retail			60%	90%		X					
Community Recovery Infrastructure		3									
Residences			60%	90%		X					
Neighborhood retail			60%	90%		X					
Offices and work places			60%	90%		X					
Non-emergency city services			60%	90%		X					
Businesses			60%	90%		X					

909
910
911 Notes: These performance goals are based on an expected wind event (using current ASCE design criteria) and performance seen in past high wind events.

Footnotes:

- 1 Specify hazard being considered
Specify level -- Routine, Expected, Extreme
Specify the size of the area affected - localized, community, regional
Specify severity of disruption - minor, moderate, severe
- 2

30%	60%	90%
-----	-----	-----

 Restoration times relate to number of elements of each cluster
- 3

X

 Estimated restoration time for current conditions based on design standards and current inventory
Relates to each cluster or category and represents the level of restoration of service to that cluster or category
Listing for each category should represent the full range for the related clusters
Category recovery times will be shown on the Summary Matrix
"X" represents the recovery time anticipated to achieve a 90% recovery level for the current conditions
- 4 Indicate levels of support anticipated by plan
R Regional
S State
MS Multi-state
C Civil Corporate Citizenship
- 5 Indicate minimum performance category for all new construction.
See Section 3.2.6

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015
Communication and Information Systems, Performance Goals

912

Table 8-2. Example Communications Performance Goals for Expected Event in Centerville, USA

Disturbance			Restoration times		
(1)	Hazard	Any	(2)	30%	Restored
	Affected Area for Routine Event	Localized		60%	Restored
	Disruption Level	Moderate		90%	Restored
			(3)	X	Current

913

Functional Category: Cluster	(4) Support Needed	(5) Target Goal	Overall Recovery Time for Hazard and Level Listed								
			Expected Hazard Level								
			Phase 1 – Short-Term			Phase 2 – Intermediate			Phase 3 – Long-Term		
			Days			Wks			Mos		
			0	1	1-3	1-4	4-8	8-12	4	4-36	36+
Nodes/Exchange/Switching Points		A									
Central Offices			90%			X					
Buildings containing exchanges			90%			X					
Internet Exchange Point (IXP)			90%			X					
Towers		A									
Free standing cell phone towers			90%			X					
Towers mounted on buildings			90%			X					
Distribution lines to ...											
Critical Facilities		1									
Hospitals			90%			X					
Police and fire stations			90%			X					
Emergency Operation Center			90%			X					
Emergency Housing		1									
Residences					60%	90%		X			
Emergency responder housing					60%	90%		X			
Public Shelters					60%	90%		X			
Housing/Neighborhoods		2									
Essential city service facilities					30%	90%		X			
Schools					30%	90%		X			
Medical provider offices					30%	90%		X			
Retail					30%	90%			X		
Community Recovery Infrastructure		3									
Residences					30%	90%		X			
Neighborhood retail					30%	90%			X		
Offices and work places					30%	90%		X			
Non-emergency city services					30%	90%			X		
Businesses					30%	90%			X		

914

Footnotes: See Table 8-1, page 22.

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015
Communication and Information Systems, Performance Goals

915

Table 8-3. Example Communications Performance Goals for Extreme Event in Centerville, USA

Disturbance			Restoration times		
(1)	Hazard	Any	(2)	30%	Restored
	Affected Area for Extreme Event	Regional		60%	Restored
	Disruption Level	Severe		90%	Restored
			(3)	X	Current

916

Functional Category: Cluster	(4) Support Needed	(5) Target Goal	Overall Recovery Time for Hazard and Level Listed								
			Extreme Hazard Level								
			Phase 1 – Short-Term			Phase 2 -- Intermediate			Phase 3 – Long-Term		
			0	1	1-3	1-4	4-8	8-12	4	4-36	36+
Nodes/Exchange/Switching Points		A									
Central Offices			90%			X					
Buildings containing exchanges			90%			X					
Internet Exchange Point (IXP)			90%			X					
Towers		A									
Free standing cell phone towers				90%		X					
Towers mounted on buildings				90%		X					
Distribution lines to ...											
Critical Facilities		1									
Hospitals			90%			X					
Police and fire stations			90%			X					
Emergency operation center			90%			X					
Emergency Housing		1									
Residences					30%	90%			X		
Emergency responder housing					30%	90%			X		
Public shelters					30%	90%			X		
Housing/Neighborhoods		2									
Essential city service facilities					30%	60%	90%		X		
Schools					30%	60%	90%		X		
Medical provider offices					30%	60%	90%		X		
Retail					30%	60%	90%		X		
Community Recovery Infrastructure		3									
Residences					30%	60%	90%		X		
Neighborhood retail					30%	60%	90%		X		
Offices and work places					30%	60%	90%		X		
Non-emergency city services					30%	60%	90%		X		
Businesses					30%	60%	90%		X		

917

Footnotes: See Table 8-1, page 22.

918 **8.4. Regulatory Environment**

919 There are multiple regulatory bodies at the various levels of government (Federal, State, and Local) that
920 have authority over communications infrastructure. There is no one regulatory body that oversees all
921 communication infrastructure and is responsible for enforcement of the various standards and codes. The
922 rapidly evolving technologies over the past 30 years have led to changes in regulatory jurisdiction, which
923 adds complexity to the regulatory environment. This section discusses regulatory bodies of
924 communications infrastructure at the Federal, State, and Local levels.

925 **8.4.1. Federal**

926 The regulatory body of communication services and, thus, infrastructure is the FCC. The FCC is a
927 government agency that regulates interstate and international communications of telephone, cable, radio,
928 and other forms of communication. It has jurisdiction over wireless, long-distance telephone, and the
929 Internet (including VoIP).

930 As previously discussed, the FCC has an advisory group called the Communications Security, Reliability,
931 and Interoperability Council (CSRIC) that promotes best practices. The council performs studies,
932 including after disaster events (e.g., Hurricane Katrina), and recommends ways to improve disaster
933 preparedness, network reliability, and communications among first responders (Victory et. al 2006). The
934 recommended best practices are not required to be adopted and enforced since they are not standards.
935 However, as learned in the stakeholder workshops held to inform this framework, industry considers best
936 practices voluntary good things to do under appropriate circumstances. Furthermore, implementing best
937 practices allows service providers to remain competitive in business.

938 **8.4.2. State**

939 State government agencies have authority over local landline telephone service. Most commonly, the
940 agency responsible for overseeing communications infrastructure at the State level is known as the Public
941 Service Commission (PSC). However, other State agencies have jurisdiction over telecommunications
942 infrastructure as well. A prime example is the State DOT. The State DOT has jurisdiction over the right-
943 of-way and, therefore, oversees construction of roads/highways where utility poles and wires are built.
944 Utility poles and wires are commonly placed within the right-of-way of roads, whether it is aboveground
945 or underground. The DOT has the ability to permit or deny planned paths of the utilities.

946 **8.4.3. Local**

947 Local government has jurisdiction over communication infrastructure through a number of agencies. The
948 Department of Buildings (DOB), or equivalent, is responsible for enforcing the local Building Code.
949 Therefore, the DOB regulates the placement of electrical equipment, standby power, and fuel storage at
950 critical telecommunications facilities such as Central Offices (City of New York 2013).

951 Large cities, such as New York City, Chicago, Los Angeles, and Seattle have their own DOT (City of
952 New York 2013). These local DOTs oversee road construction and the associated right-of-way for
953 utilities (including communications infrastructure). Many smaller municipalities have an Office of
954 Transportation Planning, which serves a similar function.

955 **8.4.4. Overlapping Jurisdiction**

956 Due to the complex bundling packages that service providers now offer customers, a number of
957 regulatory bodies have jurisdiction over the various services provided in said bundle. For example, a
958 bundled telephone, Internet and cable package functions under the jurisdiction of both Local (cable) and
959 Federal (Internet and VoIP) agencies (City of New York 2013). Furthermore, changing from traditional
960 landlines to VoIP shifts a customer's services from being regulated by State agencies to Federal agencies.
961 As technology continues to evolve, jurisdiction over services may continue to shift from one level of

962 government to another. Following the current trend of more and more services becoming Internet based,
963 the shift of services may continue to move toward being under Federal agency regulations.

964 **8.5. Standards and Codes**

965 Codes and Standards are used by the communication and information industry to establish the minimum
966 acceptable criteria for design and construction. The codes and standards shown in Table 8-4 were mainly
967 developed by the American National Standards Institute/Telecommunications Industry Association
968 (ANSI/TIA). This organization has developed many standards that are adopted at the state and local
969 government levels as well as by individual organizations. In fact, many of the standards presented in
970 Table 8-4 are referenced and adopted by universities, such as East Tennessee State University ([ETSU 2014](#)), in their communication and information systems design guidelines. Individual end users, such as a
971 university campus or hospital, and levels of government may have additional standards/guidelines.
972

973 ***Table 8-4. Summary of Communication and Information Codes and Standards***

Code/Standard	Description
ANSI/TIA-222-G Structural Standards for Antennae Supporting Structures and Antennas	Specifies the loading and strength requirements for antennas and their supporting structures (e.g., towers). The 2006 edition of the standard has significant changes from its previous editions including: changing from ASD to LRFD; change of wind loading to better match ASCE-7 (i.e., switch from use of fastest-mile to 3-second gust wind speeds); updating of ice provisions; and addition of seismic provisions (Erichsen 2014)
ANSI/TIA-568-C.0 Generic Telecommunications Cabling for Customer Premises	Used for planning and installation of a structured cabling system for all types of customer premises. This standard provides requirements in addition to those for specific types of premises (Anexter Inc. 2013)
ANSI/TIA-568-C.1 Commercial Building Telecommunications Cabling Standard	Used for planning and installation of a structured cabling system of commercial buildings (Anexter Inc. 2013)
ANSI/TIA-569-C Commercial Building Standard for Telecommunication Pathways and Spaces	Standard recognizes that buildings have a long life cycle and must be designed to support the changing telecommunications systems and media. Standardized pathways, space design and construction practices to support telecommunications media and equipment inside buildings (Anexter Inc. 2013)
ANSI/TIA-570-B Residential Telecommunications Cabling Standard	Standard specifies cabling infrastructure for distribution of telecommunications services in single or multi-tenant dwellings. Cabling for audio, security, and home are included in this standard (Hubbell Premise Wiring, Inc. 2014)
ANSI/TIA-606-B Administration Standard for Commercial Telecommunications Infrastructure	Provides guidelines for proper labeling and administration of telecommunications infrastructure (Anexter Inc. 2013).
ANSI/TIA-942-A Telecommunications Infrastructure Standard for Data Centers	Provides requirements specific to data centers. Data centers may be an entire building or a portion of a building (Hubbell Premise Wiring, Inc. 2014)
ANSI/TIA-1005 Telecommunications Infrastructure for Industrial Premises	Provides the minimum requirements and guidance for cabling infrastructure inside of and between industrial buildings (Anexter Inc. 2013)
ANSI/TIA-1019 Standard for Installation, Alteration & Maintenance of Antenna Supporting Structures and Antennas	Provides requirements for loading of structures under construction related to antenna supporting structures and the antennas themselves (Anexter Inc. 2013)
ANSI/TIA-1179 Healthcare Facility Telecommunications Infrastructure Standard	Provides minimum requirements and guidance for planning and installation of a structured cabling system for healthcare facilities and buildings. This standard also provides performance and technical criteria for different cabling system configurations (Anexter Inc. 2013)
ASCE 7-10 Minimum Design Loads for Buildings and Other Structures	Provides minimum loading criteria for buildings housing critical communications equipment. Also provides loading criteria for towers.
IEEE National Electrical Safety Code (NESC)	United States Standard providing requirements for safe installation, operation and maintenance of electrical power, standby power and telecommunication systems (both overhead and underground wiring).

974 **8.5.1. New Construction**

975 The standards listed in Table 8-4 are used in new construction for various parts of the communications
976 infrastructure system. As discussed in Section 8.2.1.1, new Central Offices are designed using ASCE 7-10
977 Occupancy Category III buildings. Consequently, the design of equipment and standby power for Central
978 Offices must be consistent with that of the building design. As discussed in Chapter 5 (Buildings),
979 buildings (e.g., Central Offices) must be designed in accordance with ASCE loading criteria for the
980 applicable hazards of the community, which may include flooding, snow/ice, earthquakes, and wind.
981 Wind loading criteria used by ASCE 7-10 has been developed using hurricane and extratropical winds.
982 Other natural loads that can cause significant damage such as wildfire, tsunami, and tornadoes are not
983 explicitly considered in ASCE 7-10. However, as discussed in Chapter 5, fire protection standards are
984 available and are used to mitigate potential building fire damage.

985 The ANSI/TIA-222-G standard is used for the design of new cell towers. This version of the standards,
986 released in 2006, included the biggest set of changes since the standard's inception ([TIA 2014](#)). Some
987 major changes include:

- 988 1. Using limits states design rather than allowable stress design
- 989 2. Changing the design wind speeds from fastest-mile to 3-second gust, as is done for ASCE 7, and
990 using the wind maps from ASCE 7
- 991 3. Earthquake loading is addressed for the first time in the ANSI/TIA-222 standard ([Wahba 2003](#))

992 Note that wind, ice, and storm surge are the predominant concerns for towers. However, earthquake
993 loading was added so it would be considered in highly seismic regions ([Wahba 2003](#)).

994 Communication system distribution lines are subject to the design criteria in the National Electric Safety
995 Code (NESC). As discussed in Chapter 7, Rule 250 contains the environmental hazard loading on the
996 communication and electric power lines as well as their supporting structures (e.g., utility poles).
997 Specifically, these criteria address combined ice and wind loading, which are provided in Rule 250B for
998 three districts of the United States defined as: 1) Heavy; 2) Medium; and 3) Light. Rule 250C addresses
999 "extreme" wind loading and Rule 250D provides design criteria for "extreme" ice with concurrent wind.

1000 Use of the term "extreme" by NESC does not correspond to that used in this document. Rather, use of
1001 "extreme" by the current version of NESC-2012 indicates the use of the ASCE 7-05 maps for the 50 year
1002 return period, which, if used with the appropriate ASCE 7-05 load and resistance factors, corresponds to
1003 an expected event as defined in Chapter 3 of this document. However, the NESC "extreme" loads only
1004 apply to structures (in this case distribution lines) at least 60 feet above ground. Since most
1005 communication distribution lines in the last mile are below this height (i.e., 60 feet), the lines would be
1006 designed for Rule 250B, which has lower loading requirements than Rules 250C and D.

1007 For communication distribution wires, the designer could use either the NESC or ASCE 7. Malmedal and
1008 Sen (2003) showed ASCE 7 loading of codes in the past have been more conservative than those of
1009 NESC, particularly for ice loading. Using ASCE 7 will provide a more conservative design, but a higher
1010 cost that is not desirable to utilities/service providers. When considering resilience, a more conservative
1011 design should be considered, particularly for communication distribution lines in the last-mile to critical
1012 facilities.

1013 In the communications industry, codes and standards provide the baseline loading and design for
1014 infrastructure. However, the industry heavily relies on the development and implementation of best
1015 practices, rather than regulations, to improve their infrastructure resilience. The FCC's CSRIC provides
1016 an excellent example of a body that develops and publishes best practices for various network types
1017 (Internet/data, wireless and landline telephone) and industry roles, including service providers, network
1018 operators, equipment suppliers, property managers, and government (CSRIC 2014). Service providers
1019 often adapt these and/or develop their own best practices to help improve the infrastructure of which their

1020 business relies. The best practices developed by the CSRIC cover a wide array of topics ranging from
1021 training and awareness to cyber security and network operations. For the purposes of this document, only
1022 a handful of the best practices developed by the CSRIC (see Table 8-5) that relate to physical
1023 communications infrastructure are listed.

1024 As shown in Table 8-5, the best practices list many suggestions discussed in this chapter, including:

1025 • Adequate standby power for critical equipment and cell towers
1026 • Backup strategies for cooling critical equipment in Central Offices
1027 • Limiting exposure of distribution lines and critical equipment to hazards (important for standby
1028 equipment too)
1029 • Minimizing single points of failure in Central Offices, and distribution network

1030 The best practices (CSRIC 2014) have an emphasis on ensuring adequate power supply because the
1031 communications system is dependent on power systems to function. Innovative technologies and
1032 strategies for maintaining external power infrastructure continue to be developed and are discussed in
1033 Chapter 7.

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015
Communication and Information Systems, Standards and Codes

1034

Table 8-5. Best Practices for Communications Infrastructure

Best Practice Description (CSRIC 2014)	Applicable Infrastructure
Network Operators, Service Providers, Equipment Suppliers, and Property Managers should ensure the inclusion of fire stair returns in their physical security designs. Further, they should ensure there are no fire tower or stair re-entries into areas of critical infrastructure, where permitted by code.	Central Offices, nodes, critical equipment
Network Operators and Service Providers should prepare for HVAC or cabinet fan failures by ensuring conventional fans are available to cool heat-sensitive equipment, as appropriate.	Critical equipment
Network Operators and Service Providers should consult National Fire Prevention Association Standards (e.g., NFPA 75 and 76) for guidance in the design of fire suppression systems. When zoning regulations require sprinkler systems, an exemption should be sought for the use of non-destructive systems.	Central Offices, nodes, critical equipment
Network Operators should provide back-up power (e.g., some combination of batteries, generator, fuel cells) at cell sites and remote equipment locations, consistent with the site specific constraints, criticality of the site, expected load, and reliability of primary power.	Cell sites and DLC RTs
Network Operators and Property Managers should consider alternative measures for cooling network equipment facilities (e.g., powering HVAC on generator, deploying mobile HVAC units) in the event of a power outage.	Central Offices, nodes, critical equipment
Network Operators, Service Providers, and Property Managers together with the Power Company and other tenants in the location, should verify that aerial power lines are not in conflict with hazards that could produce a loss of service during high winds or icy conditions.	Distribution lines
Back-up Power: Network Operators, Service Providers, Equipment Suppliers, and Property Managers should ensure all critical infrastructure facilities, including security equipment, devices, and appliances protecting it are supported by backup power systems (e.g., batteries, generators, fuel cells).	Central Offices, nodes, critical equipment
Network Operators, Service Providers, and Property Managers should consider placing all power and network equipment in a location to increase reliability in case of disaster (e.g., floods, broken water mains, fuel spillage). In storm surge areas, consider placing all power related equipment above the highest predicted or recorded storm surge levels.	Central Offices, nodes, Cell sites, DLC RTs, critical equipment
Network Operators, Service Providers, Equipment Suppliers, Property Managers, and Public Safety should design standby systems (e.g., power) to withstand harsh environmental conditions.	Critical equipment
Network Operators, Service Providers, Public Safety, and Property Managers, when feasible, should provide multiple cable entry points at critical facilities (e.g., copper or fiber conduit) avoiding single points of failure (SPOF).	Distribution lines
Service Providers, Network Operators, Public Safety, and Property Managers should ensure availability of emergency/backup power (e.g., batteries, generators, fuel cells) to maintain critical communications services during times of commercial power failures, including natural and manmade occurrences (e.g., earthquakes, floods, fires, power brown/black outs, terrorism). Emergency/Backup power generators should be located onsite, when appropriate.	Critical equipment
Network Operators and Service Providers should minimize single points of failure (SPOF) in paths linking network elements deemed critical to the operations of a network (with this design, two or more simultaneous failures or errors need to occur at the same time to cause a service interruption).	Distribution
Back-Up Power Fuel Supply: Network Operators, Service Providers, and Property Managers should consider use of fixed alternate fuel generators (e.g., natural gas) connected to public utility supplies to reduce the strain on refueling.	Central Offices/nodes, cell sites, DLC RTs, critical equipment.
Network Operators and Public Safety should identify primary and alternate transportation (e.g., air, rail, highway, boat) for emergency mobile units and other equipment and personnel.	Cell sites, DLC RTs, critical equipment

1035 **8.5.1.1. Implied or Stated Performance Levels for Expected Hazard Levels**

1036 As discussed in Chapter 5, the performance level for an expected hazard event depends on the type of
1037 hazard and the design philosophy used for the hazard.

1038 For wind, buildings and other structures are designed for serviceability. That is, in the expected wind
1039 event, such as a hurricane, the expectation is neither the building's structure nor envelope will fail. The
1040 ability of the building envelope to perform well (i.e., stay intact) is imperative for high wind events,
1041 because they are typically associated with heavy rainfall events (e.g., thunderstorms, hurricanes,
1042 tornadoes). Therefore, even if the building frame were to perform well, but the envelope failed, rain
1043 infiltration could damage the contents, critical equipment, and induce enough water related damage such
1044 that the building would have to be replaced anyway. The expectation is that a Central Office would not
1045 have any significant damage for the expected wind event, and would be fully operational within 24 hours.
1046 The 24 hours of downtime should only be required for a high wind event to allow for time to bring
1047 standby generators online if needed and ensure all switches and critical electrical equipment are not
1048 damaged.

1049 Similarly, for an expected flood, a Central Office should not fail. There is likely to be some damage to the
1050 building and its contents at lower elevations, particularly the basement. However, if the critical electrical
1051 and switchgear equipment and standby power are located well above the inundation levels, the Central
1052 Office would be expected to be fully operational within 24 hours of the event.

1053 For earthquakes, buildings are designed for life safety. Therefore, for Central Offices in highly seismic
1054 regions, some damage to the building is likely for the expected earthquake. As a result, it is likely that
1055 there will be some loss of functionality of a Central Office following the expected earthquake event. If the
1056 critical equipment and switchgear were designed and mounted, downtime would be expected to be limited
1057 (less than one week). However, if the critical equipment and switchgear were not mounted to resist
1058 ground accelerations, it could be weeks before the Central Office is fully functional again.

1059 For cell towers, the primary hazard that is considered for design in ANSI/TIA-222 is wind. However, ice
1060 and earthquake are also considered. ANSI/TIA-222 provides three classes of tower structures (Wahba
1061 2003):

- 1062 • ***Category I Structures:*** Used for structures where a delay in recovering services would be acceptable.
1063 Ice and earthquake are not considered for these structures, and wind speeds for a 25-year return
1064 period using the ASCE 7-02/7-05 methodology are used.
- 1065 • ***Category II Structures:*** This is the standard category that represents hazard to human life and
1066 property if failure occurs. The nominal 50-year return period wind, ice, and seismic loads are used.
- 1067 • ***Category III Structures:*** Used for critical and emergency services. The nominal 100-year return
1068 period loads.

1069 For the expected event, failures would only be anticipated for a small percentage of cell towers (e.g., less
1070 than five percent). It is noted that, as discussed in the previous section, the loading in ANSI/TIA-222-G is
1071 based on that of ASCE 7.

1072 Communication distribution wires will likely experience some failures in the expected event, particularly
1073 for wind and ice storms. As discussed in the previous section, most distribution lines in the last-mile are
1074 below 60 feet above the ground and, hence, are not even designed to meet what Chapter 3 defines as the
1075 expected event if Rule 250B in NESC is followed for design. For lines that are designed to meet the
1076 NESC Rules 250C and 250D, it would be anticipated that only a small percentage of failure of the
1077 overhead wire would fail in an expected ice or wind event. However, as discussed earlier in this chapter
1078 and in Chapter 7, tree fall onto distribution lines causes many failures rather than the loading of the

1079 natural hazard itself. Therefore, service providers should work with the electric power utility to ensure
1080 their tree-trimming programs are adequately maintained.

8.5.1.2. Recovery Levels

1082 As discussed in the previous section, Central Offices and cell towers should not have an extended
1083 recovery time for the expected event. Given that the earthquake design philosophy is life safety (rather
1084 than wind which is designed for serviceability), Central Offices may have some loss of functionality due
1085 to damage to the building envelope and critical equipment if it is not designed and mounted to resist
1086 adequate ground accelerations.

1087 With respect to cell sites, wind, storm surge, and fire are the predominant hazards of concern for
1088 designers. Ice and earthquake are also considered, though not to the same extent in design. Given that the
1089 ANSI/TIA-222-G loads are based on ASCE 7 loading, it is anticipated that only a small percentage of cell
1090 tower structures would fail during an expected event. Cell towers are configured such that there is an
1091 overlap in service between towers so the signal can be handed off as the user moves from one area to
1092 another without a disruption in service. Therefore, if one tower fails, other towers will pick up most of the
1093 service since their service areas overlap.

1094 For distribution lines, a key factor, more so than the standards, is location of the cables. For example, if
1095 the distribution lines are underground for a high wind or ice event, failures and recovery time should be
1096 limited. However, even if the distribution lines are underground it is possible for failure to occur due to
1097 uprooting of trees. For flooding, if the distribution lines are not properly protected or there has been
1098 degradation of the cable material, failures could occur. For earthquake, failures of underground
1099 distribution lines could also occur due to liquefaction. As discussed in Section 8.2.1, although
1100 underground lines may be less susceptible to damage, they are more difficult to access to repair and
1101 failures could result in recovery times of weeks rather than days. However, for an expected event, some
1102 damage to the distribution lines would be expected.

