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The growth of streamer trees in insulating fluids ~a submicrosecond process that triggers
high-voltage breakdown! has been simulated with a combination of parallel-coding tools. Large
grids and arrays display well the multifractal, self-avoiding character of the streamer trees. Three
physical cases have been approximated by different power-law weightings of the statistical growth
filter: dense anode trees, in the uniform field; sparse cathode trees ~a rarer experimental case!; and
ultrasparse anode trees ~seen in some fluids of higher viscosity!. The model is contained in a
software package that is written in Fortran 90 with data parallel extensions for distributed
execution. These extensions encapsulate an underlying, invisible message-passing environment,
thus enabling the solution of memory-intensive problems on a group of limited-memory
processors. Block partitioning creates processes of reasonable size, which operate in parallel like
small copies of the original code. The user needs only to express his model in transparent
array-directed commands; parallel interfacing between blocks is handled invisibly. Breakdown is
performed in parallel in each of the local blocks. Results are presented for experiments run on eight
and nine nodes of the IBM SP2, and four and eight nodes of the SGI Onyx and Origin, three
examples of multiple-processor machines. Display is carried out in three dimensions. Timing of the
growth can be shown by color banding or by frame animation of the results. The adequacy of the
growth rules and size scaling are tested by comparing the simulations against snapshots from
high-voltage discharge events. @S0894-1866~98!01805-7#

INTRODUCTION

The growth of fast streamer trees in liquid-dielectric insu-
lation provides the precursor ‘‘leader’’ conduction path
through which damaging flashover between electrodes can
take place. The high-speed, variable nature of this phenom-
enon has made its detailed mechanism elusive. Nonethe-
less, a global description of the process may be useful for
its characterization.

We have applied stochastic Laplacian growth as a
model for fast streamer trees in liquid dielectrics. Filamen-
tary dielectric breakdown has been extensively discussed
by Pietronero and Wiesmann1 and by others.2–5 Here we
construct a practical realization of the algorithm on a large
Cartesian grid using boundary conditions that confine the
electric field. We examine the effect of parameters ~thresh-
old voltage, choice of power law! on the fractal structure
and timing of the growth process.

The calculation of the voltage field throughout the full
volume, repeated after each stage of breakdown growth, is
the major computational burden that calls for parallel meth-
ods.

The single-instruction-stream, multiple-data ~SIMD!
model fits our problem closely. We had tested an earlier
machine-language version of our algorithm on the CM-2
Connection Machine.6 The SIMD version there was syn-
chronous and specific to the machine. The present method
uses block partitioning under Message Passing Interface
~MPI! control,7 in a single-program, multiple-data ~SPMD!
approach, which runs asynchronously. For a data-parallel
environment that is easy to use and transport, we have writ-
ten the code in array-directed commands of Fortran 90,
together with our library DPARLIB8,9 that encapsulates the
underlying MPI calls.7 This will run in any environment
that is Fortran 90 and MPI enabled, be it networks of work-
stations, symmetric multiprocessors ~SMPs!, parallel ma-
chines, or some combination of these.

Running Fortran 90 on a single processor does not
provide access to the memory that large data-parallel pro-
grams require. Our software has been designed not only to
fit into the Fortran 90 syntax transparently, but also to run
across the nodes of a group multiprocessor. It extends the
array-directed commands seamlessly, across block bound-
aries. For development purposes, the number of processors
executing can be reduced to one, like a serial version of the
code using only plain Fortran 90 commands. These features
enable users to test small versions of their code on their
workstations. Then, with only minor changes in the code,
much larger versions can be run on machines like the SP-2,
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taking advantage of the larger memory and fast communi-
cation network.

I. PHYSICAL MODEL AND ALGORITHM

The elements of a stochastic fractal model have been dem-
onstrated in numerous examples.10–16 The streamer tree is
assumed to be fully conductive and electrically attached to
the electrode from which it originates. The voltage field is
defined over a set of points in a rectangular grid. The
streamer tree is a connected set of those points.

After initialization, the algorithm alternates between a
Laplacian convergence procedure and statistically weighted
streamer tree growth. Our algorithm may be summarized as
follows:

Initialize voltage field and anode/cathode configuration
Set the streamer tree to be the anode (including starter

needle)
Run Gauss-Seidel over-relaxation on Laplace’s equation

for 200 iterations

Do until streamer tree has reached cathode

Set all sites on streamer tree to voltage 0.0
Set all sites on cathode to voltage 1.0
Solve Laplace’s equation via Gauss-Seidel

over-relaxation
Find nearest neighbors to tree

Do until the set of breakdown sites is not less than one
Set Breakdown sites equal to the empty set
Choose, locally in each block, red or black

(at random)
Set breakdown candidates equal to

neighbors of the color
Remove candidates with voltage below a

specified threshold
For each remaining site generate a weighted

random number
Remove breakdown sites whose voltage is

below this number
End Do

Add breakdown sites to streamer tree

End Do

The two stages of this algorithm are the solution of
Laplace’s equation and the growth of the streamer tree. We
now consider these in more detail.

A. Solution of Laplace’s equation

Laplace’s equation is fully solved throughout the interior
region ~filled with dielectric liquid! using the anode, starter
needle, and streamer tree as one boundary at zero potential
and the plane cathode as the counterelectrode. Sides of the
cube-volume support periodic boundary conditions. The
quasistatic field approximation ~i.e., that the voltage field
always ‘‘catches up’’ with the new boundary condition at
each stage of the growth! is physically reasonable, since
breakdown streamers are known to advance at supersonic
velocities, still slow by comparison with the speed of light
in the dielectric liquid.

A first-order, six-point-averaging Laplacian operator17

on red-to-black and black-to-red checkerboard subgrids ad-
vances through Gauss–Seidel overrelaxation. Initially 200
iterations of convergence bring the smoothing precision be-
low one part in 10,000, on a grid of 12831283128.
~Nominal single iteration time is roughly 10 s.! After this
first high-precision convergence, the epsilon is relaxed ~to
0.001–0.005! in the interests of speed. Because each
growth stage creates only small perturbations on the exist-
ing boundary conditions, the later cycles reconverge rap-
idly, in 5–10 iterations. The changes propagate in rapidly
diminishing ripples, away from the newest growth links on
the tree.

B. Growth of the streamer tree

Grid sites immediately adjacent to the tree are examined. If
their voltages exceed a specified threshold ~or cutoff! level,
then the surviving voltages are compared against a
weighted distribution of random numbers. Those that pass
over the statistical hurdle are attached to the tree, and the
Laplacian convergence is recycled for the new, perturbed
boundary condition. Field and growth stages alternate until
the counterelectrode is reached.

By contrast with some of the stochastic fractal models
cited earlier, which recalculate Laplace’s equation after
each single new-growth site is added, our algorithm consid-
ers simultaneous, distributed growth possibilities on all
‘‘red’’ or all ‘‘black’’ neighbors of the tree during each
growth stage. Growth is favored near the tips of the tree,
where electrostatic field lines converge strongly and the
voltage gradients are largest. While the details of the
mechanism for fast streamer growths are still to be deter-
mined from experiment, we ask, ‘‘To what laws of shape
and timing does the observed growth conform?’’

Weighting of the growth-probability power law, as a
function of electric field strength, determines the degree of
bushiness ~or fractal dimension! of the final structure. At
one extreme, Sanchez et al.18 have shown that a fourth-
power ~or higher! dependence on field strength produces a
single, self-avoiding strand that resembles a directed ran-
dom walk. Side branching is minimized. At the other limit,
Witten and Sander19 showed that a linear filtering against
uniformly distributed random numbers results in a dense
growth form, which is also found in diffusion-limited ag-
gregation, from a different mechanism. In this linear re-
gime, a mass of twigs advances with a ‘‘front’’ of thickly
spaced growing tips. A recent review by Erzan, Pietronero,
and Vespignani20 considers ways of characterizing fractal
dimension in this class of problems.