1103 If the distribution lines are overhead, high wind and ice events will result in failures, largely due to tree
1104 fall or other debris impacts on the lines. The debris impacts on distribution lines is a factor that varies
1105 locally due to the surroundings and tree trimming programs that are intended to limit these disruptions.
1106 Although these lines are more likely to fail due to their direct exposure to high winds and ice,
1107 recovery/repair time of the lines for an expected event would be expected to range from a few days to a
1108 few weeks depending on the size of the area impacted, resources available, and accessibility to the
1109 distribution lines via transportation routes. Note that this only accounts for repair of the communications
1110 distribution lines itself. Another major consideration is the recovery of external power lines so the end
1111 user is able to use their communications devices. Chapter 7 addresses the standards and codes, and their
1112 implied performance levels for an expected event.

8.5.2. Existing Construction

1114 Although the standards listed in Section 8.2 are used for new construction for communications
1115 infrastructure, older versions of these codes and standards were used in the design of structures for the
1116 existing infrastructure.

1117 Central Offices designed and constructed within the past 20 years may have been designed to the criteria
1118 ASCE 7-88 through 05. Prior to that, ANSI standards were used. There have been many changes in the
1119 design loading criteria and methodology over the design life of existing Central Offices. For example,
1120 ASCE 7-95 was the first time a 3-second gust was used for the reference wind speed rather than the
1121 fastest mile for the wind loading criteria (Mehta 2010). Over the years, reference wind speeds (from the
1122 wind speed contour maps) have changed, pressure coefficients have been adjusted, earthquake design
1123 spectra, ground accelerations, and other requirements have changed. Overall, codes and standards have
1124 been added to/changed based on lessons learned from past disaster events and resulting research findings.

1125 As discussed in Section 8.5.1, ANSI/TIA-222-G is the current version of the standard used for cell towers
1126 and antennas. However, prior to 2006, versions of the code include (TIA 2014):

- 1127 • ANSI/TIA/EIA-222-F established in 1996
- 1128 • ANSI/TIA/EIA-222-E established in 1991
- 1129 • ANSI/TIA/EIA-222-D established in 1987
- 1130 • ANSI/TIA/EIA-222-C established in 1976
- 1131 • ANSI/TIA/EIA-222-B established in 1972
- 1132 • ANSI/TIA/EIA-222-A established in 1966
- 1133 • ANSI/EIA-RS-222 established as the first standard for antenna supporting structures in 1959.

1134 The 1996 standard, ANSI/TIA/EIA-222-F, was used during the largest growth and construction of towers
1135 in the United States (TIA 2014). As noted in Section 8.5.1, earthquake was not considered in this version
1136 of the standard, allowable stress design was used rather than limit states design, and reference wind
1137 speeds used fastest mile rather than 3-second gust (Wahba 2003). Note that the use of fastest mile for the
1138 reference wind speed is consistent with ASCE 7 prior to the 1995 version (of ASCE).

1139 Historically, communication distribution lines, like the new/future lines, have been designed to NESC
1140 standards. The following lists some of the most significant changes to NESC rule 250 that have occurred
1141 over the past couple of decades (IEEE 2015):

- 1142 • Prior to 1997, NESC did not have what is now referred to as an “extreme” wind loading. Rule 250C
1143 adapted the ASCE 7 wind maps after the wind speed changed from fastest mile to 3-second gust as is
1144 used today.
- 1145 • In 2002, Rule 250A4 was introduced to state that since electric and telecommunication wires and
1146 their supporting structures are flexible, earthquakes are not expected to govern design.
- 1147 • In 2007, Rule 250D was introduced for design of “extreme” ice from freezing rain combined with
1148 wind.

1149 These changes and their timeframe indicate older distribution lines, if not updated to the most recent code,
1150 may be more vulnerable to failures from wind and ice events than the current code. However, the NESC
1151 adopting these new standards should help lead to improvements of overhead distribution line performance
1152 in the future.

8.5.2.1. Implied or Stated Performance Levels for Expected Hazard Levels

1154 Existing Central Offices designed to an older version of ASCE 7 or ANSI criteria should have similar
1155 performance to those of new construction for an expected event. However, it is possible that these
1156 structures may have varied performance depending on the design code’s loading criteria. Nonetheless, an
1157 existing Central Office should have similar performance to that of a newly constructed Central Office (see
1158 Section 8.5.1.1).

1159 As discussed in the previous section, the ANSI/TIA/EIA-222-F 1996 standard was in effect when the
1160 largest growth and construction of cell towers took place (TIA 2014). For wind and ice, the towers would
1161 be expected to only have a small percentage of failures for the expected event as discussed in Section
1162 8.5.1.1. However, earthquake loading was not included in any of the standards prior to ANSI/TIA-222-G
1163 (Wahba 2003). Although earthquakes do not typically govern the design of cell towers, highly seismic
1164 regions would be susceptible to failures if an expected earthquake occurred. For existing towers designed
1165 to standards other than ANSI/TIA-222-G in highly seismic regions, the design should be checked to see if
1166 earthquake loads govern and retrofits should be implemented if necessary. Existing towers that have
1167 electronics added to them are updated to meet requirements of the most up to date code (ANSI/TIA-222-
1168 G). Note that despite no earthquake loading criteria in ANSI/TIA/EIA-222-F, and older versions of this

1169 standard, designers in highly seismic regions may have considered earthquake loading using other
1170 standards, such as ASCE 7. However, this was not a requirement.

1171 As discussed in Section 8.5.1.2, some communication distribution lines are anticipated to fail during an
1172 expected event. Given that “extreme” ice loading was not included in the NESC standard until 2007,
1173 distribution lines adhering to prior codes may be particularly vulnerable to ice storms.

1174 **8.5.2.2. Recovery Levels**

1175 As discussed in the previous section and Section 8.5.1.2, Central Offices and cell towers should not
1176 require a long time for full recovery after an expected event. However, given that older standards of
1177 ANSI/TIA/EIA-222 did not include earthquake loading criteria, a large number of failures and, hence,
1178 significant recovery time may be needed to repair or replace towers after an expected event in a highly
1179 seismic region. To replace a large number of towers would take weeks, months, or even years depending
1180 on the size of the impacted area. As discussed in Section 8.6.3, service providers have the ability to
1181 provide cell on light trucks (COLTs) so essential wireless communications can be brought online quickly
1182 after a hazard event in which the network experiences significant disruptions (AT&T 2014). However, the
1183 COLTs are only intended for emergency situations. They are not intended to provide a permanent
1184 solution. The best approach for cell tower owners in these earthquake prone regions is, therefore, to
1185 ensure the cell towers can resist the earthquake loading criteria in the new ANSI/TIA standard.

1186 With respect to performance of distribution lines, performance and recovery time is largely dependent on
1187 the placement of the cables (i.e., overhead versus underground) as discussed in Section 8.5.1.2.

1188 **8.6. Strategies for Implementing Community Resilience Plans**

1189 Section 8.2 discusses critical components of communication and information infrastructure. The
1190 discussion includes examples from different types of hazards to encourage the reader to think about the
1191 different hazards that could impact the communication and information infrastructure in their community.
1192 The number, types, and magnitudes of hazards that need to be considered will vary from community to
1193 community.

1194 Section 8.3 discusses the performance goals of the communication and information infrastructure strived
1195 for by the community. Section 8.3 does provide example performance goals for the routine, expected, and
1196 extreme event. However, the performance goals should be adjusted by the community based on its social
1197 needs, which will vary by community.

1198 Sections 8.4 and 8.5 outline some regulatory levels and issues, and codes and standards the reader should
1199 keep in mind when planning to make upgrades/changes to existing structures as well as building new
1200 structures for their communications network. The objective of this section is use the information from
1201 Sections 8.2 through 8.5 to provide guidance on how a community or service provider should work
1202 through the process of assessing their communications infrastructure, defining strategies to make its
1203 infrastructure more resilient, and narrowing the resilience gaps.

1204 **8.6.1. Available Guidance**

1205 Recall that in the Section 8.3 discussion of setting performance goals of the communication and
1206 information infrastructure, there was also an “X” in each row corresponding to an example of what a
1207 community actually found its infrastructures’ performance to be given a level of hazard. The question
1208 then becomes: How does the community/service provider determine where the “X” belongs for the
1209 various types of infrastructure in our community?

1210 At this point, the community should have convened a collection (or panel) of stakeholders and decision
1211 makers to approach the problem and establish the performance goals for each type and magnitude of
1212 hazard. To assess the infrastructure, this panel should have the knowledge, or reach out to those in the

1213 community who have the knowledge to assess the state of the infrastructure. The panel of stakeholders
1214 and decision makers will have to assess the infrastructures' performance relative to the type and
1215 magnitude of event that the community may face because different types of hazards will result in different
1216 types of failure modes and, consequently, performance. In some communities, it may only be necessary to
1217 make assessments for one hazard (such as earthquake in some non-coastal communities in California or
1218 Oregon). In other communities, it may be appropriate to complete assessments of the performance for
1219 multiple types of hazards such as high winds and storm surge in coastal communities in the Gulf and east
1220 coast regions of the United States.

1221 There are three levels at which the infrastructure can be assessed:

1222 **Tier 1.** A high level assessment of the anticipated performance of the components of the communications
1223 infrastructure can be completed by those with knowledge and experience of how the components and
1224 system will behave in a hazard event. For Central Offices, this may include civil and electrical
1225 engineer/designers. For wires (both overhead and underground), and cell towers, this may include
1226 engineers, utility operators, service providers, technical staff, etc. As a minimum, each community should
1227 complete a high level (Tier 1) assessment of its infrastructure. The community can then decide whether
1228 additional investment is warranted in completing a more detailed assessment. The SPUR Framework
1229 ([Poland 2009](#)) took this high level approach in assessing their infrastructure for the City of San Francisco,
1230 and is highly regarded as a good example for the work completed to date.

1231 **Tier 2.** A more detailed assessment can be used, based on an inventory of typical features within the
1232 communication infrastructure system, to develop generalized features for various components of the
1233 infrastructure. To do this, the community would have to use or develop a model for their community to
1234 assess the performance of common components of their infrastructure system for a specific type and
1235 magnitude of event (i.e., model a scenario event and its resulting impacts). Alternatively, the community
1236 could model a hazard event scenario to compute the loads (wind speeds/pressures, ground accelerations,
1237 flood elevations) to be experienced in the community and use expert judgment to understand what the
1238 performance of various components of the communications infrastructure would be as a result of the
1239 loading.

1240 A Tier 2 communication and information infrastructure assessment would include the impact on typical
1241 components of the infrastructure system independent of the intra-dependencies. The Oregon Resilience
1242 Plan ([OSSPAC 2013](#)) provides a good example of modeling a hazard event to assess the resulting impacts
1243 of the current infrastructure. It used HAZUS-MH to model and determine the impacts of a Cascadia
1244 earthquake on the different types of infrastructure and used the losses output by the HAZUS tool to back-
1245 calculate the current state of the infrastructure.

1246 **Tier 3.** For the most detailed level of analysis, a Tier 3 assessment would include all components in the
1247 communications infrastructure system, intra-dependencies within the system, and interdependencies with
1248 the other infrastructure systems. Fragilities could be developed for each component of the
1249 communications infrastructure system. A Tier 3 assessment would use models/tools to determine both the
1250 loading of infrastructure due to the hazard and the resulting performance, including intra- and
1251 interdependencies. Currently, there are no publicly available tools that can be used to model the intra- and
1252 interdependencies.

1253 **8.6.2. Strategies for New/Future Construction**

1254 For new and future construction, designers are encouraged to consider the performance goals and how to
1255 best achieve those goals rather than designing to minimum code levels, which are sometimes just for life
1256 safety (e.g., earthquake design). It is important to consider the communication and information
1257 infrastructure as a whole because it is a network and failure in one part of the system impacts the rest of
1258 the system (or at least the system connected directly to it). Therefore, if it is known that a critical

1259 component of the infrastructure system is going to be non-redundant (e.g., a lone Central Office, or a
1260 single point of entry for telephone wires into a critical facility), the component should be designed to
1261 achieve performance goals set for the extreme hazard.

1262 Throughout this chapter, there are examples of success stories and failures of communications
1263 infrastructure due to different types of hazards (wind, flood, earthquake, ice storms). Designers, planners,
1264 and decisions makers should think about these examples, as well as other relevant examples, when
1265 planning for and constructing new communications and information infrastructure. There are several
1266 construction and non-construction strategies that can be used to successfully improve the resilience of
1267 communications infrastructure within a community.

1268 ***Construction Strategies for New/Future Central Offices.*** With respect to Central Offices that are owned
1269 by service providers, the service provider should require the building to be designed such that it can
1270 withstand the appropriate type and magnitude of hazard events that may occur for the community. It is
1271 imperative that all hazards the community may face are addressed because hazards result in different
1272 failure modes. Designing for an extreme earthquake may not protect infrastructure from the expected
1273 flood, or vice versa. However, as was discussed during the workshops held to inform this framework, not
1274 all Central Offices or other nodes housing critical communications equipment are owned by service
1275 providers.

1276 Sections of buildings are often leased by service providers to store their equipment for exchanges or
1277 nodes in the system. In this case, service providers typically have no influence over the design of the
1278 building. But, if a building is in the design phase and the service provider is committed to using the space
1279 of the building owner, the service provider could potentially work with the building owner and designers
1280 to ensure their section of the building is designed such that their critical equipment is able to withstand the
1281 appropriate loading. In a sense, the goal would be to “harden” the section of the building in the design
1282 phase rather than retrofitting the section of the structure after a disaster, as is often done. Adding the
1283 additional protection into the design of the building would likely cost more initially, and the building
1284 owner would likely want the service provider to help address the additional cost. However, the service
1285 provider would be able to compute a cost-to-benefit ratio of investment for paying for additional
1286 protection of their critical equipment versus losing their equipment and having to replace it.

1287 ***Non-Construction Strategies for New/Future Central Offices.*** Although the design and construction of
1288 buildings that house critical equipment for Central Offices, exchanges, and other nodes in the
1289 communications network is an important consideration, non-construction strategies can also be extremely
1290 effective. For example, service providers who own buildings for their Central Offices should place their
1291 critical equipment such that it is not vulnerable to the hazards faced by the community. For example,
1292 Central Offices vulnerable to flooding should not have critical electrical equipment or standby generators
1293 in the basement. Rather, the critical electrical equipment and standby generators should be located well
1294 above the extreme flood levels. As shown by the success story of the Verizon Central Office after
1295 Hurricane Sandy described in Section 8.2.1, placing the critical equipment and standby generators above
1296 the extreme flood level can significantly reduce the recovery time needed. Similarly, for Central Offices
1297 in earthquake prone areas, service providers can mount their critical equipment to ensure it does not fail
1298 due to the shaking of earthquakes.

1299 Service providers planning to lease space from another building owner should be aware of the hazards
1300 faced by the community and use that information in the decision making process. For instance, a service
1301 provider would not want to rent space in the basement of a 20-story building to store electrical and critical
1302 equipment for an exchange/node.

1303 ***Construction Strategies for New/Future Cell Towers.*** New/Future Cell Towers should be designed to the
1304 latest TIA/EIT-222-G standard. As discussed in Section 8.2.3, the 2006 version of the TIA/EIT-222-G
1305 standard was updated to reflect the design criteria in ASCE 7 for wind, ice, and earthquake loading. For

1306 wind and ice, if the towers are designed and constructed in accordance with the appropriate standards,
1307 only a small percentage of cell towers would be anticipated to fail in an “expected” event. With respect to
1308 earthquake, where the design philosophy is life safety, towers should be designed beyond the code
1309 loading criteria. Since cell towers are becoming more numerous, they should be designed for the
1310 “expected” event.

1311 ***Non-Construction Strategies for New/Future Cell Towers.*** Historically, the predominant cause of
1312 outages of cell towers has been the loss of electrical power. As discussed in Section 8.2.3, the FCC’s
1313 attempt to mandate a minimum of eight hours of battery standby power to overcome this problem was
1314 removed by the courts. However, service providers should provide adequate standby power to maintain
1315 functionality following a hazard event.

1316 As is the case for standby generators in Central Offices, standby generators for cell towers must be placed
1317 appropriately. Standby generators for cell towers in areas susceptible to flooding should be placed above
1318 the “expected” flood level. Similarly, in earthquake regions, standby generators should be mounted such
1319 that the ground accelerations do not cause failure on the standby generator.

1320 Additional protection should be implemented for cell towers when appropriate and feasible. As discussed
1321 in Section 8.2.3, during Hurricane Katrina debris impacts from boats in flood areas resulted in failure of
1322 cell towers. Impacts from uprooted trees or branches during high wind events and tsunamis could also
1323 result in failure of these towers. Therefore, the topography and surroundings (e.g., relative distance from
1324 trees or harbors to cell towers) should be considered to ensure cell towers are protected from debris
1325 impact.

1326 ***Strategies for New/Future Distribution Line to End User.*** As discussed in Section 8.2.1, there are
1327 several different types of wires (copper, coaxial, and fiber optic) that carry services to the end user. Each
1328 of the types of wires has advantages and disadvantages. More and more, service providers are installing
1329 fiber optic wires to carry services to the customer.

1330 There is ongoing debate regarding whether underground or overhead wires are the best way to distribute
1331 services to the end user. For new/future distribution lines, several factors should be used to decide which
1332 method of distribution of services is best. The factors should include:

- 1333 • Building cluster to which the services are being distributed
- 1334 • Potential hazards to which the community is susceptible
- 1335 • Topography and surroundings of distribution lines
- 1336 • Redundancy or path diversity of distribution lines

1337 The first three items can be considered together. The building cluster to which the services are being
1338 delivered (1st bullet) is a key consideration. As seen in Section 8.3, performance goals for transmission of
1339 communications services to critical facilities reflect a desire for less recovery time (i.e., better
1340 performance) than the clusters for emergency housing, housing/neighborhoods, and community recovery.
1341 The hazards the community faces (2nd bullet) can be used to determine how to best prevent interruption of
1342 service distribution to the building (i.e., end user). For example, in regions that are susceptible to high
1343 winds events (i.e., 2nd bullet), it may be appropriate to distribute communication services to critical
1344 services (and other clusters) using underground wires rather than overhead wires. The use of overhead
1345 wires would likely result in poorer performance in wind events because of failures due to wind loading or,
1346 more likely, debris (i.e., tree) impact (3rd bullet).

1347 Redundancy or path diversity (4th bullet) of communications distribution lines to end users is an important
1348 consideration. As discussed in Section 8.2.1, building redundancy in the communications network is
1349 essential to ensuring continuation of services after a hazard event. For example, single points of failure in
1350 the last/first mile of distribution can be vulnerable to failure causing long term outages. Redundancy (i.e.,

1351 path diversity) should be built into in the distribution network, especially the last/first mile, wherever
1352 possible.

1353 **8.6.3. Strategies for Existing Construction**

1354 Similar to new/future communication and information infrastructure, there are several construction and
1355 non-construction strategies that can be used to successfully improve the resilience of existing
1356 communications infrastructure within a community. However, unlike new/future components of the
1357 communications infrastructure system, existing components must be evaluated first to understand their
1358 vulnerabilities, if they exist. If it is determined that a component is vulnerable to natural loads, strategies
1359 should be used to improve its resilience.

1360 Given that the communication and information infrastructure system is extremely large and much of the
1361 existing infrastructure is owned by service providers or third party owners (e.g., building owners) with
1362 competing needs for funding, it is not reasonable to expect that capital is available for service providers
1363 (or third parties) to upgrade all infrastructure immediately. However, prioritization can address the most
1364 critical issues early in the process and develop a strategy to address many concerns over a longer time
1365 period. Moreover, by evaluating the inventory of existing infrastructure and identifying weaknesses,
1366 service providers can use the data to implement strategies for new/future infrastructure construction so the
1367 same weaknesses are not repeated.

1368 ***Construction Strategies for Existing Central Offices.*** Existing buildings owned by service providers and
1369 used as Central Offices should be assessed to determine if the building itself and sections of the building
1370 containing critical equipment and standby generators will be able to meet performance goals (see Section
1371 8.3). As stated for the case of new/future construction, if the Central Office is a non-redundant node in the
1372 service provider's infrastructure network, the Central Office should be evaluated to ensure it can resist the
1373 "extreme" level of hazard. However, if the Central Office is a node in a redundant infrastructure system,
1374 and failure of the Central Office would not cause any long-term service interruptions, the Central Office
1375 should be assessed to ensure it can withstand the loads for the "expected" event.

1376 If the service provider finds that its Central Office will not be able to withstand the loading for the
1377 appropriate level of hazard event, it should take steps to harden the building. Although this is likely to be
1378 expensive, if the Central Office is critical to the service provider's performance following a hazard event
1379 in both the short and long term, a large investment may be necessary and within a reasonable cost-benefit
1380 ratio.

1381 For nodes, exchanges, or Central Offices located in leased (existing) buildings, the service provider does
1382 not have control over retrofitting or hardening the building. However, the service provider could attempt
1383 to work with the building owner to have the sections of the building housing critical equipment hardened.
1384 Alternatively, there are also several non-construction strategies that could be used to protect the critical
1385 equipment.

1386 ***Non-Construction Strategies for Existing Central Offices.*** Critical equipment in Central Offices or in
1387 other nodes/exchanges in the communications infrastructure network should be assessed to determine
1388 whether it is likely to fail during hazard events faced by that community. Whether the building is owned
1389 by the service provider or leased from a third party, relatively easy and inexpensive changes can be made
1390 to protect the critical equipment.

1391 As was demonstrated by the example of the Manhattan Verizon Central Office at 140 West Street
1392 discussed in Section 8.2.1, non-construction strategies can be used to successfully improve performance
1393 of critical equipment in hazard events. Recall that the 140 West Street Central Office was hardened after
1394 9/11. What may have been the most successful change was elevating the standby generators and critical
1395 equipment to higher elevations such that they would not fail in the case of flooding (City of New York
1396 2013). Compared to another Central Office located at 104 Broad Street in New York City that had critical

1397 equipment and standby generators stored in the basement, the Verizon Central Office performed much
1398 better. The 104 Broad Street had an outage of 11 days, whereas the Verizon Central Office was
1399 operational within 24 hours. The 104 Broad Street did not meet the performance goals for the expected
1400 event in Section 8.3. With the singular change of elevating critical equipment and standby generators, the
1401 Verizon Central Office met the performance goals presented in Section 8.3.

1402 ***Construction Strategies for Existing Cell Towers.*** Existing cell towers should be evaluated to determine
1403 whether they can resist the loading from the “expected” event the community faces (wind speed/pressure,
1404 earthquake ground accelerations, ice storms). Versions older than the 2006 ANSI/TIA-222-G did not
1405 include earthquake design criteria. Therefore, design loads for existing cell towers, particularly in
1406 earthquake-prone regions, should be assessed to understand the loading that the towers can withstand. It is
1407 assumed that a designer in an earthquake-prone region would use loading based on other codes and
1408 standards, but it is possible that the loading used in the original design may not be adequate. If it is found
1409 after assessing the cell tower for earthquake loading that it was not designed to resist adequate loads,
1410 retrofits such as the addition of vertical bracing can be constructed to ensure the loading can be resisted.
1411 Similarly, since there have been changes in the wind and ice loading in ANSI/TIA-222-G to better match
1412 the loading criteria in ASCE, cell towers should be assessed to ensure they will resist the appropriate
1413 loads, and retrofitted if needed.

1414 ***Non-Construction Strategies for Existing Cell Towers.*** Existing cell tower sites should be assessed to
1415 determine whether adequate standby power supply is available given the criticality of the site and whether
1416 the standby generator and switchgear are protected against loading from the appropriate magnitude
1417 (expected) of natural hazard. Although it may not be economically feasible to provide standby generators
1418 for all cell towers immediately, a program can be developed to accomplish this over time. The immediate
1419 surroundings of cell sites should be assessed to determine vulnerabilities to airborne and waterborne
1420 debris. If the cell site is located such that it is vulnerable to tree fall or other debris in a high wind or flood
1421 event, additional protection should be provided to protect the cell tower.

1422 ***Strategies for Existing Distribution Line to End User.*** For existing distribution lines to the end user, an
1423 inventory of wires, including the type, age, and condition should be recorded. When wires are damaged or
1424 have deteriorated due to age, they should be retired and/or replaced.

1425 As discussed for new/future distribution lines, overhead versus underground wires is an ongoing debate in
1426 the industry. Distribution lines, particularly to critical buildings, should be assessed to determine whether
1427 overhead or underground wires are best for the communications infrastructure system. If a service
1428 provider is considering switching from overhead wires to underground wires to avoid possible outages
1429 due to ice storms or high wind events, a cost-benefit ratio should be computed as part of the assessment
1430 and decision making process. If cost is much greater than projected benefits, the service provider may
1431 want to consider other priorities in making their infrastructure more resilient. In fact, rather than
1432 switching the distribution lines from overhead to underground wires, the service provider may find it
1433 more economical to add redundancy (i.e., path diversity) to that part of the infrastructure network. Thus,
1434 the service provider would not be reducing the risk to the existing overhead distribution wires, but
1435 reducing the risk of service interruptions because it is not solely reliant on overhead distribution lines.

1436 ***Non-Construction Strategies for Critical Facilities/Users.*** As previously discussed, communications
1437 network congestion is often seen during and immediately after a hazard event. The following programs
1438 have been implemented to help critical users have priority when networks are congested due to a disaster
1439 event (DHS 2015):

1440 • Government Emergency Telecommunications Service (GETS)
1441 • Wireless Priority Service (WPS)
1442 • Telecommunications Service Priority (TSP)

1443 GETS works through a series of enhancements to the landline network. It is intended to be used in the
1444 immediate aftermath of disaster events to support national security and emergency preparedness/response.
1445 Cell phones can also use the GETS network but they will not receive priority treatment until the call
1446 reaches a landline. Rather, the WPS is used to prioritize cell phone calls of users who support national
1447 security and emergency preparedness/recovery when the wireless network is congested or partially
1448 damaged. WPS is supported by seven service providers: AT&T, C Spire, Cellcom, SouthernLINC, Sprint,
1449 T-Mobile, and Verizon Wireless ([DHS 2015](#)). The GETS and WPS programs are helpful in coordinating
1450 recovery efforts in the wake of a disaster event. However, note that the main goal of these programs is to
1451 provide priority service when there is congestion due to limited damage. If a significant amount of the
1452 infrastructure fails, these services may not be available.

1453 TSP is an FCC program that enables service providers to give service priority to users enrolled in the
1454 program when they need additional lines or need service to be restored after a disruption ([FCC 2015](#)).
1455 Unlike the GETS and WPS programs, the TSP program is available at all times, not just after disaster
1456 events. For all of these programs, eligible entities include police departments, fire departments, 9-1-1 call
1457 centers, emergency responders, and essential healthcare providers (e.g., hospitals).

1458 ***Short-Term Solutions for Restoring Service.*** Service providers and other stakeholders (e.g., third party
1459 building owners) responsible for infrastructure cannot make all infrastructure changes in the short term
1460 due to limited resources, a competitive environment driven by costs, and competing needs. Therefore, as
1461 part of their resilience assessment, service providers should prioritize their resilience needs. Service
1462 providers should budget for necessary short-term changes (0-5 years), which may include relatively
1463 inexpensive strategies such as placement and security of critical equipment and standby generators. For
1464 the long term (5+ years), service providers should address more expensive resilience gaps that include
1465 hardening of existing Central Offices and replacing overhead distribution lines with underground lines.

1466 Although not all resilience gaps can be addressed in the short term through investment in infrastructure,
1467 service providers should use other strategies to address these gaps. Ensuring there is a recovery plan in
1468 place so service to customers is not lost for an extended period of time helps minimize downtime.
1469 AT&T's Network Disaster Recovery (NDR) team provides an excellent example of using temporary
1470 deployments to minimize service disruption. The AT&T NDR was established in 1992 to restore the
1471 functionality of a Central Office or AT&T network element that was destroyed or in which functionality
1472 was lost in a natural disaster ([AT&T 2005](#)).

1473 The NDR team was deployed after several disaster events to minimize service disruption where the
1474 downtime would have been long term, including after 9/11, the Colorado and California wildfires in 2012
1475 and 2013, the 2013 Moore, OK tornado, 2011 Joplin, MO tornado, 2011 Alabama tornadoes, Hurricane
1476 Ike in 2008, and 2007 ice storms in Oklahoma ([AT&T 2014](#)). The AT&T NDR team completes quarterly
1477 exercises in various regions of the United States and around the world to ensure personnel are adequately
1478 trained and prepared for the next hazard event ([AT&T 2014](#)). Training and field exercises for emergency
1479 recovery crews are essential to helping reduce communications network disruptions and, hence, the
1480 resilience gaps.

1481 After the May 22, 2011 Joplin tornado, the NDR team deployed a Cell on Light Truck (COLT) on May
1482 23, 2011 to provide cellular service near the St. John's Regional Medical Center within one day of the
1483 tornado ([AT&T 2014](#)). The cell site serving the area was damaged by the tornado. Satellite COLTs can be
1484 used to provide cellular communications in areas that have lost coverage due to damage to the
1485 communication infrastructure system ([AT&T 2014](#)).

1486 Using satellite telephones can be an alternative for critical facilities or emergency responders in the
1487 immediate aftermath of a hazard event. Satellite phones are almost the only type of electronic
1488 communications system that will work when cell towers are damaged and Central Offices or
1489 exchanges/nodes have failed ([Stephan 2007](#)). Unfortunately, satellite phones are used infrequently,

1490 especially with the continuing growth of cellular phones. In 1999, the State of Louisiana used Federal
1491 funds to provide the state's parishes with a satellite phone to use in the event of an emergency, but the
1492 state stopped providing the funding to cover a monthly \$65 access fee one year before Hurricane Katrina
1493 occurred (Stephan 2009). As a result, only a handful of churches kept the satellite phones. However, even
1494 for those parishes that did keep their satellite phones, they did little to alleviate the communications
1495 problem because nobody else had them when Hurricane Katrina occurred. In general, people do not own
1496 satellite telephones so this is not the best solution for an entire community. However, for critical facilities
1497 and communications between emergency responders, satellite telephones may be a viable option to ensure
1498 the ability to communicate is preserved.

1499 **8.7. References**

1500 Anixter Inc., (2013). *Standards Reference Guide*. Glenview, Illinois.

1501 American Lifelines Alliance (2006). *Power Systems, Water, Transportation and Communications Lifeline*
1502 *Interdependencies – Draft Report*. Washington, DC.

1503 American Society of Civil Engineers (ASCE 2010). *ASCE 7-10, Minimum Design Loads for Buildings*
1504 *and Other Structures, Second Edition*. New York, New York.

1505 AT&T (2014). Viewed August 28, 2014. <<http://www.corp.att.com/ndr/deployment1.html>>.

1506 AT&T (2005). *Best Practices: AT&T Network Continuity Overview*.

1507 The City of New York (2013). *A Stronger, More Resilient New York*. New York City, NY.

1508 City of Urbana Public Works Department (2001). *Overhead to Underground Utility Conversion*.
1509 Urbanaa, Illinois.

1510 Centre for the Protection of National Infrastructure (CPNI 2006). *Telecommunications Resilience Good*
1511 *Practice Guide Version 4*. United Kingdom, March 2006.

1512 Communications Security, Reliability, and Interoperability Council (CSRIC 2014).
1513 <<https://www.fcc.gov/nors/outage/bestpractice/BestPractice.cfm>>. *CSRIC Best Practices*. Viewed
1514 December 16, 2014.

1515 Department of the Army (2007). *Reliability/Availability of Electrical & Mechanical Systems for*
1516 *Command, Control, Communications, Computer, Intelligence, Surveillance and Reconnaissance*
1517 *(C4ISR) Facilities*. January 19, 2007.

1518 Department of Homeland Security (DHS 2015). *GETS/WPS Documents*. <
1519 <http://www.dhs.gov/publication/getswps-documents#>> . Viewed January 13, 2015.

1520 East Tennessee State University Office of Information Technology (ETSU 2014). *Telecommunications*
1521 *Design and Installation Standards Policy*.

1522 Erichsen, John R. *Slideshow Presentation: ANSI/TIA-222-G Explained*. Viewed July 5, 2014.

1523 Federal Communications Commission (FCC 2015). <*Telecommunications Service Provider*.
1524 <http://www.fcc.gov/encyclopedia/telecommunications-service-priority>> . Viewed January 13, 2015.

1525 Fiber-to-the-Home Council (FTTH Council 2013). *Comments of the Fiber-to-the Home Council on*
1526 *Request to Refresh Record and Amend the Commission's Copper Retirement Rules*. Washington,
1527 DC.

1528 Hubbell Premise Wiring Inc. *Structured Cabling Standards and Practices*. Viewed July 5, 2014.

1529 Institute of Electrical and Electronics Engineers (IEEE 2015). *History of the National Electrical Safety*
1530 *Code ANSI C2*. <<http://standards.ieee.org/about/nesc/100/>> . Viewed January 26, 2015.

1531 Jrad, Ahman et al. (2005). *Wireless and Wireline Network Interactions in Disaster Scenarios*. Military
1532 Communications Conference. Washington, DC.

1533 Jrad, Ahman et al. (2006). *Dynamic Changes in Subscriber Behavior and their Impact on the Telecom*
1534 *Network in Cases of Emergency*. Military Communications Conference. Washington, DC.

1535 Kende, Michael, and Hurpy, Charles (2012). *Assessment of the Impact of Internet Exchange Points –*
1536 *Empirical Study of Kenya and Nigeria*. Analysys Mason Limited. Washington, DC.

1537 Kentucky Public Service Commission (2009). *The Kentucky Public Service Commission Report on the*
1538 *September 2008 Wind Storm and the January 2009 Ice Storm*.

1539 Kwasinski, Alexis (2009). *Telecom Power Planning for Natural Disasters: Technology Implications and*
1540 *Alternatives to U.S. Federal Communications Commission's "Katrina Order" in View of the*
1541 *Effects of 2008 Atlantic Hurricane Season*. 31st International Telecommunications Energy
1542 Conference (INTELEC).

1543 Kwasinski, Alexis (2011). *Effect of Notable Natural Disasters from 2005 to 2011 on Telecommunications*
1544 *Infrastructure: Lessons from on-site Damage Assessments*. 2011 IEEE International
1545 Telecommunications Energy Conference (INTELEC).

1546 Kwasinski, Alexis; Weaver, Wayne; Krein, Philip; and Chapman, Patrick (2006). *Hurricane Katrina:*
1547 *Damage Assessment of Power Infrastructure for Distribution, Telecommunication, and Backup*.
1548 University of Illinois at Urbana-Champaign. Urbana-Champaign, IL.

1549 Lower Manhattan Telecommunications Users' Working Group Findings and Recommendations (2002).
1550 *Building a 21st Century Telecom Infrastructure*. Ney York City, NY.

1551 Mehta, Kishor (2010). *Wind Load History ANSI A58.1-1972 to ASCE 7-05*. Structures Congress,
1552 American Society of Civil Engineers.

1553 Oregon Seismic Safety Policy Advisory Commission (OSSPAC 2013). *The Oregon Resilience Plan:*
1554 *Reducing Risk and Improving Recovery for the Next Cascadia Earthquake and Tsunami*. Salem,
1555 Oregon.

1556 The Lifelines Council of the City and County of San Francisco (2014). *Lifelines Interdependency Study*
1557 *Report I*. San Francisco, California.

1558 Federal Communications Commission (FCC 2011). <www.fcc.gov/telecom.html>. Viewed on July 5,
1559 2014. *Telecommunications Act of 1996*.

1560 Federal Emergency Management Agency (FEMA 2002). *World Trade Center Building Performance*
1561 *Study: Data Collection, Preliminary Observations, and Recommendations*. New York, New
1562 York.

1563 Federal Emergency Management Agency (FEMA 2013). *Mitigation Assessment Team Report: Hurricane*
1564 *Sandy in New Jersey and New York*. Washington, DC.

1565 Malmedal, Keith; Sen, P.K. (2003). *Structural Loading Calculations of Wood Transmission Structures*.
1566 IEEE Rural Electric Power Conference.

1567 Stephan, Karl D (2007). *We've got to Talk: Emergency Communications and Engineering Ethics*. IEEE
1568 Technology and Society Magazine.

1569 Telecommunications Industry Association (TIA 2014). *TR-14 Structural Standards for Communication*
1570 *and Small Wind Turbine Support Structures*. Viewed September 22, 2014.
1571 <<http://www.tiaonline.org/all-standards/committees/tr-14>>.

1572 Wahba, John et al. (2003). *New Standards for Broadcast Structures ANSI/EIA/TIA-222-G*.

1573 West Virginia Broadband (2013). Viewed July 5, 2014.

1574 <<http://www.westvirginia.com/broadband/mediaroom/BroadbandGlossary.pdf>>.

1575 The White House. *Presidential Policy Directive/PPD-21: Critical Infrastructure Security and Resilience*.

1576 February 5, 2013. Office of the Press Secretary. Washington, DC.

1577 Victory, Nancy et al. (2006). *Report and Recommendations of the Interdependent Panel Reviewing the*

1578 *Impact of Hurricane Katrina on Communications Networks*. Washington, DC.

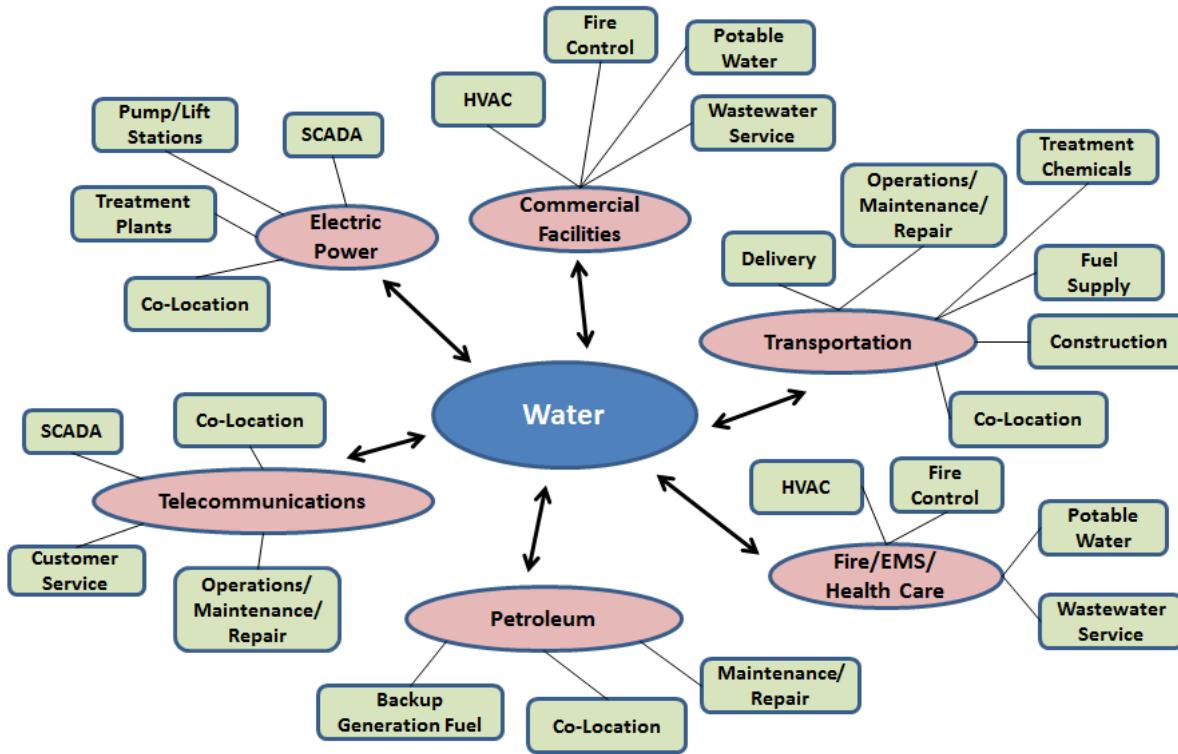
9. Water and Wastewater Systems

9.1. Introduction

Water and wastewater systems represent essential infrastructure for sustaining the economic and social viability of a community. Although these systems provide basic public health and safety to homes, businesses, and industry, they are often taken for granted because of the high level of service and reliability provided by water and wastewater utilities. The importance of these systems is not recognized until a water main break or other disruption in service occurs. This chapter addresses disaster resilience of public water and wastewater systems.

While some utilities are already taking steps to improve the resilience of their systems, capital improvement programs and many others often focus on performing emergency repairs, increasing system capacity to meet population growth, or making system improvements to satisfy public health and environmental regulations. Replacing buried pipelines is often delayed until water main breaks become frequent or wastewater pipeline groundwater infiltration rates create excessive demand on the treatment system. Communities have a perfect opportunity to couple resilience with future/planned retrofits or replacements of old infrastructure, to improve the resilience of water and wastewater infrastructure. This chapter focuses on the water and wastewater infrastructure itself. However, the water and wastewater industry faces challenges beyond just the infrastructure performance. Water quality and environmental impact are two of the biggest concerns. For example, if water of poor quality is delivered to customers, there is significant risk that the public may become ill from consumption. The wastewater industry operates within strict environmental constraints that have and will likely continue to become more stringent. These restrictions prevent excessive pollution that contribute to environmental damage and, ultimately, impact the health of the humans and animals. Although this chapter touches on such challenges, its main focus is how to build a more resilient infrastructure system that will deliver good quality water with fewer disruptions and limit damage to wastewater systems, making spills less frequent.

9.1.1. Social Needs and Systems Performance Goals


Water services are essential to our daily lives. Using USGS data, Aubuchon & Morley (2012) calculated the average consumption of water across all U.S. states to be 98 gallons per person per day. However, water consumption varies by community and by customer. Personal uses include water for drinking and cooking, personal hygiene, flushing toilets, laundry, landscape irrigation, and many others. Many businesses and industries also depend on a continual supply of potable water and wastewater collection services. Absent functioning drinking water and wastewater systems, the operation of restaurants, child care facilities, hotels, medical offices, food processing plants, paper mills, etc., significantly compromised, if not completely impossible. Additionally, water systems in urban and suburban areas provide water supply for fire suppression. Chapter 2 discusses this societal dependence on water and wastewater systems and other infrastructure systems in more detail.

In the United States, communities generally accommodate to short-term (on the order of a few days) disruptions in water and wastewater services resulting from man-made or natural hazard events. However, longer-term disruptions are less tolerable. The Oregon Resilience Plan (OSSPAC, 2013) indicated a business that cannot reoccupy facilities (including functioning water and wastewater systems) within one month would be forced to move or dissolve. This timeline likely varies depending on community needs and the severity of the event. Water and wastewater utility providers need to work with customers and regulatory agencies to establish realistic performance goals for post-disaster level of service, evaluate their systems' status in relation to those goals, and then develop strategies to close the identified resilience gaps. Flow, pressure, and water quality should be considered in those performance goals.

45

9.1.2. Interdependencies

46 As discussed in Chapter 4, water system operations are interdependent with other infrastructure systems,
 47 both for day-to-day operation and restoration following a hazard event. Electric power is one of the most
 48 important services necessary for maintaining pumping and treatment operations. Transportation is critical
 49 to allow access for inspection and repairs after the event, as well as maintaining the supply chain. Figure
 50 9-1 presents some interdependencies of the water infrastructure system with other infrastructure systems.

51

52

Figure 9-1. Water Interdependencies with Other Infrastructure Systems (Morley 2013)

53 Some of the most important dependencies for the water and wastewater infrastructure systems include:

- 54 1. **Energy/Power (Electric and Fuel/Petroleum)** – Water and wastewater utilities rely on
 55 commercial electricity to run pumps, treatment processes, and lab and office operations. Some of
 56 these functions may have standby power, but overall power demands make it impractical for most
 57 water and wastewater systems to run entirely on standby generators. However, short-term power
 58 loss events are often mitigated by standby generators supported to maintain water and wastewater
 59 operations. These emergency conditions are dependent on sustained fuel supply for standby
 60 generators to support utility vehicles and equipment. Disruption in fuel production, storage, or
 61 delivery may severely impact a water utility's ability to sustain operations on standby generator
 62 power and perform repairs.
- 63 2. **Transportation (Staff, Supplies, Pipelines)** – Staff at water and wastewater facilities depend on
 64 roadway and bridge transportation systems for access. Damage to transportation infrastructure
 65 potentially complicates and lengthens repair times or even prevents repairs until roadways and
 66 bridges are usable. Water and wastewater utilities generally keep a limited stock of pipe, fittings,
 67 and other repair materials to use in response and recovery operations. However, depending on the
 68 size of the event, this stock may be quickly depleted due to supply chain disruptions. Such
 69 disruptions may also impact the available support from relief equipment and personnel. Utilities
 70 also rely on a semi-regular delivery of treatment process chemicals essential for meeting water
 71 quality regulations.

72 Water and wastewater buried pipelines are often co-located with other buried infrastructure under
73 or adjacent to roadways. Failure of pipelines may result in damage to the roadway (e.g., sinkhole
74 from water main break or collapsed sewer pipeline) and impact to traffic during repairs.
75 Therefore, the transportation system, particularly the roadway system, is dependent on the
76 performance of the water and wastewater infrastructure systems.

77 3. ***Communications and Information*** – Water and wastewater utilities often rely on cellular
78 networks to communicate to operations staff and contractors. If the cellular network is down for
79 an extended period, complications and delays in repairs can occur. Additionally, supervisory
80 control and data acquisition (SCADA) networks are used extensively within both water and
81 wastewater systems to monitor and control widespread components and equipment.

82 The communications system infrastructure also depends on water infrastructure. For example, air
83 conditioning system cooling towers that support communications require water to keep sensitive
84 electronic equipment in Central Offices at safe operating temperatures. Furthermore, technicians
85 cannot enter Central Offices to maintain or repair functionality of the communications system if
86 its water and wastewater systems are not functioning.

87 4. ***Buildings (Critical, Commercial, General Public)*** – Water and wastewater utilities rely on
88 customers (e.g., critical facilities, commercial facilities, and households) to pay bills as a
89 continued source of capital. Utilities will potentially experience significant capital expenditures in
90 the aftermath of a disaster and customers may not have the ability to pay bills (i.e., loss of
91 personal income from loss of wages or breakdown of electronic or posted payments), placing a
92 large financial burden on the utilities. Water and wastewater utilities also operate administrative
93 buildings. New Orleans Water & Sewer Board's treatment, distribution, collection, and
94 administrative operations were severely impacted following Hurricane Katrina. The
95 administration's disruptions included the loss of customer billing and other records due to
96 significant flooding. During this same event, Children's Hospital of New Orleans was forced to
97 evacuate when the hospital lost water pressure and was unable to maintain the HVAC system
98 needed by patients in critical care units.

99 Commercial and other public buildings need water supply with adequate flow and pressure for
100 fire suppression, as well as sanitation. Industrial facilities need functional water and wastewater
101 systems for developing, processing, and manufacturing materials and products. The public relies
102 on water and wastewater services for overall health of the community.

103 **9.2. Water and Wastewater Infrastructure**

104 This section describes basic components of water and wastewater systems. Performance observations
105 from past disaster events characterize some key hazard vulnerabilities in water and wastewater systems.
106 Water and wastewater infrastructure are vulnerable to a number of hazards: buried pipelines are
107 vulnerable to breaks during earthquakes, water and wastewater treatment facilities are vulnerable to flood
108 hazards. Facilities are often designed to be in or near flood hazard areas, given their functional
109 dependency on natural water resources. To become more resilient, each individual community will have
110 to consider its own hazards when implementing plans. Additionally, as discussed in the previous section,
111 system interdependencies (e.g., loss of commercial electrical power in a high wind event) can have a
112 significant impact on operability of water and wastewater systems (Elliott, T. and Tang, A., 2009).

113 **9.2.1. Water Infrastructure**

114 Water sources include groundwater and surface water, treated to satisfy public health standards and
115 distributed to consumers by a network of pipelines. Some water utilities have their own supplies and
116 treatment infrastructure, while others buy wholesale water from neighboring agencies.

117 Water systems are composed of six general infrastructure categories: 1) Supply, 2) Transmission, 3)
118 Treatment, 4) Pumping, 5) Storage, and 6) Distribution. The basic function of each category and

DISASTER RESILIENCE FRAMEWORK

75% Draft for San Diego CA Workshop

11 February, 2015

Water and Wastewater Systems, Water and Wastewater Infrastructure

119 infrastructure system (electric power, transportation, communication) interdependent of the water system
 120 can be impacted by a variety of hazards, as shown in Table 9-1. Some examples of damage to water
 121 infrastructure seen in past events are discussed in the following subsections.