In Fig. 1 we see a log–log plot of breakdown prob-
ability ~for a single link between grid vertices! versus
power of the electric field strength, measured as the voltage
difference between the conducting tree, at zero potential,
and its immediate neighbors on the Cartesian grid. The
power law determines the likelihood of growth from the tip,
as against side branching. Recall that Laplace’s equation is
size-scalable without limit. By adopting a power-law prob-
ability, we may expect self-similar growth over large
ranges of both size and field strength. This is not viewed as
a microscopic description, but rather as a law controlling
the global growth form.

Notice how minuscule the breakdown probability be-
comes for cube-law and higher powers on the left half of
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the graph. The range shown, of field strengths, is that en-
countered in growth across a 12831283128 grid volume.
As the streamer tip advances from anode to cathode, the
diminishing gap leads to progressively higher fields around
the leading branches, while electrostatic screening causes
the fields around the base of the tree to drop back below
threshold, so that growth is cut off there. Because the elec-
tric field is confined by limiting boundary conditions, and
the growth process starts and stops at an abrupt threshold,
we do not expect a ‘‘pure’’ fractal dimension throughout
the growth. The tree is sparser as it leaves the concentrating
needle on the primary electrode, and denser as it ap-
proaches the counterelectrode.

The algorithm must operate uniformly across a wide
range of growth rates. For square-law and higher powers,
the starting probability near the anode needle ~where the
field strength only slightly exceeds the threshold value of
0.015–0.10! is very small—tens or hundreds of empty sta-
tistical tries may occur between single breakdown events.
By contrast, linear weighting leads to tens of events per
growth stage, in the shorter gaps, approaching the cathode.

The uniform treatment of slow and fast stochastic pro-
cesses assumes that the discretized physical model approxi-
mates a Markov-process master equation,21,22 whose time
variable is proportional to the number of trial instances.

II. IMPLEMENTATION

Our code was first implemented in a serial version, on Sun
and SGI workstations, and was run interactively on small

grids. This enabled extensive testing with visual tracking of
detailed printouts to the screen. This serial code was imple-
mented in standard Fortran 90 and exploits that language’s
array-oriented syntax and intrinsic functions. As examples
of the powerful simplifications available, we describe some
of the details.

The code makes extensive use of array arithmetic,
the WHERE construct, array functions such as CSHIFT,
MAXVAL, COUNT, and the dynamic-memory-allocation
features of Fortran 90. Our program logic is expressed
through combinations of real and logical arrays, the
WHERE assignment mask of Fortran 90, and a selection of
spreading and collecting operations.

For example, our Laplacian-operator subroutine makes
vigorous use of Fortran 90’s CSHIFT operation. The sum of
neighbors calculation was implemented in the serial version
with the following code:

blksum5cshift (blkphi,11,1)1cshift (blkphi,21,1) &

1cshift (blkphi,11,2)1cshift (blkphi,21,2) &

1cshift (blkphi,11,3)1cshift (blkphi,21,3)

CSHIFT is the standard Fortran 90 intrinsic function
that performs circular shifts. The array (blksum) that results
from this calculation contains at each grid point the sum of
the six neighbors of that grid point in the original array,
using periodic boundary conditions. The division of the
three-dimensional grid into alternating/adjacent red and
black subgrids is a feature brought over from statistical-
mechanics simulations. Black-to-red and red-to-black aver-
aging steps are carried out across all processes, at each
loop. This routine is global over the entire internal voltage-
field array.

We also made extensive use of the ‘‘modules’’ feature
of Fortran 90. This simplified the debugging process by
enabling the compiler to catch certain types of coding er-
rors. In particular, the compiler checked that all subroutine
calls had properly constructed calling sequences.

The statistical selection was coded by the following
steps. By contrast with the Laplacian routine, these are lo-
cal operations, executed independently in each block.

~1! Find all nearest neighbor sites to the growth tree within
the process block. This procedure produces a logical
mask array that is .true. at the neighbor sites and .false.
elsewhere.