122 **Table 9-1. Hazard Impacts on Water Infrastructure System (AWWA M19: Emergency Planning for**
 123 **Water Utilities)**

System Components – Likely damage, loss, or shortage due to hazards	Earthquakes	Hurricanes	Tornadoes	Floods	Forest or Brush Fires	Volcanic eruptions	Other Severe Weather	Waterborne Disease	Hazardous Material	Structure Fire	Construction Accidents	Transportati on Accidents	Nuclear	Vandal, riots, Strikes
Administration/operations														
Personnel	♦	♦												
Facilities/equipment	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦
Records	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦
Source Water														
Watersheds/surface sources	♦	♦												
Reservoirs and dams	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦
Groundwater sources	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦
Wells and galleries	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦
Transmission														
Intake structures	♦		♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦
Aqueducts	♦		♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦
Pump stations	♦		♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦
Pipelines, valves	♦		♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦
Treatment														
Facility structures	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦
Controls	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦
Equipment	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦
Chemicals	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦
Storage														
Tanks	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦
Valves	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦
Piping	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦
Distribution														
Pipelines, valves	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦
Pump or PRV stations	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦
Materials	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦
Electric power														
Substations	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦
Transmission lines	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦
Transformers	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦
Standby generators	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦
Transportation														
Vehicles	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦
Maintenance facilities	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦
Supplies	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦
Roadway infrastructure	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦
Communications														
Telephone	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦
Two-way radio	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦
Telemetry	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦

124

125 **9.2.1.1. Supply**

126 Water supply can come from groundwater or surface water, as described below.

127 **Groundwater.** Rainfall and snowmelt infiltrate into the ground to recharge groundwater aquifers.
 128 Groundwater wells tap into aquifers and supply water to individual households or municipal water
 129 providers. A well system consists of the groundwater aquifer, well casing and screen, pump and motor,
 130 power supply, electrical equipment and controls, connecting piping, and possibly a well house structure.
 131 Typically, wells are cased with a steel pipe. Screens in the well casing at the depth of the aquifer allow
 132 water to enter the casing. A submersible or surface-mounted pump conveys water to the transmission
 133 system.

134 **Surface Water.** Rainfall and snowmelt runoff that does not infiltrate into the ground collects in streams,
 135 rivers, and lakes, and is sometimes impounded by dams. Water intake structures in lakes or rivers and
 136 diversion dams then direct water to a pipeline inlet along the shoreline. All of these systems would
 137 generally include screens to keep large debris and fish from entering the treatment plant.

138 Just as with water and wastewater infrastructures, the water supply is particularly vulnerable flooding and
 139 earthquakes. The most significant hazard is contaminated water; flooding can cause contamination of
 140 surface and groundwater sources. Additionally, inundated well heads at the surface can introduce

141 contaminants to well systems and groundwater. Floodwaters and generally carry contaminants like
142 petroleum, nutrient/organic matter, bacteria, protozoa, and mold spores that pose significant health risks.
143 Contamination can also result from tank or vehicle discharge in the watershed. In 2014, in West Virginia,
144 4-methylcyclohexanemethanol (MCHM) was released into the Elk River, contaminating water serving
145 300,000 people. It took months to restore full water service.

146 Although not often considered for their impact on water quality, wildfires can also lead to water
147 contamination. Wildfires can burn watersheds, destabilizing the ground cover, which can cause landslides
148 that contaminate the water when subsequent rains occur. Denver Water experienced wildfires in
149 significant parts of their watershed in 1996 and 2002 that burned 150,000 acres of land, releasing one
150 million cubic yards of sediment into one of their reservoirs.

151 Reservoirs behind dams often also serve as water supply features, but dam failure can present a secondary
152 hazard in the wake of earthquakes, heavy rainfall, and flood events. Concentrated precipitation and
153 flooding most commonly causes overtopping of the dam. While dams can reduce flooding, older and
154 improperly designed and maintained dams are not equipped to contain large volumes of quickly
155 accumulating water runoff. Landslides, caused by liquefaction from earthquakes can also lead to dam
156 failure. These types of dam failures are rare, but present a significant risk to anyone's life downstream of
157 a dam. Dams are critical infrastructure components that need to be designed to withstand extreme events.

158 **9.2.1.2. Transmission**

159 Large diameter transmission pipelines carry raw water
160 from source to treatment plant, and treated water to
161 storage facilities before branching out into smaller
162 distribution pipelines. Depending on the system, these
163 can range from one foot to several tens of feet in
164 diameter. Transmission pipelines are constructed of
165 welded steel, reinforced concrete, concrete cylinder, or
166 ductile iron (historically cast iron).

167 Typically, these pipelines are buried, making them
168 difficult to inspect and expensive and disruptive to
169 repair. Burial reduces pipelines' vulnerability to
170 hazards, such as high wind events; however, hazards
171 that cause landslides, such as earthquakes, floods,
172 long-term heavy rain, and wildfire, can damage
173 transmission lines. Figure 9-2 shows a transmission
174 pipeline bridge demolished in the Bull Run Canyon in
175 a landslide event induced by heavy rains.

176 **Figure 9-2. Water Transmission Pipeline Bridge
177 Damaged by Landslide (Courtesy of Portland
178 Water Bureau)**

179 **9.2.1.3. Treatment**

180 Water treatment plants process raw water from groundwater or surface water supplies to meet public
181 health water quality standards and often to improve taste. The processes used depend on the raw water
182 source, removing pathogens, organic or inorganic contaminants, chemicals, and turbidity. The treatment
183 process commonly includes pretreatment, flocculation, sedimentation, filtration, and disinfection with
variations of these processes in some modern plants. Water treatment plants typically consist of a number
of process tanks, yard and plant piping, pumps, chemical storage and feed equipment, lab and office
building space, and associated mechanical, electrical, and control equipment.

184 Water treatment plants are vulnerable to flooding, because they are often located near flooding sources
185 (i.e., lakes, rivers). Electrical control systems are often damaged by flood inundation, leading to loss of
186 functionality and service outages. In 1991, the Des Moines, Iowa Water Treatment Plant was submerged
187 by riverine flooding, resulting in 19 days without potable water for the city of Des Moines.

188 Loss of power at water treatment plants from high wind events (hurricanes, tornadoes), severe storms, or
 189 other hazards can severely impact the system by preventing proper treatment prior to transmission and
 190 distribution. As a result, potable water may not be available and boil water notices necessary. While
 191 standby power systems are usually incorporated into a water treatment plant's design, they need to be
 192 well-maintained, tested regularly, and adequately connected, installed, supplied, and protected from
 193 hazard events to be reliable and function properly.

194 Earthquakes also cause damage to water treatment plants and their components. In 1989, the Loma Prieta
 195 earthquake in California heavily damaged the clarifiers due to sloshing water at the Rinconada Water
 196 Treatment Plant in San Jose, California, greatly curtailing its 40 MGD capacity (Figure 9-3). In the 2011
 197 Tohoku earthquake in Japan, liquefaction resulted in differential settlement between pile-supported
 198 structures and direct-buried pipe at water treatment plants, as shown in Figure 9-4.

Figure 9-3. Santa Clara Valley Water District, Rinconada Water Treatment Plant Clarifier Launder Damaged due to Sloshing, 1989 Loma Prieta Earthquake (Courtesy of Don Ballantyne)

Figure 9-4. Liquefaction Caused Differential Settlement Between Pile-Supported Structures and Buried Pipe during the 2011 Tohoku Earthquake (Courtesy of Don Ballantyne)

199 **9.2.1.4. Pumping**

200 Pumping stations increase hydraulic head (i.e., raise water from one elevation to a higher elevation). A
 201 pump station typically consists of a simple building that houses pumps, motors that power the pumps,
 202 pipes, valves, and associated mechanical, electrical, and control equipment. Pump stations often have
 203 standby emergency generators to enable continued operation when commercial power supply is
 204 interrupted.

205 Similarly to water treatment plants, loss of
 206 commercial electrical power due to any type of
 207 hazard event prevents operation of pumps if there
 208 is no standby power supply. Furthermore,
 209 floodwater can inundate electrical equipment and
 210 controls at pump stations located wholly or
 211 partially below grade and/or in flood-prone areas.
 212 Figure 9-5 shows a pump station adjacent to the
 213 Missouri River damaged by flood inundation.

214 **9.2.1.5. Storage**

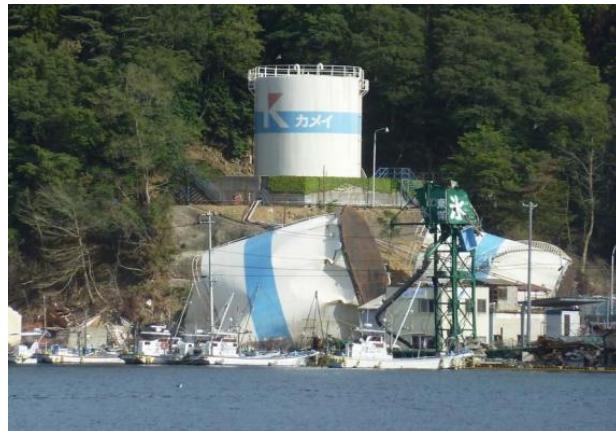
215 Water utilities use storage tanks and reservoirs to
 216 balance water demand with water production
 217 capacity. Stored potable water is drawn down
 218 during times of peak usage and recharged during
 219 off-peak hours. Typically, one to three days of

Figure 9-5. Bismarck, ND Pump Station Damaged by Flood Inundation from Adjacent Missouri River (Courtesy of FEMA)

220 daily water demand is stored to satisfy increased demand from fire suppression or other emergency needs.
221 Reservoirs are often constructed by damming a valley with a concrete or earthen dam. If they are being
222 used for treated water, they can be lined with asphalt or concrete and covered.

223 Modern steel storage tanks are either ground-supported, taller standpipes, or elevated tanks supported on a
224 frame or pedestal. Reinforced concrete tanks are typically at grade or buried. Circular concrete tanks can
225 be reinforced with wire wrapping or tendons.

226 Storage tanks are vulnerable to a number of
227 hazards. Elevated storage tanks are more
228 susceptible to hazards from high winds than
229 structures located at grade and can be damaged to
230 the point of structural failure, suddenly releasing
231 their contents. In hurricanes, high winds present a
232 higher hazard in coastal areas (than further
233 inland) and are often accompanied by storm
234 surge. Figure 9-6 shows a collapsed water tank in
235 Buras, Louisiana near Hurricane Katrina's
236 landfall that was likely caused by a combination
237 of high winds and storm surge.


238 At-grade or partially-underground storage tanks
239 are more susceptible to flood damage (from
240 hurricane storm surge, riverine flooding, or
241 tsunamis), particularly if located in or near flood-
242 prone areas. Tank damage or failure can be
243 caused by both hydrostatic forces from standing
244 or slow moving water, or hydrodynamic forces
245 imposed by higher velocity flows or wave action.
246 Buoyancy forces can cause uplift of empty
247 subgrade tanks if the soil becomes saturated.
248 Figure 9-7 shows two liquid fuel tanks in the
249 foreground that were floated and toppled by
250 tsunami wave inundation after the 2011 Tohoku,
251 Japan tsunami. The tank in the background was
252 on higher ground and does not appear to be
253 damaged.

254 Earthquakes can damage storage tanks due to
255 lateral loads (shaking) and permanent ground
256 deformation due to liquefaction and landslides. Water sloshes in storage and process tanks imparting
257 extreme loads on tank walls and baffles. In the 1994 Northridge earthquake, a Los Angeles Department of
258 Water and Power (LADWP) tank moved, severing piping, as shown in Figure 9-8. The utility just north
259 of LADWP suffered elephant's foot buckling in a steel tank as shown in Figure 9-9.

260

Figure 9-6. Collapsed Water Tank in Buras, LA near Hurricane Katrina Landfall Location (Courtesy of David Goldbloom- Helzner)

Figure 9-7. Steel Tanks Damaged Due to Tohoku, Japan Tsunami in 2011 (Tang & Edwards 2014)

Figure 9-8. Tank Moved, Severing Connecting Pipe in 1994 Northridge Earthquake (Courtesy of Los Angeles Department of Water and Power)

Figure 9-9. Steel Tank “Elephant’s Foot” Buckling in 1994 Northridge Earthquake (Courtesy of Donald Ballantyne)

261 **9.2.1.6. Distribution**

262 Smaller diameter distribution pipelines carry treated water from transmission pipelines to neighborhoods
263 commercial and industrial areas. Service connections with meters branch off distribution pipelines to
264 supply individual customers. The portion of the service connection before the water meter is typically
265 maintained by the water utility and the portion after the water meter is the responsibility of the individual
266 customer. The system is controlled with manually operated valves distributed at most pipeline
267 intersections. Distribution systems have fire hydrants located every 300 feet along the pipeline.
268 Distribution pipelines are commonly made with ductile iron (historically cast iron), welded steel, PVC, or
269 asbestos cement.

270 Leaks and breaks are two main concerns for distribution pipelines. A leak commonly refers to relatively
271 minor damage to a pipe barrel or joint that causes minor to moderate water loss, but does not significantly
272 impair the distribution system's function. However, breaks commonly refer to major damage to a pipe
273 barrel or joint that causes major water and pressure loss in a zone or drains nearby tanks. When there are
274 breaks in the water distribution system, it can lead to depressurization of the system. Depressurization can
275 result in sediment accumulation within the pipelines affecting the potability of the water, contamination
276 and loss of potability means boil water orders should be issued. Before water can be considered potable
277 again, the distribution systems must be fixed and the water quality monitored and tested continuously to
278 meet public health standards.

279 Breaks of distribution pipelines can result from a number of hazards. Floods cause erosion, exposing,
280 possibly breaking pipelines (see Figure 9-10).

Figure 9-10. Exposed and Broken Distribution Lines Resulting from Flooding in Jamestown, CO (Courtesy of David Goldbloom-Helzner)

281 Earthquakes can cause liquefaction or permanent
282 ground deformation, causing pipeline breaks. In the
283 1994 Northridge earthquake, the Los Angeles
284 Department of Water and Power had approximately
285 1,000 pipeline breaks, primarily in cast iron pipe.
286 While there was only limited liquefaction, ground
287 motions were very strong. A year later, the Kobe
288 earthquake caused approximately 1,200 pipeline
289 failures due to extensive liquefaction. Most of the
290 system was constructed of ductile iron pipe, which
291 primarily failed by joint separation as seen in Figure
292 9-11.

293 High wind events, such as hurricanes or tornadoes,
294 can result in damage to distribution lines, though not
295 directly cause by high winds, but by uprooted trees.
296 For example, during Hurricane Andrew, there was
297 extensive damage to the water distribution systems
298 in Southern Florida primarily caused by tree roots that had grown and wrapped themselves around the
299 water mains and service lines. When these trees were uprooted by hurricane force winds, (Hurricane
300 Andrew was a Category 5 on the Saffir-Sampson scale when it made landfall in Dade County, Florida)
301 they pulled the lines too. Similar damage to water transmission and distribution systems occurred during
302 Hurricanes Katrina and Rita in Louisiana (Allouche, 2006). As stated above, no matter the cause of
303 damage, pipeline breaks resulting in a depressurized system contaminate the pipelines, affecting the
304 potability of the water and requiring additional recovery time.

Figure 9-11. Joint Separation in Ductile Iron Pipe due to Liquefaction during 1995 Kobe Earthquake (Courtesy of Kobe Water Department)

9.2.2. Wastewater Systems

306 Wastewater systems collect domestic and industrial liquid waste products and convey them to treatment
307 plants through collection and conveyance systems and pump stations. After separation of solids,
308 biological processing and disinfection, treated wastewater is discharged as effluent into a receiving body
309 of water or alternatively, may be reused for irrigation or other purposes. Some utilities have separate
310 collection systems for wastewater and storm water; other utilities have collection systems combine
311 collected wastewater and storm water in the same pipelines.

312 Pipeline system failure can discharge raw sewage into basements, on to city streets, and into receiving
313 waters, resulting in public health issues and environmental contamination. Standard wastewater systems

314 are composed of five general categories of infrastructure: 1) Collection, 2) Conveyance, 3) Pumping, 4)
315 Treatment, and 5) Discharge. The basic function of each of these categories is briefly described in the
316 following subsections. Apart from standard systems, pressure and vacuum systems are used on occasion.
317 Pressure systems require a grinder pump at each house that pump the sewage through small diameter pipe
318 to a larger pipe collector, and often times to a gravity sewer. Vacuum systems work in a similar manner,
319 except a vacuum pump and tank pull sewage through shallow small diameter pipe to a central location.

320 **9.2.2.1. Collection**

321 The collection pipeline network for wastewater systems is similar to that for water systems, except instead
322 of delivering water to individual customers the wastewater collection system conveys liquid and other
323 waste products away from customers. This is usually accomplished using gravity sewers. In some
324 instances pumps convey wastewater through pressurized force mains. The elevation and grade of the
325 pipelines in the system need to be carefully controlled to maintain gravity flow in the system. Infiltration
326 and inflow of groundwater into the collection system through cracks and breaks in the pipe can
327 significantly increase the volume of wastewater that arrives at the treatment plant. A variety of pipe
328 materials are commonly found in collection systems, including:

- 329 • Vitrified clay – smaller diameter collection
- 330 • PVC – smaller diameter collection
- 331 • Asbestos cement – historically smaller diameter collection
- 332 • Reinforced concrete – larger diameter interceptors
- 333 • Steel – force mains or siphons
- 334 • Polyethylene – force mains or siphons
- 335 • Ductile iron (or historically cast iron) – collection or force mains
- 336 • Brick – larger capacity interceptors
- 337 • Fiberglass or FRP
- 338 • ABS

339 Gravity systems have manholes at regular intervals allowing access for cleaning and maintenance.
340 Manholes are usually constructed with concrete, although historically manholes were often constructed
341 with brick.

342 Wastewater collection pipes have similar causes of damage to those of water distribution and transmission
343 pipelines. Wastewater collection pipelines can be exposed and damaged because of landslides, erosion, or
344 scour, which damages or breaks the pipelines. Furthermore, wastewater collection pipelines can be
345 damaged in high wind events by uprooted trees with root systems grown around the pipelines.

346 In the collection and conveyance system, pipelines are damaged by earthquake shaking, but more
347 extensively due to liquefaction and associated lateral spreading. Sewer pipes can be damaged by shaking,
348 which can cause joints to crack, but most remain operable. These cracks will ultimately have to be
349 repaired to control infiltration. Liquefaction can result in pulled joints and displaced pipe. Another cause
350 of failure is pipe flotation, occurring when a partially-filled gravity sewer is surrounded by liquefied soil.

351 Flooding can also damage wastewater collection pipelines in a number of ways. Pipelines that are co-
352 located on bridges experience damage caused by flood inundation and flood-borne debris impact.
353 Hydrodynamic forces associated with coastal flooding or high velocity flows are more likely to damage
354 structures and attached pipelines than inundation alone. In the New Orleans area after Hurricane Katrina,
355 the most common damage to buried wastewater pipelines observed by clean-up crews was separation of
356 pipe joints, leaks, and breaks. This damage was believed to be the result of floodwaters supersaturating
357 soils then draining, leading to soil shrinkage and subsidence. Without support of the soils, the rigid
358 pipelines broke and fractured (Chisolm, 2012). Increased flow and pressurization of the wastewater

359 collection systems as the result of inflow and infiltration during flood events can also damage pipelines,
360 particularly in cases where pipes are composed of materials such as vitrified clay. For example, during the
361 1997 Red River Flood in Grand Forks, North Dakota, pressurization caused breaking of vitrified clay pipe
362 and hairline cracks increased the rate of overall pipe deterioration (Chisom 2012).

363 **9.2.2.2. Conveyance**

364 The conveyance system for the wastewater network is similar to the transmission system in a water
365 system. The conveyance pipelines are larger in diameter, and are often times deeper underground. In
366 many instances, these conveyance systems were installed in the early to mid-1900s as the United States
367 began to clean up its waterways. The conveyance systems are designed to collect sewage from the
368 collection system and move it to the wastewater treatment plant. Like collection systems, it may include
369 pump stations. Recently, the EPA is pushing wastewater utilities to minimize discharge of raw sewage to
370 receive water runoff during heavy rain events. This often resulted in cities having sewers that carried both
371 sewage and storm water. As a result, many conveyance systems now have a built-in large storage
372 capacity, taking the form of a wide point in the line and, in some cases, simplified wastewater treatment
373 facilities.

374 **9.2.2.3. Pumping**

375 Gravity feed systems use pump or lift stations to lift wastewater to a higher elevation. The pump may
376 discharge at the higher elevation to another section of gravity feed pipeline or may remain a pressurized
377 force main and discharge at a distant location, such as a treatment plant. A pump station typically consists
378 of a simple building that houses pumps, motors that power the pumps, pipes, and associated mechanical,
379 electrical, and control equipment. The pumps can be located in a building (typically wetwell-drywell
380 layout) or a large manhole (submersible). Pump stations are required to have standby generators to enable
381 continued operation when the commercial power supply is interrupted.

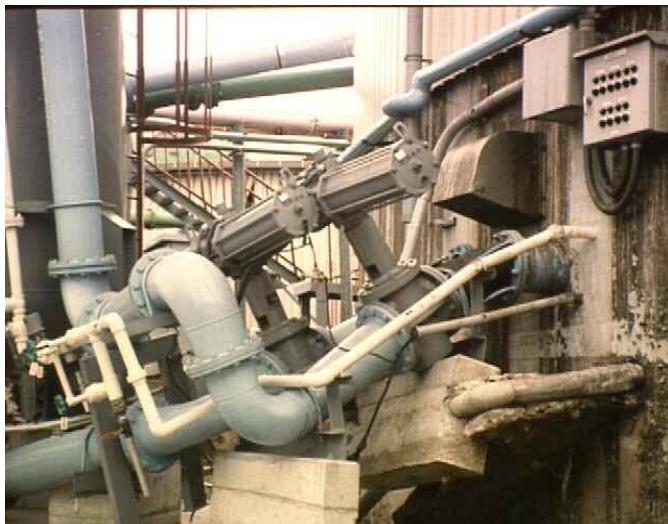
382 Pump stations are vulnerable to a number of hazards, most notably earthquakes and flooding. Unless
383 designed to be submersible, floodwater inundating pumps can disable and damage the pumps and their
384 motors. This was a common cause of pump station failure in New York City during flood inundation
385 from Hurricane Sandy (NYCDEP, 2013). Damage is even worse if salt water flooding is involved,
386 leading to corrosion. Loss of commercial electrical power prevents operation of pumps if adequate
387 standby power is not provided or these generators are not refueled in a timely manner. Earthquakes can
388 cause liquefaction, resulting in buried wastewater collection wells at pump stations to float and tilt. This
389 movement likely damages connecting piping and renders the pump station inoperable. Manholes and
390 pump stations can float as well, when founded in liquefied soils, which changes the grade, making the
391 sewer unusable or difficult to maintain.

392 **9.2.2.4. Treatment**

393 Wastewater treatment plants process raw sewage from household and industrial sources so the resulting
394 effluent discharge meets public health and environmental standards. The typical process is: 1) Pretreatment using screens and grit chambers, 2) Primary treatment in a sedimentation tank, 3) Secondary
395 treatment using biological treatment and clarifiers, and 4) Disinfection using chlorine or other
396 disinfectants. In some cases, the effluent is further treated at a higher level to be used for irrigation. Solids
397 drawn off from the four processes are further treated in digesters and solidified using presses or
398 centrifuges. These processes require an extensive mechanical and electrical equipment and piping.

400 Wastewater treatment plants are susceptible to damage from several natural hazards, particularly flooding.
401 Wastewater treatment plants are often located in or near flood-prone areas because they return treated
402 water to naturally occurring bodies of water via gravity. Therefore, they can be vulnerable to flood
403 inundation or storm surge and wave action from coastal sources, causing damage and loss of functionality
404 to buildings, equipment, and electrical and mechanical systems. The New York City Department of

405 Environmental Protection (NYC DEP) noted in a recent study that all 14 of the wastewater treatment
406 plants (WWTP) it owns and operates are at risk of flood damage ([NYCDEP, 2013](#)).


407 WWTPs in non-coastal regions of the United States are often located adjacent to rivers. With the
408 projected sea level rise continuing through the 21st century, the frequency of these facilities flooding will
409 increase. Some recent examples of WWTP riverine flooding include: 1) Nine days of lost functionality
410 due to flooding of Valdosta, Georgia WWTP in 2009; 2) Flooding of the Pawtuxet River in Warwick,
411 Rhode Island in 2010; and 3) Shut down of the Palmyra, Indiana WWTP in 2011 due to rising water
412 levels.

413 In areas where wastewater treatment facilities are elevated or protected by levees, flooding can still lead
414 to access issues. While the treatment facility itself may not be inundated, flooding around the facility can
415 limit both ingress and egress of vital staff. This was the case for several WWTPs located along the
416 Missouri and Mississippi Rivers during the 1993 flood. Access to facilities was only possible by boat,
417 while roads inundated by the flood were not considered stable enough for larger vehicles, such as those
418 that carried supplies for the plants (Sanders, 1997).