~2! Select, at random for each block, either the red or black
neighbors within that block. The mask array of neigh-
bors is modified to reflect this choice. Since we are
considering simultaneous but independent growth
across the full distributed array of neighbor sites, this
red/black choice discourages selection of adjacent sites,
which might lead to growth concentration or cause a
locally enhanced perturbation of the voltage field.

~3! Allocate a one-dimensional REAL array with one ele-
ment for each surviving neighbor. If a power law
higher than linear is desired, then additional arrays of
the same length are allocated.

~4! Fill the one-dimensional array~s! with uniformly dis-
tributed random numbers. The DPARLIB dp–uni is used
to generate random numbers that are independent
across all of the parallel processes.

Figure 1. Log–log plot of breakdown probability (discharge probability
for an individual link) versus electric field strength for power laws with
integral exponents. The horizontal scale is electric field strength at the
candidate links in the discretized step approximation (difference between
the zero voltage of the streamer tree and the voltages at the neighbor grid
nodes). The limit value 1.0, to which all fields are normalized, is the value
that would be reached between flat-plate electrodes separated by one grid
step.
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~5! Calculate the MAX array of these random arrays. The
resulting array contains a weighted distribution at one
power lower than the desired breakdown power law.
Step ~7! below, the statistical filtering, is equivalent to
a single order of integration for the distribution of volt-
ages that will survive this hurdle.

~6! UNPACK the MAX array through the neighbor mask
array. This creates a three-dimensional array with the
weighted random numbers at the surviving neighbor
sites.

~7! Compare the voltages to the weighted random array at
the neighbor sites. WHERE they pass, add new sites to
the existing growth tree. Write out their grid positions,
trial numbers, and field strengths.

~8! If no sites have been added to the tree, return to step
~2!.

~9! If a site has been added to the tree, return to the
Laplacian-convergence stage.

Note that the approach used in steps ~3!–~6! substan-
tially reduces memory and computational requirements by
generating the weighted distribution of random numbers in
minimally sized arrays. The resulting linear array is
UNPACKed into the full-size three-dimensional array only
when necessary.

The Fortran 90 array instructions that we needed were
WHERE, CSHIFT, UNPACK, MAXVAL, MAX, MOD,
COUNT, ANY, ALLOCATE, DEALLOCATE. In the block-
parallel mode, some are used in local fashion by the indi-
vidual processor, addressing only the portions of the major
arrays seen within its own block.

III. CONVERSION TO PARALLEL OPERATION

The DPARLIB operations, which were required as substitu-
tions or additions to enable parallel operation, were
dp–cshift, dp–uni, dp–count, dp–any, dp–sync.8,9 In addi-
tion, the dp–initialize and dp–query–layout routines were
called at the start of the run to set up the division of do-
mains between processors.

The adaptation of the serial code was accomplished
through the use of the DPARLIB subroutine library. This is a
Fortran 90 library developed at NIST to facilitate the tran-
sition of serial applications to a parallel-computing envi-
ronment and the development of new parallel programs.
DPARLIB is built on MPI, an industry-standard library for
passing data and coordinating the activities of multiple pro-
cesses in a parallel operating environment.

DPARLIB is designed to be used in the SPMD program-
ming approach. In other words, multiple copies of the same
program are running simultaneously, and each copy is pro-
cessing a different portion of the data. In particular,
DPARLIB provides simple mechanisms to divide very large
arrays into blocks, each of which is handled by a separate
copy of the program. In practice, this means that the re-
searcher can write parallel code that looks almost identical
to serial code. In our case, the code could be written as
though addressed to a single active grid node and its imme-
diate neighbors. Fortran 90, extended across block bound-
aries by DPARLIB, executed each instruction on all
2,000,000 sites of each array.

In this way, an existing serial program can often be
converted to a parallel program with few changes by using

DPARLIB, which plays the role of a high-level language for
block parallelism.

DPARLIB’s emphasis on array handling is designed to
mesh with Fortran 90’s array syntax and intrinsic array-
handling functions. Much of DPARLIB consists of parallel
versions of the intrinsic array functions such as CSHIFT
and MAXVAL. Because DPARLIB is coded entirely in stan-
dard Fortran 90 and depends only on MPI, it is portable to
any environment that provides those two resources.

The adaptation of the dielectric breakdown code was
straightforward and involved the following steps.

~1! Add calls to DPARLIB housekeeping functions for ini-
tialization and specification of the mapping of data ar-
rays to an array of processes. ~dp–initialize and
dp–query–layout!.

~2! Make all distributed data arrays allocatable, and allo-
cate the arrays based on information provided by
DPARLIB calls.

~3! Change various Fortran 90 intrinsic calls to the corre-
sponding DPARLIB calls. This simply involves changing
the name of the called routine, e.g., cshift becomes
dp–cshift and maxval becomes dp–maxval.

Once this conversion was complete, each process ran
the same program with its own block of data. It used no
explicit reference to data within other blocks, except as
information was received through collecting, spreading,
and shifting operations in DPARLIB. The parallel version
could be run at once, on a network of workstations with the
local area multicomputer ~LAM! implementation of MPI.23

Our Laplacian operator is first-order and requires only
the exchange of data for single layers between domain
blocks.24

A convenient feature of DPARLIB is that communica-
tion between processes is handled automatically. Thus, the
typical boundary-layer transfers of data, described by
Gropp, Lusk, and Skjellum,7 do not require explicit consid-
eration by the code writer. dp–cshift includes—invisibly—
the necessary ‘‘shadow’’ sites and cross-boundary transfers
of data that must take place at the planes between process
domains.17,24 The user can ignore this complex and error-
prone aspect of code writing.

There were, however, two crucial points in this pro-
gram at which we had to take some care about the parallel
execution of multiple copies of the code: writing the
streamer tree sites to a disk file and testing for whether the
streamer tree had reached the cathode. At these points, the
application code must explicitly deal with the fact that mul-
tiple copies are executing in parallel.

At the end of the tree-growth part of the algorithm, the
grid sites that have been added to the streamer tree are
written to a data file. Because these sites will be found in
multiple processes, we have these multiple processes trying
to write to the same output file at the same time. This will
result in errors on many systems, including the Sun, SGI,
and IBM systems on which we were running these tests.

This problem can be solved by having each process
write to its own output file. These separate output files
could then be merged after the program is complete. Where
multiprocessor access to a common file is possible, we in-
stead implemented a ‘‘round-robin’’ solution that involves
the synchronization of the processes using the DPARLIB rou-
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tine dp–sync. In this solution, each process in turn opens
the common output file, appends the necessary information,
and closes the file, so that no two processes are writing to
the output file at the same time.

The other point in the algorithm at which the code
must explicitly deal with the parallel execution of the code
is in testing whether the streamer tree has reached the cath-
ode. This is because only a portion of the tree and of the
cathode may be present in each of the processes. The issue
is handled by a simple test based on which part of the full
data array has been assigned to each process. If a process
contains a portion of the cathode, then the appropriate part
of the streamer tree array that resides in that process par-
ticipates in a test of whether the tree has reached the cath-
ode.

IV. RESULTS AND INTERPRETATION

The crucial test was, ‘‘Can streamer growth proceed seam-
lessly through the defined block boundaries?’’ Figure 2 il-
lustrates an example of a linear-weighted streamer simula-
tion grown with nine process blocks. The block-partition
boundaries were crossed as expected by the DPARLIB ver-
sion of the program, which contained no explicit reference
to boundaries in the array-directed commands. Neither the

Laplacian nor the statistical-test subroutine faltered in
crossing—meaning that data transfer had proceeded suc-
cessfully.

Each run delivers an output list of vertices, recorded
with the index number of the statistical ~red–black! trial.
Knowing that they form a singly connected tree, we find
the links between sites by means of a backward-search al-
gorithm. Because the statistical trial number—the clock
tick for ‘‘Monte Carlo time’’ in a stochastic process25—has
been recorded for each breakdown event, a simulation of
time progression in the global growth is possible.