419 Release of untreated sewage is relatively common during major flood events when inflow and infiltration
420 can overtax wastewater collection systems or when there are combined sewer overflows. During
421 Hurricane Sandy, over 560 million gallons of untreated and diluted sewage, mixed with storm water and
422 seawater, was released into waterways. This instance of sewage release was caused by infiltration of
423 floodwaters into the sewer system, flood inundation of plant facilities, and power outages ([NYC DEP,](#)
424 [2013](#)). After Hurricane Sandy, electronic controls were inundated and damaged in many wastewater
425 treatment facilities, which significantly delayed the facilities' recovery times ([FEMA 2013](#)). Similarly,
426 after Hurricane Rita in 2005, the City of Lake Charles had a citywide power loss that affected the
427 wastewater treatment plant serving two-thirds of the city, releasing raw sewage into a nearby lake for over
428 a week, until power was restored.

429 While discharge or raw sewage contaminates the receiving water, chemical contamination of sewage can
430 impact the WWTP treatment process itself. For example, in the 1989 Loma Prieta earthquake in
431 California, the East Bay Municipal Utility District (EBMUD) WWTP biological treatment process failed
432 due to a spill in the collection system contaminating the treatment plant influent. Coupled with the spill,
433 EBMUD lost power and were unable to pump oxygen into the treatment system, resulting in the
434 secondary treatment system being inoperable for several weeks.

435 WWTPs are at a low point in the elevation of the system. Though flooding from different hazard events
436 (hurricane storm surge, coastal and riverine flooding, and tsunamis) is a primary concern, earthquakes can
437 damage facilities by shaking, permanent ground deformation, and liquefaction. Shaking is particularly
438 problematic in process tanks and digesters where the hydraulic load from sloshing sewage impacts the
439 tank walls. Liquefaction-induced permanent ground deformation often causes process tank joint
440 separation, damage to pipelines, pipe racks, etc. Even if treatment structures are pile-supported, direct-
441 buried piping can settle differentially and break. In the 2011 Christchurch earthquake in New Zealand,
442 clarifiers settled differentially rendering them inoperable. In the 1995 Kobe Earthquake, the Higashinada
443 WWTP site settled differentially as much as one meter, and moved laterally as much as two meters due to
444 liquefaction heavily damaging non-pile-supported structures. The resulting damage is shown in Figure
445 9-12. Figure 9-13 shows the Higashinada influent channel that was offset one meter by liquefaction
446 during the 1995 Kobe earthquake.

Figure 9-12. Non-Pile Supported Structures Failed Due to Liquefaction in 1995 Kobe Earthquake (Courtesy of Donald Ballantyne)

Figure 9-13. Higashinda WWTP Channel Offset by Liquefaction in 1995 Kobe Earthquake (Courtesy of Donald Ballantyne)

447 Strong earthquakes can produce tsunamis that structurally damage treatment plant facilities due to lateral
448 hydraulic loading and can inundate facilities, causing damage to electrical gear. The 2011 Tohoku
449 earthquake in Japan caused heavy damage to the Sendai WWTP Effluent Pump Station's east wall, as
450 shown in Figure 9-14. Much of the treatment plant's process tank equipment required replacement
451 because of the large amount of damage, as shown in Figure 9-15.

Figure 9-14. Sendai WWTP Effluent Pump Station Damaged by Tsunami in 2011 Tohoku Earthquake (Courtesy of Donald Ballantyne)

Figure 9-15. Sendai WWTP Equipment and Piping Damage from 2011 Earthquake (Courtesy of Donald Ballantyne)

452 **9.2.2.5. Discharge**

453 Effluent from the treatment plant is discharged to a receiving body of water through an outfall. Outfalls
454 are composed of a pipeline with a diffuser at the end discharging the water hundreds or thousands of feet
455 away from the shoreline, at a depth that will minimize impact on the environment.

456

9.3. Performance Goals

457 The large and distributed nature of water and wastewater systems, combined with their interdependence
458 on other infrastructure systems, limits the practicality of maintaining 100 percent operational capacity in
459 the aftermath of a major natural disaster. This section provides an example of performance goals for water
460 and wastewater systems in the fictional community of Centerville, USA.

461 Performance goals need to be discussed with individual utilities and communities before they are adopted.
462 It is important to consider the uniqueness of the infrastructure of individual utilities and the specific needs
463 of their customers when adopting system performance goals for a community. Water and wastewater
464 stakeholder engagement is critical in establishing a community-specific level of service performance
465 goals for each of the three different hazard levels (*routine*, *expected*, and *extreme*) defined in Chapter 3.
466 Stakeholders should include representation from the following organizations as applicable:

- Residential customers
- Business owners
- Industry representatives
- Water wholesale customers
- Hospital representatives
- Fire department officials and crew
- Local government officials
- Local emergency management officials
- Drinking water regulators (Health Authority, etc.)
- Wastewater regulators (Dept. of Environmental Quality, Environmental Protection Agency, etc.)
- Water and wastewater utility operators and engineers
- Consulting engineers
- Interdependent infrastructure system operators (power, liquid fuel, transportation, etc.)

480 Establishing performance goals involves a discussion amongst the stakeholders about their expectations
481 for the availability of water and wastewater systems following a hazard event in the short, intermediate,
482 and long term phases for different hazard levels (e.g., *routine*, *expected*, and *extreme*). The assumed
483 expectation of the public is that for *routine* hazard events there would be little, if any, interruption of
484 service for water and wastewater lifelines. A dialogue is required between utilities and customers to
485 determine the appropriate level of service performance goals for *expected* and *extreme* events. While
486 examples are provided in Table 9-2 through Table 9-7 (pages 16 through 21), it is anticipated that actual
487 goals will vary by community and are dependent on community priorities, as determined during the
488 development of the goals and through outreach to and discussion among stakeholders.

489 There may be variability for an individual community's goals depending on the specific hazard being
490 addressed. For example, if a community is subject to both seismic and wind hazards, they may determine
491 that the damage to major collection lines within a wastewater system from an extreme seismic event is
492 more likely and requires more restoration time, compared to damage from an extreme wind event.

493 There may be elements in a system that are so critical to public safety they need to be designed to remain
494 operational after an *extreme* event. For example, failure of a water supply impoundment dam presents a
495 significant life-safety hazard to downstream residents and should be designed for an *extreme* event.

496 Interdependencies of water and wastewater systems with other infrastructure also need to be considered
497 when developing performance goals. For instance, availability of a reliable supply of liquid fuel impacts
498 how long systems can run on standby generators and impacts repair crew's vehicles and equipment. In
499 turn, delivery of liquid fuels depends on the status of the highway and bridge transportation network.

DISASTER RESILIENCE FRAMEWORK

75% Draft for San Diego CA Workshop

11 February, 2015

Water and Wastewater Systems, Performance Goals

500 Performance goals are broken down into functional categories (i.e., water for fire suppression at key
501 supply points, treatment plants operating to meet regulatory requirements, etc.) and further broken down
502 into target timelines to restore the functional categories to 30 percent, 60 percent, and 90 percent
503 operational status.

504 The infrastructure components in the example performance goals tables are not intended to be an
505 exhaustive list. Some of the system components may not exist in all communities. For instance, in the
506 water system performance goals, some communities may have the ability to distinguish between the
507 general water supply and distribution and water supply for fire suppression. However, most systems are
508 integrated and will not have a means to separate general supply and distribution from that needed for fire
509 suppression. Additionally, some communities might have wholesale users – a system component listed in
510 the performance goals – meaning their water system supplies all of the water used by other nearby,
511 smaller communities. Wholesale users are treated as a critical part of the distribution system within the
512 example, but are not a consideration for all communities. Each community will need to review these
513 components to determine which ones to incorporate into their systems.

514 Similarly, communities may want to add certain system components to these goals that are not already
515 captured here, to provide additional detail and allow for distinction between restoration timeframes. There
516 may also be system components that are unique to a community that require special consideration. While
517 the lists presented in the examples generally capture significant system components, it is recognized that
518 communities may have additional infrastructure assets to consider.

519 The financial burden associated with upgrading all components of an entire system to be more disaster
520 resilient would overwhelm the short-term capital improvement budgets of most utilities. Therefore,
521 performance goals have been established around certain concepts.

- 522 • Prioritizing potential solutions to be implemented over many years to limit disruptions and
523 recovery time rather than implementing them all at once
- 524 • Recognizing that there may be both short and long-term solutions capable of decreasing recovery
525 times
- 526 • Balancing societal needs with realistic expectations of system performance

527 Focusing on major system components that form a backbone network capable of supplying key health and
528 safety-related community needs shortly after a hazard event is one way to focus priorities. Recognizing
529 that potentially less costly short-term solutions combined with longer term physical hardening of
530 infrastructure allows for increased resilience would manage community's expectations and the cost of
531 implementing solutions.

532

DISASTER RESILIENCE FRAMEWORK

75% Draft for San Diego CA Workshop

11 February, 2015

Water and Wastewater Systems, Performance Goals

533 **Table 9-2. Example Water Infrastructure Performance Goals for Routine Event in Centerville, USA**

Disturbance			Restoration times		
(1)	Hazard	Any	(2)	30%	Restored
	Affected Area for Routine Event	Localized		60%	Restored
	Disruption Level	Minor		90%	Restored
			(3)	X	Current

534

Functional Category: Cluster	(4) Support Needed	(5) Target Goal	Overall Recovery Time for Hazard and Level Listed									
			Routine Hazard Level									
			Phase 1 – Short-Term			Phase 2 -- Intermediate			Phase 3 – Long-Term			
			0	1	1-3	1-4	4-8	8-12	4	4-24	24+	
Source		1										
Raw or source water and terminal reservoirs			90%			X						
Raw water conveyance (pump stations and piping to WTP)			90%			X						
Potable water at supply (WTP, wells, impoundment)			90%			X						
Water for fire suppression at key supply points (to promote redundancy)			90%			X						
Transmission (including Booster Stations)		1										
Backbone transmission facilities (pipelines, pump stations, and tanks)			90%			X						
Control Systems												
SCADA or other control systems			90%			X						
Distribution												
Critical Facilities		1										
Wholesale Users (other communities, rural water districts)			90%			X						
Hospitals, EOC, Police Station, Fire Stations			90%			X						
Emergency Housing		1										
Emergency Shelters			90%			X						
Housing/Neighborhoods		2										
Drink water available at community distribution centers				90%			X					
Water for fire suppression at fire hydrants				90%			X					
Community Recovery Infrastructure		3										
All other clusters					90%		X					

535

Footnotes:

1 Specify hazard being considered

Specify level -- Routine, Expected, Extreme

Specify the size of the area affected - localized, community, regional

Specify severity of disruption - minor, moderate, severe

2

30%	60%	90%
-----	-----	-----

 Restoration times relate to number of elements of each cluster

3

X

 Estimated restoration time for current conditions based on design standards and current inventory

Relates to each cluster or category and represents the level of restoration of service to that cluster or category

Listing for each category should represent the full range for the related clusters

Category recovery times will be shown on the Summary Matrix

"X" represents the recovery time anticipated to achieve a 90% recovery level for the current conditions

4 Indicate levels of support anticipated by plan

R Regional

S State

MS Multi-state

C Civil Corporate Citizenship

5 Indicate minimum performance category for all new construction.

See Section 3.2.6

DISASTER RESILIENCE FRAMEWORK

75% Draft for San Diego CA Workshop

11 February, 2015

Water and Wastewater Systems, Performance Goals

536

Table 9-3: Example Water Infrastructure Performance Goals for Expected Event in Centerville, USA

Disturbance			Restoration times		
(1)	Hazard	Any	(2)	30%	Restored
	Affected Area for Routine Event	Localized		60%	Restored
	Disruption Level	Minor		90%	Restored
			(3)	X	Current

537

Functional Category: Cluster	(4) Support Needed	(5) Target Goal	Overall Recovery Time for Hazard and Level Listed									
			Expected Hazard Level									
			Phase 1 – Short-Term			Phase 2 -- Intermediate			Phase 3 – Long-Term			
			Days		Wks			Mos				
Source		1	0	1	1-3	1-4	4-8	8-12	4	4-24	24+	
Raw or source water and terminal reservoirs					90%							
Raw water conveyance (pump stations and piping to WTP)						90%				X		
Potable water at supply (WTP, wells, impoundment)			30%		60%	90%			X			
Water for fire suppression at key supply points (to promote redundancy)			90%			X						
Transmission (including Booster Stations)		1							X			
Backbone transmission facilities (pipelines, pump stations, and tanks)			90%									
Control Systems												
SCADA or other control systems			30%		60%	90%		X				
Distribution												
Critical Facilities		1										
Wholesale Users (other communities, rural water districts)				60%	90%							
Hospitals, EOC, Police Station, Fire Stations				60%	90%			X				
Emergency Housing		1										
Emergency Shelters				60%	90%			X				
Housing/Neighborhoods		2										
Drink water available at community distribution centers					60%	90%						
Water for fire suppression at fire hydrants						90%				X		
Community Recovery Infrastructure		3					30%	90%				
All other clusters									X			

538

Footnotes: See Table 9-2, page 16.

DISASTER RESILIENCE FRAMEWORK

75% Draft for San Diego CA Workshop

11 February, 2015

Water and Wastewater Systems, Performance Goals

539

Table 9-4: Example Water Infrastructure Performance Goals for Extreme Event in Centerville, USA

Disturbance			Restoration times		
(1)	Hazard	Any	(2)	30%	Restored
	Affected Area for Extreme Event	Regional		60%	Restored
	Disruption Level	Severe		90%	Restored
			(3)	X	Current

540

Functional Category: Cluster	(4) Support Needed	(5) Target Goal	Overall Recovery Time for Hazard and Level Listed								
			Extreme Hazard Level								
			Phase 1 – Short-Term			Phase 2 – Intermediate			Phase 3 – Long-Term		
			Days			Wks			Mos		
			0	1	1-3	1-4	4-8	8-12	4	4-36	36+
Source		1									
Raw or source water and terminal reservoirs			30%		60%	90%			X		
Raw water conveyance (pump stations and piping to WTP)						60%	90%			X	
Potable water at supply (WTP, wells, impoundment)					30%	60%	90%			X	
Water for fire suppression at key supply points (to promote redundancy)					90%	X					
Transmission (including Booster Stations)		1									
Backbone transmission facilities (pipelines, pump stations, and tanks)			30%				60%		90%	X	
Control Systems											
SCADA or other control systems						30%	60%	90%			
Distribution											
Critical Facilities		1									
Wholesale Users (other communities, rural water districts)							60%		90%	X	
Hospitals, EOC, Police Station, Fire Stations						60%	90%		X		
Emergency Housing		1									
Emergency Shelters						60%	90%		X		
Housing/Neighborhoods		2									
Drink water available at community distribution centers					30%	60%	90%		X		
Water for fire suppression at fire hydrants						60%	90%			X	
Community Recovery Infrastructure		3									
All other clusters								60%	90%		X

541

Footnotes: See Table 9-2, page 16.

DISASTER RESILIENCE FRAMEWORK

75% Draft for San Diego CA Workshop

11 February, 2015

Water and Wastewater Systems, Performance Goals

542
543

Table 9-5. Example Wastewater Infrastructure Performance Goals for Routine Event in Centerville, USA

Disturbance			Restoration times		
(1)	Hazard	Any	(2)	30%	Restored
	Affected Area for Routine Event	Localized		60%	Restored
	Disruption Level	Minor		90%	Restored
			(3)	X	Current

544

Functional Category: Cluster	(4) Support Needed	(5) Target Goal	Overall Recovery Time for Hazard and Level Listed								
			Routine Hazard Level								
			Phase 1 – Short-Term			Phase 2 -- Intermediate			Phase 3 – Long-Term		
			Days			Wks			Mos		
			0	1	1-3	1-4	4-8	8-12	4	4-24	24+
Treatment Plants						90%	X				
Treatment plants operating with primary treatment and disinfection											
Treatment plants operating to meet regulatory requirements						90%	X				
Trunk Lines											
Backbone collection facilities (major trunkline, lift stations, siphons, relief mains, aerial crossings)					60%	90%	X				
Flow equalization basins					60%	90%	X				
Control Systems											
SCADA and other control systems				90%		X					
Collection Lines											
Critical Facilities											
Hospitals, EOC, Police Station, Fire Stations					90%	X					
Emergency Housing											
Emergency Shelters					90%	X					
Housing/Neighborhoods											
Threats to public health and safety controlled by containing & routing raw sewage away from public				60%	90%	X					
Community Recovery Infrastructure											
All other clusters				60%	90%	X					

545

Footnotes: See Table 9-2, page 16.

DISASTER RESILIENCE FRAMEWORK

75% Draft for San Diego CA Workshop

11 February, 2015

Water and Wastewater Systems, Performance Goals

546
547

Table 9-6: Example Wastewater Infrastructure Performance Goals for Expected Event in Centerville, USA

Disturbance			Restoration times		
(1) Hazard	Any		(2)	30%	Restored
Affected Area for Expected Event	Community			60%	Restored
Disruption Level	Moderate			90%	Restored
			(3)	X	Current

548

Functional Category: Cluster	(4) Support Needed	(5) Target Goal	Overall Recovery Time for Hazard and Level Listed								
			Expected Hazard Level								
			Phase 1 – Short-Term			Phase 2 -- Intermediate			Phase 3 – Long-Term		
			Days			Wks			Mos		
			0	1	1-3	1-4	4-8	8-12	4	4-24	24+
Treatment Plants											
Treatment plants operating with primary treatment and disinfection					60%	90%					
Treatment plants operating to meet regulatory requirements						30%			60%	90%	X
Trunk Lines											
Backbone collection facilities (major trunkline, lift stations, siphons, relief mains, aerial crossings)					30%		60%	90%			X
Flow equalization basins					30%		60%	90%			X
Control Systems											
SCADA and other control systems					30%		60%	90%			X
Collection Lines											
Critical Facilities											
Hospitals, EOC, Police Station, Fire Stations					30%	90%				X	
Emergency Housing											
Emergency Shelters					30%	90%				X	
Housing/Neighborhoods											
Threats to public health and safety controlled by containing & routing raw sewage away from public				30%		60%	90%			X	
Community Recovery Infrastructure											
All other clusters					30%		60%		90%		X

549 Footnotes: See Table 9-2, page 16.

DISASTER RESILIENCE FRAMEWORK

75% Draft for San Diego CA Workshop

11 February, 2015

Water and Wastewater Systems, Performance Goals

550
551

Table 9-7: Example Wastewater Infrastructure Performance Goals for Extreme Event in Centerville, USA

Disturbance		
(1)	Hazard	Any
	Affected Area for Extreme Event	Regional
	Disruption Level	Severe

Restoration times		
(2)	30%	Restored
	60%	Restored
	90%	Restored
(3)	X	Current

552

Functional Category: Cluster	(4) Support Needed	(5) Target Goal	Overall Recovery Time for Hazard and Level Listed									
			Extreme Hazard Level									
			Phase 1 – Short-Term			Phase 2 -- Intermediate			Phase 3 – Long-Term			
			Days			Wks			Mos			
			0	1	1-3	1-4	4-8	8-12	4	4-36	36+	
Treatment Plants												
Treatment plants operating with primary treatment and disinfection						30%	60%		90%	X		
Treatment plants operating to meet regulatory requirements										90%	X	
Trunk Lines												
Backbone collection facilities (major trunkline, lift stations, siphons, relief mains, aerial crossings)						30%	60%		90%	X		
Flow equalization basins						30%	60%		90%	X		
Control Systems												
SCADA and other control systems								60%		90%	X	
Collection Lines												
Critical Facilities												
Hospitals, EOC, Police Station, Fire Stations						30%	90%			X		
Emergency Housing												
Emergency Shelters						30%	90%			X		
Housing/Neighborhoods												
Threats to public health and safety controlled by containing & routing raw sewage away from public						30%	60%	90%		X		
Community Recovery Infrastructure												
All other clusters								60%		90%	X	

553

Footnotes: See Table 9-2, page 16.

554 **9.4. Regulatory Environment**555 **9.4.1. Federal**

556 The federal EPA has requirements for drinking water quality defined in the Safe Drinking Water Act and
557 wastewater discharge water quality defined in the Clean Water Act. These acts are amended on an
558 ongoing basis. In most cases, the EPA gives states primacy to enforce these requirements. There are
559 certain prescriptive requirements associated with each.

560 ***SDWA Example Requirements***

- 561 • Filtration of surface water supplies, except in some cases special treatment of particularly clean
562 surface water supplies
- 563 • Disinfection of supplies (except a few groundwater supplies)
- 564 • Covering of treated water storage

565 ***Clean Water Act Example Requirements***

- 566 • Secondary treatment of wastewater discharges
- 567 • Disinfection of wastewater discharges

568 In general, these regulations all focus on water quality and have limited interest in catastrophic hazard
569 event impacts and planning.

570 **9.4.2. State**

571 ***State Drinking Water Programs.*** States typically regulate water quality and require treatment approaches
572 for recycled water. States ensure water systems meet Safe Drinking Water Act standards by ensuring
573 water systems test for contaminants, reviewing plans for water system improvements, conducting on-site
574 inspections and sanitary surveys, providing training and technical assistance, and taking action against
575 non-compliant water systems.

576 ***State Water Quality Programs.*** States also ensure water systems meet Clean Water Act water quality
577 standards using state water quality programs. They develop and implement water quality standards,
578 regulate sewage treatment systems and industrial dischargers, collect and evaluate water quality data,
579 provide training and technical assistance, and take action against non-compliant wastewater systems.

580 ***Emergency Planning and Community Right-to-Know Act (EPCRA).*** Facilities that store, use, or release
581 certain chemicals may be subject to reporting requirements to state and/or local agencies through EPCRA.
582 Information in reports then becomes publically available. Treatment chemicals stored and used at water
583 treatment plants often require this type of reporting.

584 ***Planning Requirements.*** Water and wastewater planning and design requirements are generally
585 controlled by states and local governments. States typically require comprehensive plans for water and
586 wastewater system are prepared on a regular basis to assess future system needs (e.g. capacity) and how
587 those needs will be met. The elements of those comprehensive plans are defined by the state. Often times,
588 these plans include requirements to identify hazards to which the system could be subjected, and how the
589 utility will address those hazards. These are typically quite general in nature and do not include detailed
590 design criteria.

591 **9.4.3. Local**

592 Individual municipalities or utility districts may elect to impose regulatory standards in excess of federal
593 and state standards. In practice, this is seldom done due to the increased cost to customers associated with
594 meeting higher-than-minimum regulatory standards.

595

9.5. Standards and Codes

596

The state and local government are responsible for adopting model building codes, such as the International Building Code (IBC). Model building codes rely heavily on standards, such ASCE-7, *Minimum Design Loads for Buildings and Other Structures*. In many cases, the state will adopt these model codes; in some cases, local jurisdictions modify them to suit their needs. The IBC and ASCE-7 focus on building structure life safety. State and local agencies will also have special requirements for high risk facilities, such as dams. The Federal Energy Regulatory Commission controls designs of hydroelectric generating dams.

603

The development of design codes is a long and arduous process. These codes are updated on a regular basis taking into account performance of facilities since the last code was issued and other developments in the building industry. Once they are finalized, they are voted on by the code committee and finally adopted by state and/or local jurisdictions. Once a code is well vetted, the state and local jurisdictions adopt it.

608

The following subsections discuss some of the codes, standards, and guidelines that are important to the disaster resilience of water and wastewater infrastructure, the anticipated performance of the infrastructure after an expected hazard event, and the long-term recovery levels of the infrastructure when damage does occur.

612

9.5.1. New Construction

613
614

Design Standards. Developed and adopted by various organizations, the two organizations that have standards most relevant to natural hazard impacts on the water and wastewater industry include:

615

- **American Concrete Institute** – standards addressing concrete process tanks (ACI 350)
- **American Water Works Association (AWWA)** –
 - Standards addressing design of water storage tanks (AWWA D100, D110, D115), addressing seismic design of water storage tanks
 - Standard AWWA-J100, Risk and Resilience Management of Water and Wastewater Systems, addressing performance of water and wastewater systems when subjected to natural and manmade hazards

622
623

AWWA has other standards addressing pipeline design and water quality. However, none of these other standards addresses seismic design for other natural hazards.

624
625
626
627
628
629

For the design of new underground pipelines, there is not a unifying code for water and wastewater systems. This is especially true for seismic design of buried water and wastewater pipelines or buried pipelines that may be impacted by landslides induced by flooding. Often the Chief Engineer of a particular utility is responsible for establishing its design practices. While these agency-specific design practices are generally based on industry recommendations, variability in standards used by utilities results in variability in the intended system reliability for natural and man-made hazards.

630
631
632
633
634
635
636
637

Some utilities develop their own standards to address significant local hazards specifically. For example, the San Francisco Public Utilities Commission (SFPUC) developed its own internal standard that outlines level of service performance goals following a major Bay Area earthquake and specific requirements for design and retrofit of aboveground and underground infrastructure. The SFPUC Engineering Standard *General Seismic Requirements for Design of New Facilities and Upgrade of Existing Facilities* (SFPUC, 2006) establishes design criteria that in many cases are more stringent than building codes and/or industry standards, yet ensures the SFPUC achieves its basic level of service performance goal to deliver winter day demand to their wholesale customers within 24 hours after a major earthquake.