Display is carried out in three dimensions, using color
banding to mark the time history of growth. Animation of
frames is also readily achieved. Visual presentation of the
data can be compared against high-speed photographs from
experiments,2,26 which are two-dimensional ~2D! shadow-
graphs taken in side view. ~In examining the results of very
large, dense fractal growths, the combination of color band-
ing and three-dimensional dynamic rotation can often call

Figure 3. (a), (b) Two examples of fast anode streamer discharges, grown
in n-hexane in less than 50 ns (Ref. 26). The gap between electrodes is 3
mm; the radius of the spherical electrodes is 1.27 cm. The anode is at the
top, the cathode at the bottom. Peak voltage was 250 kV. The time se-
quence, is top to bottom, in 100-ns intervals. The growth occurs in less
than 30 ns before the third frame shown in each sequence. The dark
volume is filled with fine filaments, incompletely resolved here. Other ex-
periments have shown the filaments to have individual diameters as small
as 4 mm. They are composed of individual small straight linear segments,
most being 30 mm or longer in length.

Figure 2. Lateral projection of a linear-weighted streamer simulation on
a grid of 12631263126, showing the boundary planes between the nine
process blocks. (The dimension 126 permits division by 9, with an even
number of planes per process, which is needed for the red/black subgrid-
ding division.) The centered starting needle extends 15 grid units from the
upper (anode) plane; the cathode plane is at the bottom. Periodic bound-
ary conditions are applied at the side walls of the cube. In this run, 597
statistical tries produced 27,203 discharged grid links. Cutoff (threshold)
voltage was set at 0.05. Real time for the calculation on the IBM SP-2 was
5:17:58.
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attention to features of the growth that are not obvious from
static projections.!

We include two examples of photography from
experiment.26 Figures 3~a! and 3~b! show two separate
samples of dense anode-streamer formation, each growing
in less than 30 ns in n-hexane, in a ‘‘uniform’’ field con-
figuration ~meaning that the growth commences close to the
anode, in a small gap between large-radius spheres!. The
time sequence proceeds from top to bottom, at 100-ns in-
tervals. The third frame in each sequence captures the start
of the ‘‘leader’’ breakdown, with the central shock wave
growing in diameter in the last two frames.

Figure 2 is one Cartesian projection of a three-
dimensional ~3D! dense growth, whose isometric view is
displayed in Fig. 4. Figure 5 shows the orthogonal 2D pro-
jection. What we note with some interest is the well-defined
cone-shaped upper envelope to the growth; Stricklett
et al.26 have called particular attention to this feature of the
experimental observations. This cone represents the bound-
ary at which further lateral growth is cut off by screening,
causing the electric field to drop below the cutoff ~thresh-
old! value for discharge. This feature of the numerical ex-
periment is undergoing further investigation.

For this case of growth with a uniform ~linear! statis-
tical filter, the major divisions of the tree have branched
laterally to fill the intervening spaces with twigs. They re-
main self-avoiding, however. The heavily weighted track in
Fig. 4 ~and later in Fig. 8! is the first continuous connecting
path between electrodes—it simulates the ionization path
along which the ‘‘leader’’ flashover will occur.

Figure 6 displays a sparse fast cathode streamer,

formed under similar conditions, but in the reverse polarity.
The positioning of the electrodes has been reversed; the
cathode is at the top, the anode at the bottom. Here the
timing sequence of frames proceeds from bottom to top. In
this Fig. 6 case, the fast ‘‘secondary’’ cathode streamer
begins from a primary slow-growing bushy structure;
Watson27 and Fenimore28 have described the primary stage
by a bubble simulation. ~The bipolarity of the anode and
cathode fast-streamer processes presents a further challenge
for physical interpretation: How is filamentary tree growth
possible in both directions under like conditions?!