638
639
640

Guidelines and Manuals of Practice. A number of organizations have developed guidelines intended for use by the industry to enhance design of the particular product being addressed. Table 9-8 lists some of the model codes, standards, and guidance documents applicable to water and wastewater infrastructure.

DISASTER RESILIENCE FRAMEWORK

75% Draft for San Diego CA Workshop

11 February, 2015

Water and Wastewater Systems, Standards and Codes

641 This table also shows a matrix of system component to document. This list is not intended to be
 642 exhaustive. However, the reader should be aware of these documents that pertain to disaster resilience.

643 **Table 9-8. Codes, Standards, and Guidelines for Hazard Resistance of Water and Wastewater Facilities**

Org	Category (1)	Name	General	Pipelines	Pumping	Storage	Treatment
IBC	C	2012 International Building Code or applicable jurisdictional building code	x				
ASCE	S	Minimum Design Loads for Buildings and Other Structures	x				
ACI	S	350 Code Requirements for Environmental Engineering Concrete Structures				x	x
ACI	S	371R-08 Guide for the Analysis, Design, and Construction of Elevated Concrete and Composite Steel-Concrete Water Storage Tanks				x	
ACI	S	372R-03 Design and Construction of Circular Wire- and Strand-Wrapped Prestressed Concrete Structures				x	x
AWWA	S	D100-11 Welded Carbon Steel Tanks for Water Storage				x	
AWWA	S	D110-13 Wire- and Strand-Wound, Circular, Prestressed Concrete Tanks				x	
AWWA	S	D115-06 Tendon-Prestressed Concrete Water Tanks				x	
AWWA	S	G430-14 Security Practices for Operation and Management	x				
AWWA	S	J100-10 Risk Analysis and Management for Critical Asset Protection Standard for Risk and Resilience Management of Water and Wastewater Systems	x				
AWWA	S	G440-11 Emergency Preparedness Practices	x				
ALA	G	Guidelines for Implementing Performance Assessments of Water Systems	x				
ALA	G	Guidelines for the Design of Buried Steel Pipe (2001)		x			
ALA	G	Seismic Design and Retrofit of Piping Systems (2002)			x		x
ALA	G	Seismic Fragility Formulations for Water Systems (2001)	x				
ALA	G	Seismic Guidelines for Water Pipelines (2005)		x			
ALA	G	Wastewater System Performance Assessment Guideline (2004)	x				
ASCE	G	Guidelines for Seismic Design of Oil and Gas Pipeline Systems (1984)		x			
AWWA	G	Emergency Power Source Planning for Water and Wastewater	x				
AWWA	G	M9 Concrete Pressure Pipe		x			
AWWA	G	M11 Steel Pipe: A Guide for Design and Installation		x			
AWWA	G	M19 Emergency Planning for Water Utilities	x				
AWWA	G	M60 Drought Preparedness and Response	x				
AWWA	G	Minimizing Earthquake Damage, A Guide for Water Utilities (1994)	x				
EPA/AWWA	G	Planning for an Emergency Drinking Water Supply	x				
MCEER	G	MCEER-08-0009 Fragility Analysis of Water Supply Systems (2008)	x				
MCEER	G	Monograph Series No. 3 Response of Buried Pipelines Subject to Earthquakes		x			
MCEER	G	Monograph Series No. 4 Seismic Design of Buried and Offshore Pipelines		x			
TCLEE	G	Monograph 15 Guidelines for the Seismic Evaluation and Upgrade of Water Transmission Facilities (1999)		x			
TCLEE	G	Monograph 22 Seismic Screening Checklists for Water and Wastewater Facilities (2002)	x				
WEF	G	Emergency Planning, Response, and Recovery	x				
WEF	G	Guide for Municipal Wet Weather Strategies	x				
WEF	G	MOP 28 Upgrading and Retrofitting Water and Wastewater Treatment Plants				x	
WEF	G	MOP 8 Design of Municipal Wastewater Treatment Plants					x
WEF	G	MOP FD-17 Prevention and Control of Sewer System Overflows	x				

644 C – Code; S – Standard; G – Guideline or Manual of Practice (MOP)

645 **9.5.1.1. Implied or Stated Performance Levels for Expected Hazard Levels**

646 Design of new aboveground structures (i.e., treatment plant office and lab buildings, pump stations,
 647 process tanks, water storage tanks and reservoirs, etc.) is typically governed by local building codes or
 648 design standards that prescribe a similar wind, seismic, or other hazard as the local building code. Design

DISASTER RESILIENCE FRAMEWORK**75% Draft for San Diego CA Workshop****11 February, 2015****Water and Wastewater Systems, Standards and Codes**

649 loads are prescribed by a consensus-based standard, *Minimum Design Loads for Buildings and Other*
 650 *Structures* (ASCE, 2010). This standard uses the concept of Risk Category to increase the design force
 651 level for important structures. Typical buildings are assigned to Risk Category II. Water and wastewater
 652 treatment facilities are assigned to Risk Category III, because failure of these facilities can cause
 653 disruption to civilian life and potentially cause public health risks. Water storage facilities and pump
 654 stations required to maintain water pressure for fire suppression are assigned to the highest category, Risk
 655 Category IV.

656 The building code intends that structures designed as Risk Category III or IV should remain operational
 657 or require only minor repairs to be put back into operation following a design level (*expected*) wind,
 658 seismic, or other event. By designing for this performance target for the *expected* level event, water and
 659 wastewater systems should remain operational under a *routine* level event and may experience moderate
 660 to major damage during an *extreme* level event.

661 The performance level implied by codes and standards for new construction provides an indication of the
 662 recovery level (timeframe) expected for individual system components. The timeframe required for water
 663 or wastewater systems to return to normal operating status following a hazard event is highly dependent
 664 on the recovery time for individual system components and the system's specific characteristics (e.g.,
 665 type and number of components, age of construction, system redundancy, etc.). Estimating system
 666 recovery times for a specific hazard requires in-depth engineering and operational knowledge of the
 667 system.

668 Table 9-9 summarizes water and wastewater system component performance and recovery levels for
 669 earthquake hazard levels as implied by current codes and standards for new construction. Predicted
 670 recovery times are based on individual system components.

671 **Table 9-9. Water and Wastewater System Component Performance and Recovery Levels for Various**
 672 **Earthquake Hazard Levels as Implied by Current Codes and Standards for New Construction**

System Component	Hazard Level	Performance Level	Recovery Level
Structures (pump stations, treatment plants, office/lab buildings, tanks, reservoirs, etc.)	Routine (50 year return period earthquake)	Safe and operational	Resume 100% service within days
	Expected (500 year return period earthquake)	Risk Category III (I=1.25) – Safe and usable during repair	Resume 100% service within months
		Risk Category IV (I=1.5) – Safe and operational	Resume 100% service within days
	Extreme (2500 year return period earthquake)	Risk Category III (I=1.25) – Safe and not usable	Resume 100% service within years
		Risk Category IV (I=1.5) – Safe and usable during repair or not usable	Resume 100% service within months to years
	Routine (50 year return period earthquake)	Safe and operational	Resume 100% service within days
Nonstructural components (process, lab, mechanical, electrical, and plumbing equipment, etc.)	Expected (500 year return period earthquake)	Risk Category III (I=1.25) – Safe and usable during repair	Resume 100% service within months
		Risk Category IV (I=1.5) – Safe and operational	Resume 100% service within days
	Extreme (2500 year return period earthquake)	Risk Category III (I=1.25) – Safe and not usable	Resume 100% service within years
		Risk Category IV (I=1.5) – Safe and usable during repair or not usable	Resume 100% service within months to years
Pipelines	Routine (50 year return period earthquake)	Operational	Resume 100% service within days
	Expected (500 year return period earthquake)	Operational to not usable	Resume 100% service within months
	Extreme (2500 year return period earthquake)	Not usable	Resume 100% service within years

673

9.5.2. Existing Construction

674

9.5.2.1. Implied or Stated Performance Levels for Expected Hazard Levels

675

The design seismic hazard level was refined over time as the engineering and seismology community's understanding of United States seismicity improved. A significant portion of water and wastewater system components in the high seismicity regions of the western and central United States were designed and constructed considering a significantly lower seismic hazard than the hazard used by current codes and standards.

680

Expected seismic performance of water and wastewater system components is dependent on the hazard level, codes and standards used in original design, and the type of structure. System components built prior to the mid-1970s are generally expected to perform poorly in earthquakes, because design codes and standards used at that time lacked the detailed requirements that reflect our current understanding of structures' behaviors during earthquakes. System components built after the early 2000s are generally expected to perform similar to new construction as described above. Performance of system components built between the mid-1970s and early 2000s is dependent on the code edition and seismic hazard used in design. Structures that satisfy the benchmark building criteria of ASCE 41-13 (ASCE, 2013) and are in areas that haven't experienced a significant increase in seismicity are generally expected to perform similar to new construction as described above. However, some types of structures are inherently rugged. For example, many older cast-in-place concrete structures, particularly single story buildings with few openings would be expected to perform well.

692

Anticipated performance of nonstructural components should be evaluated on a case-by-case basis, as engineers now pay closer attention to seismic design and construction of nonstructural components.

694

Anticipated performance of pipelines should be evaluated on a system-by-system basis because performance of pipelines is dependent on pipe type, joint type, and earthquake ground movement parameters. Even today, there is no code or standard for seismic design of pipelines.

697

9.5.2.2. Recovery Levels

698

In the past, infrastructure systems have not performed to the level that communities would desire with extended recovery times beyond the example performance goals in Section 9.3. There are a number of examples of disaster events that have rendered utilities non-functional for weeks following the event and illustrate importance of considering the interdependencies of water and wastewater systems with other systems of the built environment. A few notable events and their actual recovery levels are discussed herein.

704

Great Flood of 1993. In the Great Flood of 1993, the Raccoon River overtopped its banks and submerged the Des Moines, Iowa WWTP. The water receded and the plant was able to restore non-potable water within 12 days and potable water within 19 days. The water outage disrupted restaurant and hotel operations. The Principal Insurance Company headquarters had to haul in water and pump it into the building to cool computers. AT&T's regional central office came within minutes of losing phone service because of computer cooling issues.

710

Northridge and Kobe Earthquakes. In the 1994 Northridge earthquake, the Los Angeles Department of Water and Power's distribution system suffered approximately 1,000 pipeline failures, primarily in the San Fernando Valley. With their own forces and mutual aid, they were able to fully restore potable water service to everyone within 12 days. A year later, the 1995 Kobe Japan earthquake suffered 1,200 pipeline failures resulting in lost service to all households for up to 60 days.

715

Christchurch, New Zealand and Tohoku, Japan Earthquakes. The recent 2011 Christchurch New Zealand, and Tohoku Japan earthquakes both resulted in outages lasting in excess of 40 days. Impacted Japanese cities were assisted by mutual aid from their colleagues from cities in western Japan.

718 **9.6. Strategies for Implementing Community Resilience Plans**

719 Section 9.2 discusses components of water and wastewater infrastructure system. The discussion includes
720 examples from different types of hazards to encourage the reader to think about the different hazards that
721 could impact the communication and information infrastructure in their community. The number, types,
722 and magnitudes of hazards that need to be considered will vary from community to community.

723 Section 9.3 discusses example performance goals for the water and wastewater infrastructure system in
724 fictional town Centerville, USA. These example performance goals are provided for the routine, expected
725 and extreme event. However, the performance goals should be adjusted by the community based on its
726 social needs.

727 Section 9.4 and 9.5 outline some of the regulatory levels and issues, and codes and standards that the
728 reader should keep in mind when planning to make upgrades/changes to existing infrastructure as well as
729 building new structures for their water and wastewater infrastructure system. The objective of this section
730 is use the information from Sections 9.2 through 9.5 to provide guidance on how a community should
731 work through the process of assessing their communications infrastructure, defining strategies to make its
732 infrastructure more resilient, and narrowing the resilience gaps.

733 **9.6.1. Available Guidance**

734 The purpose of the assessment is to quantify the anticipated performance and recovery of the overall
735 system to determine whether it meets the performance goals described in Section 9.3. If the system does
736 not meet the objectives, the assessment should identify system facility and pipe deficiencies that should
737 be improved to achieve those performance goals.

738 Section 9.2.1 describes the basic components of water and wastewater systems and observations of where
739 these systems failed in past disasters. System performance is also highly dependent on the current
740 condition of the system and standards used in its design. Information about past disaster performance of
741 similar systems combined with knowledge of current condition and original design standards of the
742 system help a utility estimate the expected level of service they could provide after a hazard event. There
743 is likely a gap in the level of service a system would provide if a hazard event occurred today versus
744 community-established performance goals. It is likely that the capital expenditure required to close this
745 performance gap far exceeds the short-term capital improvement project budgets of the utility. However,
746 the resilience of any system can be improved incrementally over time by appropriately considering design
747 criteria to reduce the impact of natural and man-made hazards in designing new and upgrading existing
748 infrastructure. To estimate the level of service a water or wastewater system would provide after a given
749 scenario hazard event, an assessment of expected damage to the system and restoration times is required.

750 The level of detail of this assessment can take one of three basic forms.

- 751 • ***Tier 1*** – A high-level assessment of hazards and their performance conducted by persons
752 knowledgeable about the system (chief engineer, operations manager, etc.). This can be
753 accomplished in a workshop setting using system maps and schematics, along with hazard maps
754 of the service area, such as liquefaction susceptibility or flood plain maps. Restoration times will
755 be based on professional judgment of the workshop participants.
- 756 • ***Tier 2*** – A more refined assessment based on published scenario events and hazard zones, system
757 inventory (i.e., facility type, age, condition, and location relative to hazards, and pipe type, length
758 and soil type), site visits, and use of generalized component fragilities, such as those included in
759 HAZUS-MH and ALA documents. Restoration times are based on the extent of damage (e.g.,
760 number of pipeline breaks), estimates of the time to repair each category of damage, and crews
761 and equipment available for restoration.
- 762 • ***Tier 3*** – A detailed assessment of all components in a system, specific component fragilities, and
763 the interdependencies of system components. Same as Tier 2, with the addition of detailed

764 analysis (e.g. geotechnical, structural or hydraulic) of facilities and pipelines determined to be
765 vulnerable and critical, should they fail, significantly impacting the overall system operation.

766 To characterize the current disaster resilience of water and wastewater systems appropriately, each service
767 provider should undergo a Tier 1 assessment. If potential resilience vulnerabilities are identified, they
768 should undergo a more refined Tier 2 or 3 assessment. Several methodologies and tools are available to
769 conduct these resilience assessments, a few of which are described below.

770 HAZUS-MH is a multi-hazard (flood, earthquake, and hurricane) loss estimation tool developed by the
771 Federal Emergency Management Agency (FEMA) for use in pre-disaster mitigation, emergency
772 preparedness, and response and recovery planning (FEMA, 2012). Communities can use this tool to
773 characterize their hazard exposure, estimate losses to the water and wastewater systems, and estimate
774 repair costs and duration. It assists in conducting a Tier 2 analysis and an AWWA J100 analysis as
775 discussed below.

776 The ANSI/AWWA J100-10 *Standard for Risk and Resilience Management of Water and Wastewater*
777 *Systems* (AWWA, 2010) provides a methodology for conducting multi-hazard system risk and resilience
778 assessments. The J100 aligns the national homeland security objectives in HSPD-5, PPD-8, PPD-21 and
779 EO 13636. The J100 standard consists of a seven-step process for analyzing and supporting management
780 decisions that maximize risk reduction and/or enhance resilience at the utility and the community it
781 serves.

- 782 1. Asset Characterization
- 783 2. Threat Characterization
- 784 3. Consequence Analysis
- 785 4. Vulnerability Analysis
- 786 5. Threat Analysis
- 787 6. Risk/Resilience Analysis
- 788 7. Risk/Resilience Management

789 Asset level resilience for specific threats is part of the J100 assessment methodology, which may support
790 a community's process for determining current performance and target performance (Section 9.3). The
791 J100 also includes the Utility Resilience Index (URI), which is a system-level assessment of operational
792 and financial indicators that are essential to resilience and, therefore, an asset's ability to effectively serve
793 a community. The URI serves as a benchmark to evaluate potential resilience improvement projects and
794 as a measure to track a utility's progress over time towards achieving resilience performance goals.

795 Several tools were developed by the U.S. Environmental Protection Agency to support the water utility
796 assessment of risks. The Vulnerability Self-Assessment Tool (VSAT) (EPA 2014) is designed to assist
797 water and wastewater utilities' application of the J100 standard. VSAT is complemented by the Water
798 Health and Economic Analysis Tool (WHEAT), which quantifies three aspects of consequence associated
799 with an adverse event's 1) public health impact, 2) utility-level financial impact, and 3) direct and indirect
800 regional economic impact (EPA, 2014). WHEAT is specifically aligned with step 3 (consequence
801 analysis) of J100 standard.

802 The EPA's National Homeland Security Research Center (NHSRC) also supported efforts to enhance
803 utility resilience. Collaboration with AWWA resulted in the development of *Planning for an Emergency*
804 *Drinking Water Supply*, which directly supports a capability assessment based on worst reasonable threats
805 in J100 to determine options for maintaining service.

806 An example Tier 2 resilience assessment procedure for water systems is outlined in the following.

9.6.1.1. Example Tier 2 Resilience Assessment for Earthquake:

- 808 1. Identify the appropriate earthquake scenario or scenarios. Develop or obtain ground motion
809 information for each. The USGS has scenarios available for a suite of earthquakes in the U.S.

810 Obtain liquefaction and landslide hazard maps available from the state department of geology.
811 Use GIS for all mapping.

812 *For buried pipelines:*

- 813 2. Compile an inventory of system pipelines including pipe material, joint type, and length.
- 814 3. In GIS, superimpose the pipeline distribution system onto maps of the scenario hazard (peak
- 815 ground velocity, liquefaction potential, and landslide potential).
- 816 4. Use empirical relationships developed by the American Lifelines Alliance (ALA) to predict the
- 817 number of breaks and leaks in the pipeline system.
- 818 5. Estimate the time required to repair the predicted number of breaks and leaks based on historical
- 819 crew productivity data. Modify this repair time, as appropriate, based on discussions of the
- 820 expected damage states of interdependent lifelines (transportation, liquid fuel, etc.).

821 *For aboveground infrastructure:*

- 822 6. Compile an inventory of system components (tanks, pump stations, treatment plants, etc.),
- 823 including type of construction, date of original construction, and any subsequent retrofits.
- 824 7. Estimate the level of damage predicted for the aboveground water system components based on
- 825 observations from past earthquakes, the seismic hazard prescribed by the building code at the
- 826 time of original construction or retrofit, and the professional judgment of engineers
- 827 knowledgeable in the seismic performance of water systems. Use fragility curves found in
- 828 HAZUS-MH to determine the anticipated performance for a particular facility type for a given
- 829 ground motion.
- 830 8. Estimate the time required to repair the predicted damage to aboveground infrastructure. Modify
- 831 this repair time, as appropriate, based on discussions of the expected damage states of
- 832 interdependent lifelines (transportation, liquid fuel, etc.)

833 *For the system:*

- 834 9. Determine the expected system performance based on the damage to pipelines and facilities in a
- 835 workshop format.
- 836 10. Determine the expected repair time for the system based on the repair times for buried pipelines
- 837 and aboveground infrastructure estimated in steps 5 and 8.
- 838 11. Compare this estimate of repair time for the system to the performance goals established by the
- 839 community to determine the resilience gap.

840 These different resilience assessment approaches should be evaluated and refined into one consistent

841 methodology prior to implementation of nationwide water and wastewater system resilience assessments.

842 The tier level of the assessment increases by conducting detailed analyses of each facility and pipeline.

843 Note that recovery time for utilities that purchase water from wholesale suppliers is highly dependent on

844 the recovery time of the supplying utility. Wholesale water suppliers should work with their customers to

845 assess the expected damage and restorations times from the source to the final individual customers. In

846 this case, water and wastewater system resilience assessments may require a regional approach to

847 characterize the anticipated performance of the system of systems in a hazard event appropriately.

848 9.6.2. Strategies for New Construction

849 Water and wastewater providers should consider resilience performance goals in all new construction

850 projects. Projects should be designed to satisfy or exceed code requirements, where code minimum

851 standards are not anticipated to provide a final product that would be expected to meet the utility's

852 resilience performance goals. If no codes exist for a particular category of structure or facility, the

853 designer should investigate guidelines that address hazard-resistant design issues (see Table 9.4). The

854 incremental cost of designing and constructing for improved disaster resilience may be a relatively small

855 percentage of total project costs.

856 **9.6.3. Strategies for Existing Construction**

857 Water and wastewater providers should consider resilience improvements to existing infrastructure as part
858 of the capital improvement planning process. The process of conducting system resilience assessments
859 will likely identify key pipelines and facilities that significantly impact the overall resilience of a system.
860 These components should be evaluated in detail. Providers should evaluate a number of potential
861 strategies, including retrofit or replacement of existing components, or building redundant components in
862 anticipation of failure of existing components. Retrofit of existing infrastructure or new redundant
863 components should be designed such that the final product would be expected to meet the utility's
864 resilience performance goals. In some cases, redundant systems can be justified based on increasing
865 demand requirements. The "new" redundant system could provide on its own an adequate supply to meet
866 an average day's demand until the damaged system was repaired. Whatever is done needs to be part of the
867 day-to-day needs of the utility. That is, if special features added to a system to increase resilience are
868 never used, there is a high likelihood they will not be functional when they are needed.

869 Once water and wastewater providers and the community establish resilience performance goals and
870 complete baseline resilience assessments, there may be a number of goals not currently met due to the
871 anticipated performance of system components, financial resources of the utility, interdependencies with
872 other lifelines, etc. These performance gaps are likely to be addressed by a phased program (perhaps over
873 as long as a 50-year period) of new construction, retrofit of existing system components to better
874 withstand hazard events, modifications to emergency response plans, coordination with interdependent
875 lifeline providers, and other strategies. It is expected that these resilience enhancements will be coupled
876 with other system improvements to maximize the benefit of limited financial resources.

877 For instance, it can be difficult to justify replacing hundreds of miles of water pipelines based on
878 earthquake resilience considerations alone, but coupled with replacement of aging and failing pipelines,
879 the incremental cost of using more earthquake-resistant pipe materials and joints is relatively minor.
880 Major resilience improvements that take place on a shorter timeline require a more extensive campaign of
881 public outreach and education.

882 **9.7. References**

883 Allouche, E.N., Sterline, R.L., Chisolm, E., Hill, D., and Hall, D. (2006). *Assessment of Damage to*
884 *Urban Buried Infrastructure in the Aftermath of Hurricanes Katrina and Rita. Proceedings*
885 *Pipelines 2006: Service to the Owner.* ASCE.

886 ASCE (2013). *Seismic Evaluation and Rehabilitation of Existing Buildings.* Reston, VA: American
887 Society of Civil Engineers.

888 Aubuchon, C.P., & Morley, Kevin (2012). *The Economic Value of Water: Providing Confidence and*
889 *Context to FEMA's Methodology.* Journal of Homeland Security and Emergency Management,
890 10(1), 2194-6361.

891 AWWA (1994). *Minimizing Earthquake Damage, A Guide for Water Utilities.* Denver, CO: American
892 Water Works Association.

893 AWWA (2001). *M19 Emergency Planning for Water Utilities.* Denver, CO: American Water Works
894 Association.

895 AWWA (2004). *Emergency Power Source Planning for Water and Wastewater.* Denver, CO: American
896 Water Works Association.

897 AWWA (2010). *ANSI/AWWA J100-10 Risk and Resilience Management of Water and Wastewater*
898 *Systems.* Denver, CO: American Water Works Association.

899 AWWA (2011). *ANSI/AWWA G440-11 Emergency Preparedness Practices.* Denver, CO: American
900 Water Works Association.

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego CA Workshop
11 February, 2015
Water and Wastewater Systems, References

901 AWWA (2014). *ANSI/AWWA G430-14 Security Practices for Operation and Management*. Denver, CO:
902 American Water Works Association.

903 Ballantyne, D., & Crouse, C. (1997). Reliability and Restoration of Water Supply Systems for Fire
904 Suppression and Drinking Following Earthquakes. Gaithersburg, MD: National Institute of
905 Standards and Technology.

906 Chisolm, E. & Matthews, J. (2012). Impact of Hurricanes and Flooding on Buried Infrastructure.
907 *Leadership and Management in Engineering*. July 2012. Vol. 12, Issue 3.

908 Eidinger, J. (2012). Performance of Water Systems during the Maule Mw 8.8 Earthquake 27 February
909 2010. *Earthquake Spectra*, Vol. 28, No. S1, S605-S620.

910 Eidinger, J., & Tang, A. (2014). *Christchurch, New Zealand Earthquake Sequence of Mw 7.1 September*
911 *04, 2010 Mw 6.3 February 22, 2011 Mw 6.0 June 13, 2011: Lifeline Performance*. Reston, VA:
912 American Society of Civil Engineers.

913 Elliott, T., & Tang, A. (2009). *Pacific Northwest Storms of December 1-4, 2007 Lifeline Performance*.
914 Reston, VA: American Society of Civil Engineers.

915 EPA (2010). *VSAT – Risk Assessment Tool for Water Sector Utilities*. Washington, D.C.: Environmental
916 Protection Agency.

917 EPA (2014). *Water Health and Economic Analysis Tool Version 3.0, Consequence Analysis Tool for*
918 *Water Utilities*. Washington, D.C.: Environmental Protection Agency.

919 FEMA (2012). *Hazus-MH 2.1 User Manual*. Washington, D.C.: Federal Emergency Management
920 Agency.

921 FEMA (2013). *Mitigation Assessment Team Report Hurricane Sandy in New Jersey and New York*
922 *Building Performance Observations, Recommendations, and Technical Guidance*. Washington,
923 D.C.: Federal Emergency Management Agency.

924 Matsuhashi, M., Fukatani, W., Yokota, T., Ozaki, M., & Horie, N. (2012). The Damage of Sewage
925 Treatment Systems Caused by the Great East Japan Earthquake. *International Symposium on*
926 *Engineering Lessons Learned from the 2011 Great East Japan Earthquake*, Tokyo, Japan.

927 Miyajima, M. (2012). Damage to Water Supply System Induced by the 2011 Great East Japan
928 Earthquake. *International Symposium on Engineering Lessons Learned from the 2011 Great East*
929 *Japan Earthquake*, Tokyo, Japan.

930 Morley, Kevin (2013). *Correct reference to be provided in next draft*.

931 NYCDEP (2013). *New York City Wastewater Resiliency Plan: Climate Risk Assessment and Adaptation*
932 *Study*. October 2013. New York City Department of Environmental Protection.

933 NIST (1996). *The January 17, 1995 Hyogoken-Nanbu (Kobe) Earthquake: Performance of Structures,*
934 *Lifelines, and Fire Protection Systems*. Gaithersburg, MD: National Institute of Standards and
935 Technology.

936 O'Rourke, T. (2014). *Resilient Lifeline Systems*, ASCE TCLEE LeVal Lund Lecture, April 2, 2014,
937 California Institute of Technology, Pasadena, CA.

938 OSSPAC (2013). *The Oregon Resilience Plan, Reducing Risk and Improving Recovery for the Next*
939 *Cascadia Earthquake and Tsunami*. Salem, OR: Oregon Seismic Safety Policy Advisory
940 Commission.

941 Sanders, D.A. (1997.) Damage to Wastewater Treatment Facilities from Great Flood of 1993. *Journal of*
942 *Environmental Engineering*. January 1997. Vol. 123, Issue 1.

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego CA Workshop
11 February, 2015
Water and Wastewater Systems, References

943 SFPUC (2006). *General Seismic Requirements for Design of New Facilities and Upgrade of Existing*
944 *Facilities*. San Francisco, CA: San Francisco Public Utilities Commission.

945 Schiff, A. (1997). *Northridge Earthquake: Lifeline Performance and Post-Earthquake Response*.
946 Gaithersburg, MD: National Institute of Standards and Technology.

947 Tang, A., & Edwards, C. (2014). *Tohoku, Japan, Earthquake and Tsunami of March 11, 2011 Lifeline*
948 *Performance*. Reston, VA: American Society of Civil Engineers.

10. Community Resilience Metrics

10.1. Background

Community resilience metrics or indicators come in a wide variety of types. They can be descriptive or quantitative; they can be based on interviews, expert opinion, engineering analysis, or pre-existing datasets. They can also be presented as an overall score or as a set of separately reported scores across a broad spectrum of physical, economic, and social dimensions. Regardless of the methodologies used to develop and summarize the results, effective community resilience metrics must address two questions (National Academies 2012a):

1. *How can community leaders know how resilient their community is?*
2. *And how can they know if their decisions and investments to improve resilience are making a significant difference?*¹

In 2012, the National Academies Committee on Increasing National Resilience to Hazards and Disasters and the Committee on Science, Engineering, and Public Policy evaluated 17 approaches to measuring various aspects of resilience. The authors concluded that none of the 17 existing methodologies satisfactorily addressed the two basic questions posed above. As a result, one of the six main recommendations coming out of the report was the development of a “national resilience scorecard, from which communities can then develop their own, tailored scorecards” (National Academies 2012b). Similar recommendations can be found in other recent reviews of disaster risk reduction and disaster resilience (Government Office for Science 2012; UNISDR 2012). The need for a tailorabile or locally relevant scorecard recognizes that a single prescriptive scorecard is unlikely to be appropriate for communities of all sizes and types (e.g., from small tourism- or agriculture-centric communities to large financial- or industrial-centric cities) and for all planning scenarios (e.g., from preliminary scoping studies to comprehensive planning with ongoing follow-up assessments).

10.2. Desirable Characteristics for Community Resilience Metrics

From the community perspective, effective community resilience metrics should be accurate, reliable, comprehensive, scalable, affordable, and actionable indicators of the community’s capacity to respond to and recover from a specified disaster scenario. Cutter (2014) suggests that communities seek a resilience measurement tool that meets the following criteria:

- Open and transparent
- Aligns with the community’s goals and vision
- Measurements...
 - are simple, well documented
 - can be replicated
 - address multiple hazards
 - represent community’s areal extent, physical (manmade and environmental) characteristics, and composition/diversity of community members
 - are adaptable and scalable to different community sizes, compositions, changing circumstances

For purposes of this framework, we are specifically interested in community resilience metrics or tools that will reliably predict the physical, economic, and social implications (either positive or negative) of community decisions (either active or passive) made with respect to planning, siting, design, construction, operation, protection, maintenance, repair, and restoration of the built environment.

¹As stated in (National Academies 2012b), “measuring resilience is challenging but essential if communities want to track their progress toward resilience and prioritize their actions accordingly.”

43 **10.3. Types of Metrics**

44 As defined in PPD-21 (White House 2013) and emphasized throughout this framework, the concept of
45 disaster resilience extends well beyond the magnitude of direct physical damage sustained by the various
46 components of the built environment under a specified disaster scenario. The centrality of community
47 impacts and community recovery to the concept of community resilience demands that community
48 resilience be evaluated and measured in much broader terms than, for example, critical infrastructure
49 vulnerability.

50 Looking beyond direct physical damage and direct repair costs for the built environment, at least three
51 broad categories of metrics should be considered by communities: (1) recovery times, (2) economic
52 vitality metrics, and (3) social well-being metrics. A community can use these end result metrics to
53 measure improvements through proactive planning and implementation. Resilience planning and
54 implementation of plans will produce a faster and more robust recovery that avoids or minimizes the
55 expected negative economic and social impacts of hazard scenarios. However, predicting how these end
56 result metrics will be impacted by specific community planning and implementation decisions is a
57 challenging and ongoing area of research.

58 Many indicators of community resilience may have a direct and quantifiable cause-and-effect influence
59 on resilience; whereas others may either have some postulated influence on resilience or simply be
60 correlated with resilience. Examples of indicators that may influence or correlate with recovery times,
61 economic vitality, and social well-being are provided below.

62 **10.3.1. Recovery Times**

63 Recovery times for the built environment are easy to grasp as resilience goals, but difficult to predict with
64 precision or confidence. Predicting recovery times under different planning scenarios should consider:

- 65 • Designated performance level or restoration level for each building cluster and infrastructure
66 system
- 67 • Original criteria used in the design of the various components of the built environment and their
68 condition immediately prior to the specified disaster scenario
- 69 • Loading conditions applied to the built environment during and after the specified hazard
70 scenario
- 71 • Spatial and logical distribution of physical damage to the built environment
- 72 • Availability of resources and leadership to strengthen (pre-event) or repair (post-event) the built
73 environment
- 74 • Critical interdependencies among the built environment and social structures within a community
75 (See Chapter 2)

76 Recovery times have a direct bearing on many economic and social functions in a community. As such,
77 explicit estimates (or at least a general sense) of system recovery times become a prerequisite for most, if
78 not all, other measures of community resilience. Due to the large volume of data required and the inherent
79 complexity of “system-of-systems” modeling, recovery times are likely to be estimated based on some
80 combination of simplified modeling, past experience, and/or expert opinion.

81 Examples of community-level recovery time goals by building cluster and infrastructure system are
82 provided in Table 3-10 through Table 3-12 in Chapter 3. These community-level recovery times are built-
83 up from the buildings and sector-level recovery time examples discussed in Chapters 5 through 9. Each
84 community should define its own set of building clusters, infrastructure systems, and designated
85 performance levels that reflect its makeup and priorities.

86 **10.3.2. Economic Vitality**

87 Economic health and development are major concerns for communities. Economic development concerns
88 include attracting and retaining businesses and jobs, building the tax base, addressing poverty and

89 inequality, enhancing local amenities, and economic sustainability. These factors are discussed below.
90 Further background on economic modeling approaches and issues appears later in Section 10.5.

91 **10.3.2.1. Attracting and Retaining Businesses and Jobs**

92 Attracting and retaining businesses and jobs is a major concern of most communities. A community that
93 cannot attract and retain businesses and jobs is in decline. Communities also prefer businesses that
94 produce high-paying jobs. Metrics for this would include the employment rate, per capita income or, per
95 capital Gross Domestic or Regional Product, and education attainment rate.

96 Metrics indicative of a community's ability to continue attracting and retaining businesses and jobs
97 through and after a hazard event would include the resiliency of infrastructure systems.

98 **10.3.2.2. Tax Base**

99 For most cities, local revenue sources consist of property tax and/or sales tax. Sales tax revenue is
100 increased by attracting commercial businesses and jobs, and property tax revenue is increased by
101 increasing property values.

102 Tax base indicators include real-estate prices, rents, and amount of tourism (for hotel tax revenues).
103 Metrics indicative of how a community's tax base would be affected by a hazard event include the extent
104 of property insurance coverage across the community, percent of property in areas susceptible to hazards
105 (like flood plains), adopted building codes, and the number of buildings that fail to meet current codes.

106 **10.3.2.3. Poverty and Income Distribution**

107 Poverty and income distribution are a major concern of local communities. Many projects communities
108 pursue aim to decrease poverty in their neighborhoods, and a significant amount of external funding
109 available to communities aim to alleviate poverty. This concern intersects with community resilience
110 because the disadvantaged are often the most vulnerable to disasters. Metrics of poverty and income
111 distribution include the poverty rate and the Gini coefficient, a measure of income dispersion.²

112 Metrics that indicate or influence how a hazard event might affect poverty and income distribution
113 include the poverty rate itself because poor people tend to fare worse in disasters.

114 **10.3.2.4. Local Services and Amenities**

115 Local services and amenities include the infrastructure systems discussed in Chapters 6-9, but also
116 include a variety of other characteristics and services associated with communities, such as public
117 transportation, parks, museums, restaurants, theaters, etc. Local services and amenities improve the
118 quality of life for local residents. In addition, there is an expectation that improving local amenities will
119 indirectly help attract and retain businesses and jobs. Amenities are provided by multiple sources. Some
120 are provided by local governments, some are privately provided, and some are environmental. Metrics for
121 infrastructure systems are discussed in Chapters 6-9 and in Section 10.3.5 of this chapter. Metrics for
122 amenities will depend on the community.

123 **10.3.2.5. Sustainability**

124 Local communities are interested in ensuring that their community is sustainable. Sustainability includes
125 two distinct ideas: 1) protecting and improving the environment (i.e., being "green" and maintaining a
126 small footprint); and 2) producing a vibrant and thriving economy. It is desirable that a community
127 remain sustainable, even amid disasters. Metrics of economic sustainability include population growth
128 rates and growth rates of Gross Domestic or Regional Product.

² <http://data.worldbank.org/indicator/SI.POV.GINI>

129 Factors that might affect a community's sustainability in the presence of hazard events include the degree
130 to which the local economy depends on a single industry. Metrics could include percent of jobs in the
131 service industry or percent of jobs in agriculture and mining.

132 **10.3.2.6. Other Economic Indicators**

133 There are a number of economic indicators that are associated with or affect non-economic aspects of
134 community resilience. For example, debt ratios generally impact a community's ability to deal with
135 disasters. Poverty impacts the probability that people will rebound from a disaster, as do ownership of a
136 car or phone. Similarly, job continuity and economic sustainability will strongly influence the continuity
137 of social networks.

138 **10.3.3. Social Well-being**

139 Reflecting the hierarchy of human needs presented in Section 2.3, social metrics should address:

- 140 • **Survival** – preservation of life and availability of water, food, clothing and shelter
- 141 • **Safety and security** – personal safety, financial (economic) security, and health/well-being
- 142 • **Sense of belonging** – belonging and acceptance among family, friends, neighborhoods, and
143 organizations
- 144 • **Growth and achievement** – opportunities for recognition and fulfillment

145 The resilience of a community following a hazard event depends on how well these needs are met.
146 Examples of indicators or metrics for each of these needs are provided below. An example of a resilience
147 plan that includes several of these indicators is the Canterbury Wellbeing Index (CERA 2014).

148 **10.3.3.1. Survival**

149 Survival depends on the ability of a community's residents, employees and visitors to possess physical
150 requirements, including water, food, shelter, and clothing. Access to these requirements depends on the
151 functionality of the supporting physical infrastructure, availability of distribution systems, and personnel.
152 These tasks may be performed by the governmental organizations, non-governmental aid organizations,
153 or the private sector. Metrics for survivability could include housing availability and affordability,
154 poverty rates, homeless rates, etc.

155 Metrics affecting a community member's chance of survival during or after a hazard event include:

- 156 • Building code adoption and enforcement history
- 157 • Existence and effectiveness of warning systems
- 158 • Existence of comprehensive emergency management plans (mutual aid pacts, emergency
159 response resources (e.g., urban search and rescue teams), public shelters)
- 160 • Number of community service organizations that assist in distributing water, food, or clothing or
161 providing shelter in the wake of a disaster
- 162 • Level of household disaster preparation
- 163 • Percentage of homes that are owner occupied (i.e., renters may be more vulnerable in disasters)
- 164 • Percentage of insured homes and businesses
- 165 • Availability of short- and medium-term accommodation
- 166 • Distance to family/friends unaffected by the disaster

167 **10.3.3.2. Safety and Security**

168 Safety and security includes all aspects of personal and financial (economic) security, and health and
169 well-being. People require safety and security in their personal lives from situations of violence, physical
170 or verbal abuse, war, etc., as well as knowing that the safety of their family and friend networks are
171 secure. Individuals also require financial safety, which can include job security, a consistent income,

172 savings accounts, insurance policies, and other safety nets. Finally, people require safety from negative
173 health conditions, so that they can enjoy life and consistent well-being.

174 Examples of metrics for personal safety evaluated before and after a hazard event could include
175 community statistics on assaults, property offenses, re-offending rates, and reports on child abuse or
176 neglect.

177 Examples of metrics for financial (economic) security include employment rates (also covered in Section
178 10.3.2.1 under economic metrics). Additionally, metrics that would be indicative of how a community
179 member's employment would be affected by a hazard event include occupation type (e.g., some
180 occupations, more than others, can be severely affected by a hazard event)³, education levels, percentage
181 of residents that commute other communities for work, and gender (i.e., women may have a more difficult
182 time than men due to employment type, lower wages, and/or family care responsibilities).

183 Examples of metrics for health and well-being of community members include acute medical admissions,
184 immunization rates, cancer admissions, substance abuse rates, and blood donor rates. Additionally,
185 metrics that would be indicative of how a community member's health/well-being would be affected by a
186 hazard event include percentage of the population with health insurance, access to health services (e.g.,
187 health system demand and capacity indicators: emergency room, in-patient beds, out-patient clinics,
188 community health centers, mental health services, etc.), and community demographics (e.g., age
189 distribution, number of individuals with disabilities or access and functional needs, etc.).

190 10.3.3.3. Sense of Belonging

191 Social metrics can also address the belonging need, which can represent belonging and acceptance among
192 various groups of people (e.g., family, friends, school groups, sports teams, work colleagues, religious
193 congregation) or belonging to a place or location. Examples of metrics or indicators related to sense of
194 belonging include:

195 Civic participation⁴:

- Voter registration or voter participation rates
- Involvement in local action groups
- Perception of being well-informed of local affairs

199 Social networks:

- Frequency of contact with friends, family, neighbors, etc.
- Number of close friends/family (geographically)

202 Social participation:

- Membership in (and frequency of involvement in) community-wide social, cultural, and leisure clubs/groups including sports clubs
- Membership in (and frequency of involvement in) religious organizations and other belief systems
- Volunteering

208 Trust

- Confidence in leadership (at various levels)
- Trust in others (similar or dissimilar to member)

³Reference to University of South Carolina – Social Vulnerability Index

⁴Foxton, F. and R. Jones. 2011. *Social Capital Indicators Review*. Office for National Statistics
http://www.ons.gov.uk/ons/dcp171766_233738.pdf

211 **10.3.3.4. Growth and Achievement**

212 Humans need to feel a sense of achievement and respect in society, accompanied by the need for
213 continual growth and exploration. Examples of metrics or indicators related to growth and achievement
214 include:

215 • Education

216 ▪ System capacity (sufficient numbers of teachers, classrooms, books, etc.)

217 ▪ Graduation rates

218 ▪ Memberships to public libraries

219 ▪ Education levels

220 • Participation rates in arts and recreation

221 **10.3.4. Hybrids**

222 Some metrics combine several indicators into an overall score. Often, additional types of metrics, beyond
223 the three broad categories discussed above, are included. These other types of metrics, such as system-
224 specific or ecological/environmental metrics, are discussed below in Section 10.3.5.

225 Due to the sparsity of data, the unique aspects of each hazard event, and the lack of generally applicable
226 community resilience models, the scaling and weighting schemes used to aggregate disparate metrics into
227 an overall score of community resilience are largely based on reasoning and judgment. A related
228 technique is to attempt to monetize all of the dimensions (e.g., the statistical value of lost lives, lost jobs,
229 lost business revenue, increased healthcare costs, etc.), but this approach cannot adequately address the
230 social dimensions of community resilience.

231 **10.3.5. Other Metrics**

232 Examples of system-specific metrics include indicators such as:

233 • Temporary shelter demand in the housing sector

234 • Water pressure level or water quality level in water supply systems

235 • Vehicles per hour or shipping tonnage capacities in transportation systems

236 • Percentage of dropped calls or undelivered messages in communications systems

237 • Percentage of customers without service in electrical power systems

238 In the context of this framework, these system-level indicators can be thought of as performance levels to
239 gauge recovery time for the built environment.

240 Ecological or environmental metrics include indicators such as debris and hazardous waste volumes (by
241 which landfill and waste management requirements can be assessed), indicators of water and soil quality
242 (e.g., salinity), and many more. While very important due to their impact to public health, wildlife
243 management, etc., these metrics address impacts and planning issues that are, for the most part, outside
244 the scope of this framework.

245 **10.4. Examples of Existing Community Resilience Assessment Methodologies**

246 As discussed in Section 10.1, a variety of community-wide resilience assessment methodologies was
247 presented in the research literature. In this section, we present brief overviews of nine existing
248 methodologies and evaluate their applicability as tools for assessing both current resilience and plans for
249 improved resilience within the context of planning decisions regarding the built environment. Not all of
250 these methodologies were developed to address community resilience, but they are considered as relevant
251 and potentially applicable in whole or part. This list is not meant to be complete and is expected to evolve
252 along with this framework, as additional research and pilot studies are completed.

253

10.4.1. SPUR Methodology

254 The SPUR methodology provides “a framework for improving San Francisco’s resilience through seismic
255 mitigation policies.” The stated goals of the SPUR report (2009) are:

- 256 1. *Define the concept of “resilience” in the context of disaster planning,*
- 257 2. *Establish performance goals for the “expected” earthquake that supports our definition of*
258 *resilience,*
- 259 3. *Define transparent performance measures that help us reach our performance goals; and*
- 260 4. *Suggest next steps for San Francisco’s new buildings, existing buildings and lifelines.*

261 The SPUR methodology focuses on establishing performance goals for several clusters of buildings (i.e.,
262 groups of buildings that provide a community service, such as critical response facilities, emergency
263 housing, or neighborhood services) and establishing target recovery times for a specified earthquake
264 scenario in the San Francisco area. While economic and social metrics are not direct outputs of the SPUR
265 methodology, the building clusters selected and recovery time goals provided are clearly intended to
266 improve both the economic and social resilience of San Francisco. Similarly, although SPUR focuses on
267 earthquakes as the primary hazard, the underlying methodology is applicable to other perils.

268

10.4.2. Oregon Resilience Plan

269 In 2011, the Oregon Seismic Safety Policy Advisory Commission (OSSPAC) was directed by House
270 Resolution 3 “to lead and coordinate preparation of an Oregon Resilience Plan that reviews policy
271 options, summarizes relevant reports and studies by state agencies, and makes recommendations on
272 policy direction to protect lives and keep commerce flowing during and after a Cascadia earthquake and
273 tsunami.” The OSSPAC assembled eight task groups (earthquake and tsunami scenario, business and
274 work force continuity, coastal communities, critical buildings, transportation, energy, information and
275 communications, water and wastewater) and assigned the following tasks to each group:

- 276 1. *Determine the likely impacts of a magnitude 9.0 Cascadia earthquake and tsunami on its*
277 *assigned sector, and estimate the time required to restore functions in that sector if the*
278 *earthquake were to strike under present conditions;*
- 279 2. *Define acceptable timeframes to restore functions after a future Cascadia earthquake to fulfill*
280 *expected resilient performance; and*
- 281 3. *Recommend changes in practice and policies that, if implemented during the next 50 years, will*
282 *allow Oregon to reach the desired resilience targets.*

283

The Oregon Resilience Plan (2013) builds on the SPUR methodology and the Resilient Washington State
284 initiative to produce a statewide projection of the impacts of a single earthquake and tsunami scenario.
285 Immediate impacts include lives lost, buildings destroyed or damaged, and households displaced.
286 Moreover, a particular statewide vulnerability identified in the study is Oregon’s liquid fuel supply and
287 the resulting cascade of impacts induced by a long-term disruption of the liquid fuel supply. The study
288 includes recommended actions to reduce the impacts of the selected hazard scenario and shorten the
289 state’s recovery time.

290

10.4.3. UNISDR Disaster Resilience Scorecard for Cities

291

The United Nations International Strategy for Disaster Risk Reduction (UNISDR) Disaster Resilience
292 Scorecard for Cities “provides a set of assessments that will allow cities to understand how resilient they
293 are to natural disasters.” The Scorecard is “intended to enable cities to establish a baseline measurement
294 of their current level of disaster resilience, to identify priorities for investment and action, and to track
295 their progress in improving their disaster resilience over time.” There are 85 disaster resilience evaluation
296 criteria grouped into the following areas:

297

- 298 • **Research**, including evidence-based compilation and communication of threats and needed
responses

Community Resilience Metrics, Examples of Existing Community Resilience Assessment Methodologies

- **Organization**, including policy, planning, coordination and financing
- **Infrastructure**, including critical and social infrastructure and systems and appropriate development
- **Response capability**, including information provision and enhancing capacity
- **Environment**, including maintaining and enhancing ecosystem services
- **Recovery**, including triage, support services and scenario planning.

Each evaluation criterion is broken down into the aspect of disaster resilience being measured, an indicative measurement, and the measurement scale (from 0 to 5, where 5 is best practice).

The formal checklist is organized around “10 Essentials for Making Cities Resilient,” which were developed to align with the five priorities of the Hyogo Framework (UNISDR 2005). The overall score is the percentage of possible points from each of the 85 measures. It is suggested that cities plan on 2 to 3 people working for a minimum of 1 week to complete an assessment, ranging up to 2 months for a more detailed and comprehensive assessment.

10.4.4. CARRI Community Resilience System

The Community and Regional Resilience Institute’s Community Resilience System (CARRI CRS 2013) “is an action-oriented, web-enabled process that helps communities to assess, measure, and improve their resilience to … threats and disruptions of all kinds, and ultimately be rewarded for their efforts. The CRS brings together people, process and technology to improve resilience in individual communities. The system includes not only a knowledge base to help inform communities on their resilience path but also a process guide that provides a systematic approach to moving from interest and analysis to visioning and action planning. It also provides a collaborative mechanism for other interested stakeholders to support community efforts.”

The CRS is a DHS/FEMA funded initiative. It began in 2010, convening three working groups: researchers (the Subject Matter Group), community leaders (the Community Leaders Group), and government/private sector representatives (the Resilience Benefits Group). The findings of these working groups culminated in the development of the CRS web-based tool along with pilot implementations in eight communities commencing in the summer of 2011.