Figures 7 and 8 show growth with a square-law statis-
tical filter for comparison against the fast cathode streamer
in Fig. 6. In this case, we note that both experiment and
simulation show a single major ‘‘trunk,’’ or column of
growth, proceeding halfway across the gap, then dividing
into three or four major branches, whose envelope lies
within a more narrow angle than the dense anode streamers
of Figs. 3~a! and 3~b!. Here the forward-directed field is
shaping the growth. The lateral twig growth from the major
branches has not filled the intervening gaps; screening does
not dominate.

Figures 9 and 10 provide examples of successive
growth frames, as a function of cumulative statistical trial
numbers. Development of the growth against ‘‘Monte
Carlo time’’ shows notable acceleration as the gap is short-
ened and the resultant electric field ~voltage gradient! in-
creases. In fact, the lower half of the growth takes place in
roughly 20% of the total elapsed duration.

The fronts, or growth-tip envelopes for both power-
law weightings, show considerable variability from run to
run. This is not surprising, if we recall that the statistical
filters are weighted in favor of extreme ~high! values of
electric field, producing a runaway tendency. Note that the

Figure 4. Isometric projection of the 3D dense anode-streamer simulation
in Fig. 2. The branching structure in 3D, which was hidden in the Fig. 2
projection, becomes evident. The tree is dense, but the major branches
remain self-avoiding because the electric field is screened out of the gaps
between. Scaled to the dimensions of Fig. 4, the individual discharged
links (each one grid interval) would have length of approximately 30 mm.
The apparent visual density is dependent on the choice of linewidth in the
graphical reconstruction. Compare against Fig. 3. The leader path con-
necting the electrodes is shown in heavy line weight.

Figure 5. 2D projection of the simulation in Fig. 4, orthogonal to Fig. 2.
Note the well-defined cone angle of the upper envelope, a feature corre-
sponding to experiment.
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‘‘leader’’ conduction path from needle to counterelectrode,
shown in heavy line weight, resembles a directed random
walk. In some instances, two branches of the leader may
reach the counterelectrode on the same statistical try.

V. TIME COMPRESSION FOR HIGHER POWERS

The extremely low probabilities shown in the lower half of
Fig. 1 complicate the trial of cube-law and higher powers.
For low values of initial field strength, many thousands of
empty statistical trials would be required to secure a very
few steps of growth. Our solution is to reweight the statis-

tical test, after the manner of the algorithm of Bortz, Kalos,
and Lebowitz25 so that the a priori likelihood of at least one
discharge event is increased to one.

The changed routine for higher powers proceeds as
follows, after step ~3! in the sequence that was described
earlier in Sec. II.

Figure 6. Fast (secondary) cathode streamer, produced under conditions
similar to those in Fig. 3. The cathode is at the top, the anode at the
bottom. The time sequence now proceeds from bottom to top. The tree
structure is noticeably sparser. This event occurs with distinctly lower
probability than the fast anode streamer. The bushy growth attached to the
cathode at the top is the slower (primary) streamer. Both anode and
cathode fast streamers provide the leader breakdown path that leads to
high current flow and the formation of the shock wave.

Figure 7. Lateral projection of a square-law-weighted streamer simula-
tion on a grid of 12631263126. 4227 statistical tries produced 4432
discharged links. The threshold voltage was set at 0.015. To compensate
for the very low starting probability, all voltage values on neighbor sites
were raised by 0.020 when comparing against the statistical filter. Real
time was 13:32:37.

Figure 8. Isometric view of Fig. 7. Compare against Fig. 6. The cathode
is now at the top, the anode at the bottom.
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~a! PACK the surviving neighbor-voltage values onto the
first linear real array.

~b! square, cube, or otherwise exponentiate this array
onto a second linear array. Sum the values of the
elements in this array to a value we call ‘‘sumsq.’’ It
represents the a priori probability of at least one dis-
charge event.

~c! Fill a third linear array, of the same length, with uni-
formly random numbers. Multiply these by the coef-
ficient ‘‘sumsq’’—this is equivalent to ‘‘compress-
ing’’ Monte Carlo time. It is also equivalent to the
normalization used in many previous examples of al-
gorithms where only the fractal shape, and not the
timing, were sought.