The CRS addresses 18 distinct Community Service Areas (CSAs) and is designed specifically for use by community leaders. The web process is a checklist driven approach, with questions tailored for each of the CSAs. The answer to a question may trigger additional questions. For many of the questions, comment fields are provided so that communities may answer the questions as specifically as possible. The CARRI team notes that a facilitated approach (i.e., an outside group coming in, such as CARRI), is most effective. “The CRS process works more productively as a “partially facilitated” model where some supportive expertise assists communities in applying aspects of resilience to and embedding them within their community circumstances and processes.”

10.4.5. Communities Advancing Resilience Toolkit (CART)

The Communities Advancing Resilience Toolkit (CART 2012) was developed by the Terrorism and Disaster Center at the University of Oklahoma Health Sciences Center. It was funded by the Substance Abuse and Mental Health Services Administration, U.S. Department of Health and Human Services, and the National Consortium for the Study of Terrorism and Responses to Terrorism, U.S. Department of Homeland Security, and by the Centers for Disease Control and Prevention.

CART is designed to enhance community resilience through planning and action. It engages community organizations in collecting and using assessment data to develop and implement strategies for building community resilience for disaster prevention, preparedness, response, and recovery. The CART process uses a combination of qualitative and quantitative approaches, and it involves the following steps:

1. Generating a community profile (CART Team and Partners)

Community Resilience Metrics, Examples of Existing Community Resilience Assessment Methodologies

345 2. Refine the community profile (Community Work Groups)
346 3. Develop a strategic plan (Community Planning Groups)
347 4. Implement the plan (Community Leaders and Groups)

348 The CART approach is not hazard specific, and it is applicable across communities of varying size and
349 type. It is innovative, providing a complete set of tools and guidelines for communities to assess their
350 resilience across a number of domains. The toolkit includes the CART assessment survey, key informant
351 interviews, data collection framework, community conversations, neighborhood infrastructure maps,
352 community ecological maps, stakeholder analysis, SWOT analysis, and capacity and vulnerability
353 assessment. The focus of the approach is to provide a process that engages communities in thinking about
354 resilience and provide a foundation to move forward into sophisticated activities.

10.4.6. Baseline Resilience Indicators for Communities (BRIC)

355 The Baseline Resilience Indicators for Communities (BRIC, Cutter et al. 2014) process builds on prior
356 work by Cutter et al., and is based on empirical research with solid conceptual and theoretical
357 underpinnings. BRIC measures overall pre-existing community resilience. The approach provides an
358 empirically based resilience metric for use in a policy context. Using data from 30 public and freely
359 available sources, BRIC comprises 49 indicators associated with six domains:

361 • Social (10 indicators)
362 • Economic (8 indicators)
363 • Housing and infrastructure (9 indicators)
364 • Institutional (10 indicators)
365 • Community Capital (7 indicators)
366 • Environmental (5 indicators)

367 BRIC is not hazard specific, and it has been implemented at the county level. The 49 indicators were
368 selected through conceptual, theoretical, and/or empirical justification as capturing qualities associated
369 with community resilience. Indicators in the aforementioned domains determine areas that policy makers
370 should invest for intervention strategies to improve resilience scores.

10.4.7. Rockefeller Foundation City Resilience Framework

371 The City Resilience Framework (CRF 2014) is a framework “for articulating city resilience” developed
372 by Arup with support from the Rockefeller Foundation 100 Resilient Cities initiative. One merit of this
373 framework is that it is based on a very extensive literature review involving cities with different
374 characteristics and a substantial amount fieldwork to collect data and develop case studies. The
375 framework organizes 12 so-called “key indicators” into 4 categories:

377 • Leadership and strategy
378 • Health and wellbeing
379 • Infrastructure and environment
380 • Economy and social

381 This organization integrates social and physical aspects, and it considers human-driven processes as
382 inherent components of the system-of-systems, making the community fabric of a city.
383 Economic/financial constraints are also considered in an integral way, providing a realistic setting for its
384 application for planning purposes. In turn, the 12 key indicators span 7 qualities of what is considered a
385 resilient city: being reflective, resourceful, robust, inclusive, redundant, integrated, and/or flexible.

386 The CRF will serve as the basis for developing a City Resilience Index in 2015. The CRF report states
387 that the CRI will further refine the 4 categories and 12 indicators of the framework into 48 to 54 sub-
388 indicators and 130 to 150 variables or metrics.

389 **10.4.8. NOAA Coastal Resilience Index**

390 The National Oceanic and Atmospheric Administration's Coastal Resilience Index ([NOAA CRI 2010](#))
391 was developed to provide a simple and inexpensive self-assessment tool to give community leaders a
392 method of predicting if their community will reach and maintain an acceptable level of functioning after a
393 disaster. The tool is completed by experienced local planners, engineers, floodplain managers and
394 administrators in less than three hours using readily available, existing sources of information, in a yes/no
395 question format.

396 The CRI is targeted primarily at coastal storms, particularly hurricanes and other surge or rain induced
397 flooding events with immediate and short-term recovery. More specifically, it focuses on the restoration
398 of basic services and how long a community will take to reach and maintain functioning systems after a
399 disaster. The eight page assessment form addresses six broad areas:

400 1. Critical facilities and infrastructure
401 2. Transportation issues
402 3. Community plans and agreements
403 4. Mitigation measures
404 5. Business plans
405 6. Social systems

406 The resulting assessment is meant to identify problems (vulnerabilities) that should be addressed before
407 the next disaster – areas in which a community should become more resilient and where resources should
408 be allocated. It also estimates the adaptability of a community to a disaster, but is not meant to replace a
409 detailed study. The authors note that “The Resilience Index and methodology does not replace a detailed
410 study.... But, the Resilience Index resulting from this Community Self-Assessment may encourage your
411 community to seek further consultation.”

412 The authors also state that the tool should not be used to compare one community to another. Rather, they
413 recommend using it as an approach to internal evaluation to identify areas in which a given community
414 might increase its resilience. As part of its development process the NOAA Community Resilience Index
415 (CRI) was pilot tested in 17 communities in five states (Alabama, Florida, Louisiana, Mississippi, and
416 Texas). In addition to developing their community indices, these pilot tests were also used to further
417 refine and improve the assessment methodology.

418 **10.4.9. FEMA Hazus Methodology**

419 The Federal Emergency Management Agency's Hazus tool ([FEMA 2014](#)) “is a nationally applicable
420 standardized methodology that contains models for estimating potential losses from earthquakes, floods
421 and hurricanes. Hazus uses Geographic Information Systems (GIS) technology to estimate physical,
422 economic and social impacts of disasters. It graphically illustrates the limits of identified high-risk
423 locations due to earthquake, hurricane and floods. Users can visualize the spatial relationships between
424 populations and other fixed geographic assets or resources for the specific hazard being modeled – a
425 crucial function in the pre-disaster planning process.”

426 The Hazus methodology and data sets cover the entire United States, and the study region (i.e.,
427 community) can be defined as any combination of US Census tracts. The specific hazard models included
428 are earthquake (including fire following), flood (riverine or coastal) and hurricane (wind and storm
429 surge). The focus of the model is on immediate physical, economic and (to a lesser degree) social
430 impacts. But, the model does produce outputs on expected loss of use for buildings, loss of use for
431 infrastructure (earthquake and flood only), shelter requirements, casualties (earthquake only), building
432 contents and inventory losses, lost wages and income and indirect economic losses (earthquake and flood
433 only). Estimated repair times are explicitly considered in economic loss estimates produced by the model,
434 but the economic outputs are not tabulated or viewable as a function of time. While Hazus can be used to

Community Resilience Metrics, Examples of Existing Community Resilience Assessment Methodologies

435 assess losses avoided through some mitigation measures, it does not estimate mitigation costs and
436 therefore does not output estimates of return on investment.

437 There are gaps between the results produced by Hazus and the information required for a community-
438 level resilience assessment methodology, particularly in the areas of interdependencies, social impacts
439 and recovery times. However, many of the Hazus methodologies and the types of results they produce
440 could become portions of a larger framework.

441 **10.4.10. Comparison Matrix**

442 A summary comparison of the nine example methodologies discussed in the preceding sections is
443 provided in Figure 10-1. As noted earlier, not all of these methodologies address community resilience,
444 but were evaluated to identify relevant and potentially applicable methods, indicators, or processes.

445 Each methodology was assessed on five broad dimensions: (1) comprehensiveness, (2) utility, (3) impacts
446 assessed, (4) techniques used, and (5) overall merit with respect to the maturity, innovativeness,
447 objectivity, and scientific merit of the methodology. Assessments were made in the context of community
448 resilience planning and assessment, specifically as it pertains to the built environment.

449 Consistent with the findings of previously published assessments, none of the nine methods reviewed is
450 strong in all five dimensions. However, it may be possible to combine the strongest features of existing
451 and emerging methodologies to produce a new community resilience assessment methodology that
452 addresses the needs identified in this chapter.

453

DISASTER RESILIENCE FRAMEWORK

75 % Draft for San Diego, CA Workshop

11 February 2015

Community Resilience Metrics, Examples of Existing Community Resilience Assessment Methodologies

454

Figure 10-1. Preliminary Summary Assessment of Nine Existing Community Resilience Methodologies

455

456

457 10.5. Economic Evaluation of Community Resilience Investment Portfolio

458 This section presents a brief overview of existing economic concepts related to the evaluation of
459 investments to improve community resilience. The focus is on the development of a portfolio of
460 investments that maximize the social net benefits to the community, recognizing constraints, uncertainty,
461 and interdependencies that affect the mix of investments.

462 10.5.1. Portfolio Considerations**463 10.5.1.1. Economic Efficiency**

464 Economic efficiency refers to obtaining the maximum benefit from the resources available. Equivalently,
465 it means not wasting resources.

466 10.5.1.1.1. Maximization of Net Benefits

467 Improved community resilience will also increase the level of service economically. Several alternatives
468 may maximize the net benefits to the citizens of the local community.

469 This assessment takes into account the fact that improved levels of service are typically more costly. This
470 type of analysis will identify the level of service where the net benefits (that is, the increased value of the
471 improved level of service minus the cost of obtaining that level of service) are maximized.

472 10.5.1.1.2. Minimization of Cost + Loss

473 From an economic perspective, this is an equivalent formulation to maximizing net benefits. Since the
474 “Level of Service” is defined in terms of minimizing costs and losses, it may be a more convenient format
475 for analysis. Expressing the results of this analysis in terms of net benefits is straightforward.

476 10.5.1.1.3. First-Cost vs. Life-Cycle Cost

477 Any effort to identify the alternatives that produce a maximization of net benefits depends on accurate
478 estimates of benefits and costs. With regard to the costs of attaining a desired level of service, all costs,
479 covering the entire life-cycle of any mitigation measures, need to be accounted for. It is not sufficient to
480 include first costs only. Operation costs, maintenance costs, replacement costs and end-of-life costs
481 (among others) need to be included.

482 10.5.1.2. Multiple Objectives

483 There are several complementary (and overlapping) objectives that are likely to be considered, accounting
484 for the types of losses that a community wishes to avoid. In any analysis of avoided losses, care needs to
485 be taken to ensure that savings are not double-counted.

486 10.5.1.2.1. Minimize Economic Losses

487 The simplest consideration is that of minimizing economic losses. Treated in isolation, that simply means
488 making sure that the difference between economic gain (in terms of losses avoided) and costs of the
489 desired level of service are maximized. It is simpler than the other considerations because costs and
490 benefits are both in dollar terms.

491 10.5.1.2.2. Minimize Loss of Life

492 The remaining objectives all relate to economic losses of one sort or another. The most important
493 consideration is avoiding loss of life and other casualties.

494 10.5.1.2.3. Minimize Other Losses

495 Other losses a jurisdiction might wish to avoid include disruption of key government services, disruption
496 of social networks, and damage to the environment. Including non-economic factors such as these in the
497 optimization is difficult, as benefits and costs are measured in different terms. If loss of life is included in

Community Resilience Metrics, Economic Evaluation of Community Resilience Investment Portfolio

498 the optimization, the benefits are measured in terms of lives saved (or deaths avoided), while the costs are
499 typically measured in dollars. The normal economic way of handling this issue is by assigning a value to
500 the benefits. For lives saved, Value of a Statistical Life is a standard approach. For other benefits, a
501 number of techniques are available to determine the value a community places on those benefits.

502 However, there is a strong reluctance to put a price on a life (which is nominally what Value of a
503 Statistical Life does) and other non-economic amenities. As an alternative, some form of Lexicographic
504 Preferences could be used. Here each objective is strictly ranked, and then optimized in order. For
505 example, an assessment could optimize for loss of life and then for economic losses. This ranking
506 approach would ensure the selection of an alternative that minimizes loss of life (irrespective of costs).
507 Next, the minimum cost alternative that maintained the minimum loss of life would be found.

508 Why not choose zero loss of life? As a practical matter, tradeoffs between safety and costs cannot be
509 avoided.

510 **10.5.1.3. Constraints**

511 To the extent a local community has a limited budget, that budget must be factored into the optimization.
512 Other constraints can also be factored in, largely by screening out potential plans that do not meet the
513 constraints.

514 **10.5.1.4. Economic Interdependencies**

515 The economy in general is affected by the resilience of the built environment. The reverse also holds – the
516 resilience of the community depends on the health and resilience of the economy.

517 **10.5.2. Economic Decision-Making Involving Risk and Uncertainty**

518 **10.5.2.1. Expected Utility Theory**

519 Economists often approach decision-making with expected utility theory. The basic idea is that people
520 will choose the alternative that has the best ‘utility’ or value for them, as indicated by the highest
521 probability-weighted average value. The value is adjusted to account for both time preference and risk
522 preference.

523 **10.5.2.1.1. Time Preference**

524 Most people prefer consumption now over consumption later. The typical way to address that is to
525 discount future consumption.

526 **10.5.2.1.2. Risk Preferences**

527 Most people would prefer to avoid risk – that is, they are risk averse. For people who are risk averse, a
528 large potential loss weighs more heavily than a large number of small losses, which together, add up to
529 the same value as the big event. Someone who is risk neutral would weigh the two equally.

530 Risk aversion is handled in economic theory by weighting the large losses more heavily (or equivalently,
531 by weighting large gains less heavily). The simplest approach, and the one used most often in net benefit
532 analyses, is to assume that the community is risk neutral. Then you simply compute the present expected
533 value. However, when it comes to disasters it seems unlikely that communities will be risk neutral.

534 To account for risk preferences, it will be necessary to measure those risk preferences. A number of
535 widely-accepted methods for measuring risk preferences exist.

536 **10.5.2.2. Behavioral Economics and Cognitive Bias**

537 People are not Expected Utility maximizers; there is a very large body of literature regarding departures
538 from Expected Utility maximization. Expected utility maximization is a difficult problem, and typically,
539 there are not enough resources available to solve it. There are several approaches to thinking about these
540 departures from economic theory, but the most widely accepted is the Heuristics and Biases school. They

541 argue that people use standard shortcuts—heuristics—that work well most of the time. However, there
542 will be cases where they do not work well, and in those situations they will be biased. The biases are
543 generally used to try and identify the heuristics used.

544 There are a number of identified biases, some of which are relevant here. These include Uncertainty v.
545 risk, overconfidence, and small probability events, among others.

546 10.5.2.3. Uncertainties

547 Uncertainties regarding estimates of expected damages and recovery times from disasters fall into two
548 categories. First, there are factors that cannot be known with certainty in advance, such as the timing and
549 magnitude of future hazard events. Second, there are things that are in principle knowable, but are not
550 currently known with certainty. For example, while in principle the cost of a particular project can be
551 estimated, the level of uncertainty associated with the estimate can vary and will likely increase with the
552 scope of the project.

553 Mitigation costs, recovery costs, and losses will have uncertainties in their estimates. As community
554 resilience plans are developed and refined, the level of uncertainty may reduce.

555 A particularly high level of uncertainty exists regarding business interruption losses. In cases where they
556 have been estimated, such losses are often as large or larger than direct economic losses. However, they
557 are difficult to estimate, due to the lack of data from past events to support estimates.

558 10.6. References

559 CERA (2014). *Canterbury Wellbeing Index June 2014*, Canterbury Earthquake Recovery Authority,
560 Christchurch, New Zealand.

561 Cutter, S.L. (2014). *The Landscape of Resilience Measures*. Presentation at the Resilient America
562 Roundtable Workshop on Measures of Community Resilience, September 5, 2014. Viewed
563 January 25, 2015.
564 <http://sites.nationalacademies.org/cs/groups/pgasite/documents/webpage/pga_152239.pdf>

565 Government Office for Science (2012). *Foresight – Reducing Risks of Future Disasters: Priorities for*
566 *Decision Makers*, Final Project Report, London. Viewed January 25, 2015.
567 <<https://www.gov.uk/government/publications/reducing-risk-of-future-disasters-priorities-for-decision-makers>>

569 National Academies (2012a). *Disaster Resilience: A National Imperative – Summary*, Committee on
570 Increasing National Resilience to Hazards and Disasters and Committee on Science, Engineering,
571 and Public Policy. Viewed January 25, 2015.
572 <www.nap.edu/html/13457/13457_summary.pdf>

573 National Academies (2012b). *Disaster Resilience: A National Imperative*, Committee on Increasing
574 National Resilience to Hazards and Disasters and Committee on Science, Engineering, and Public
575 Policy. Viewed January 25, 2015.
576 <http://www.nap.edu/catalog.php?record_id=13457>

577 UNISDR (2005). *Hyogo Framework for Action 2005-2015: Building the Resilience of Nations and*
578 *Communities to Disasters*, World Conference on Disaster Reduction 18-22 January 2005, Kobe,
579 Hyogo, Japan. Viewed January 25, 2015.
580 <<http://www.unisdr.org/2005/wcdr/intergover/official-doc/L-docs/Hyogo-framework-for-action-english.pdf>>

582 UNISDR (2012). *Making Cities Resilient Report 2012: My City is Getting Ready! A Global Snapshot of*
583 *How Local Governments Reduce Disaster Risk*, Second Edition, October 2012. Viewed January
584 25, 2015.
585 <<http://www.unisdr.org/we/inform/publications/28240>>

DISASTER RESILIENCE FRAMEWORK
75 % Draft for San Diego, CA Workshop
11 February 2015
Community Resilience Metrics, References

586 White House (2013). *Presidential Policy Directive/PPD-21: Critical Infrastructure Security and*
587 *Resilience*, Office of the Press Secretary, February 12, 2013. Viewed January 26, 2015.
588 <<http://www.whitehouse.gov/the-press-office/2013/02/12/presidential-policy-directive-critical-infrastructure-security-and-resil>>

590 **References for methodologies and metrics discussed in Sections 10.4**

591 SPUR:
592 <http://www.spur.org/sites/default/files/publications_pdfs/SPUR_Seismic_Mitigation_Policies.pdf>

593

594 Oregon:
595 <http://www.oregon.gov/OMD/OEM/osspac/docs/Oregon_Resilience_Plan_Final.pdf>

596 UNISDR Scorecard:
597 <<http://www.unisdr.org/2014/campaign-cities/Resilience%20Scorecard%20V1.5.pdf>>

598 CARRI CRS:
599 <<http://www.resilientus.org/wp-content/uploads/2013/05/CRS-Final-Report.pdf>>

600

601 CART:
602 <http://www.oumedicine.com/docs/ad-psychiatry-workfiles/cart_online-final_042012.pdf?sfvrsn=2>

603

604 BRIC: S Cutter, K Ash, and C Emrich (2014). See “The geographies of community disaster resilience.”
605 Viewed December 9, 2019.
606 <<http://www.sciencedirect.com/science/article/pii/S0959378014001459>>

607 Rockefeller Foundation CRF:
608 <<http://www.rockefellerfoundation.org/uploads/files/0bb537c0-d872-467f-9470-b20f57c32488.pdf>>

609

610 NOAA Coastal Resilience Index:
611 <http://masgc.org/assets/uploads/publications/662/coastalcommunity_resilience_index.pdf>

612

613 FEMA Hazus Methodology:
614 <<https://msc.fema.gov/portal/resources/hazus>>

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015
Glossary

Glossary

List of Terms and Acronyms and their Definitions

Term/Acronym	Definition
Building Clusters	A set of buildings that serve a common function such as housing, healthcare, retail, etc.
Building Disaster Resilience	Ability of a single building to adapt, withstand and recover from a natural or technological disaster
Building Resilience	Ability of a single building to adapt, withstand and recover from a disruption
Buildings	Individual structures including the equipment and contents that house people and support social institutions
Built Capital	Any mechanism, building, or technology that helps the community function. The built environment is a subset.
Built Environment	All buildings and infrastructure systems. Also referred to as physical infrastructure
Business Continuity	Ability of a single business to maintain function
Business Disaster Resilience	Ability of a single business to adapt, withstand and recover from a natural or technological disaster
Business Resilience	Ability of a single business to adapt, withstand and recover from a disruption
Communication and information Systems	Equipment and systems that facilitate distant communication
Community	People who live, work, learn, and/or play together under the jurisdiction of a governance structure, such as a town, city, county, region, state, nation
Community Disaster Resilience	The ability of a community's social institutions to recover from a natural, technological or human caused disruption
Community Leaders	Elected officials, paid staff, non-government organizations, and volunteers
Community Resilience	The ability of a community's social institutions to recover from any disruption
Community Social Institutions	A complex, organized pattern of beliefs and behavior that meets basic individual and household needs
Critical facilities	Buildings that support functions that are needed during the short term phase after a hazard event. These are also referred to as essential buildings.
Critical Infrastructure	Assets, networks, systems and structures, whether physical or virtual, that support community social institutions so vitally that their incapacitation or destruction would have a debilitating effect on security, national economic security, national public health or safety.
Disaster	Any hazard event that causes significant damage and/or loss of functionality
Disaster Resilience	The ability to adapt to, withstand, and recover from a natural, technological or human caused disruption

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015
Glossary

Term/Acronym	Definition
Disruption	The occurrence of a hazard event
Element Resilience	Ability of an individual element to adapt, withstand and recover from any disruption
Emergency Responders	Official and volunteer workers during the short term phase after the disaster
Energy Systems	Electric power, liquid fuel and natural gas generation and distribution
Financial Capital	Any economic resource measured in terms of money used by communities buy what they need to provide their services
Function	A specific action or activity performed to support a community's social institution.
Functionality	Able to continue to use the system or structure at possibly an impaired level. This is also referred to as serviceability.
Governance Structures	The organizational framework of the governing body of the community
Hazard	A situation that poses a level of threat to life, health, property, or environment due to nature, technology, or human caused
Hazard Event	The occurrence of a hazard
Hazard Intensity	The quantification of the impact of a hazard
Hazard Level	The quantification of the size of a hazard
Human Caused Disaster	A hazard event caused by a deliberate action including a terrorist activity
Infrastructure	Physical networks, systems and structures that support community social institutions including transportation, energy, communications, and water and wastewater.
Infrastructure Disaster Resilience	Ability of the infrastructure to adapt, withstand, and recover from natural or technological disaster
Infrastructure Resilience	Ability of the infrastructure to adapt, withstand, and recover from a disruption
Interdependencies	Intersection of systems at points of dependence to continue full service
Life Safety	Alive, able to exit without assistance or remain in a stable environment
Mitigation	Improving the infrastructure by reconstruction, repair, or retrofit
Natural Disaster	A disaster that is rooted in nature
Performance Goals	Metrics that define the safety and usability of systems and structures in terms of occupant protection, cost of restoration and time allotted for repairs and return to function.
Performance Levels	Metrics that define the safety and usability of systems and structures.
Recovery Strategies	Actionable steps taken before the disaster to improve disaster resilience; includes recovery planning, land use planning, physical construction, retrofit reconstruction and education.
Redirecting	Softening or eliminating a hazard when possible by changing its path

DISASTER RESILIENCE FRAMEWORK
75% Draft for San Diego, CA Workshop
11 February 2015
Glossary

Term/Acronym	Definition
Redundancy	Multiple systems or buildings that perform the same function
Resilience	The ability to prepare for and adapt to changing conditions and withstand and recover rapidly from disruptions
Resilience Construction Standards	Codes and standards that include transparent performance expectations
Retrofitting	Improve the expected performance of existing infrastructure through reconstruction. This is also referred to as hardening.
Robustness	Sufficient strength to withstand the hazard without loss of function
Shelter-in-place	Able to safely remain in a residence with possible damage and impaired utility services
Social Capital	The links, shared values and understandings in society that enable individuals and groups to trust each other and so work together.
Technological Disaster	A human caused disaster due to an accident
Transportation Systems	Buildings, structures, and networks that move people and goods
Vulnerable populations	People who require special assistance during recovery
Waste Water Systems	Collection, treatment, and discharge of waste water
Water Systems	Collection, storage, purification, and distribution of water
Workforce	People who provide labor to one or more of the social institutions