~d! WHERE the second array fails to exceed the random
array, weighted by the coefficient ‘‘sumsq,’’ set the
values of the first linear array equal to zero.

~e! UNPACK the revised first array through the position
mask of the original neighbors.

~f! WHERE the unpacked 3D array is now greater than
zero, add new sites to the existing tree.

~g! Update the statistical trial number ~Monte Carlo time
tick! by an integer equal to FLOOR((log(rho)/
log(sumsq))11), where rho is a random number.25

This estimates rather than counts the number of
empty trials before a successful trial in which growth
is added.

~h! Return to the Laplacian-convergence subroutine.

Again, Fortran 90 has furnished powerful array-
directed operations for composing the program logic. The

additional computing burden is small, since these opera-
tions are performed on few elements, numbering only in the
thousands.

The modified algorithm has been successfully run for
cube-law and fourth-power examples. Figure 11 illustrates
simulation of a cube-law streamer, run on a 1283128
3128 grid, with a short anode needle, two grid steps in
length. The spareness, restricted lateral branching, and di-
rected alignment are characteristic of growth with this ex-
ponent in the power law.

Recent reports by Miyano and collaborators29 display
fast anode streamers in D40 perfluoropolyether and FC10
perfluorocarbon. Photographs of them show strong similari-
ties to Fig. 11.

Thus, we note that physical counterparts to our power-
law simulations with exponents 1, 2, and 3 are found in the
experimental observations on fast filamentary streamers.

VI. LIMITATIONS

There are several clear limits in the present realization of
the model.

~1! Diagonal breakdown paths between grid nodes have
not been included in the simulations shown here. In-
creased flexibility of directional choice, at each event,
would be a step towards greater physical realism, albeit
imposing a greater bookkeeping burden. ~This capabil-
ity is being added.!

~2! The Laplacian-convergence accuracy has been relaxed
in a manner that may tend to favor tip-growth versus

Figure 10. Animated screen development of Fig. 8 against cumulative
statistical tries (Monte Carlo time). The acceleration of growth across the
second half of the gap is worth noting. Note that the duration of the full
growth would correspond to a period of around 30 ns or less than the
interval between frames in Figs. 3 and 6.

Figure 9. Color-banded version of the streamer tree shown in Fig. 8. The
color palette is a linear representation of cumulative statistical tries, a
measure of Monte Carlo time.
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side branching to a modest extent. This was considered
acceptable at the present semiquantitative condition of
comparison against experiment.

~3! Visual comparison against experiment is affected by
details of the visual perception, rendering of linewidth
weight, and 3D obscuration. ~Thus, comparing Fig. 2
with Fig. 4, we see that the projection along the Carte-
sian axis looks distinctly more transparent.!

~4! The restriction to a standard unit length of discharged
link does not specify how this implied ‘‘averaging of
behavior’’ relates to a detailed model of microscopic
breakdown.

VII. SUMMARY

The completed program is a robust and flexible tool for
investigations of physics. All communications and coordi-
nation between copies of the program are hidden within
calls to DPARLIB routines. The code is expressed and com-
piled in standard Fortran 90 using DPARLIB routines that
closely emulate standard Fortran 90 intrinsic functions.

The MPI complexity is invisible. Thus, DPARLIB has
filled in the needed elements for a high-level language of
block parallelism.

The use of parallel methods has afforded improve-
ments in physical realism: large array domains, parallel
breakdown across the entire tree structure, and clocking of
Monte Carlo time.

The grid size of larger than 10031003100, scaled to
an experimental gap of roughly 3 mm, would represent

individual discharged links of 30-mm length. This is com-
parable to observed segment lengths in experimental
streamers. The large grid also permits us to see the effects
of a 40:1 increase in local tip–field strength during the
course of single runs. Clocking of Monte Carlo time ~esti-
mated in the cases where breakdown probability is very
low! is considered in this model for the first time; thus the
distribution, directions, and rate of growth are followed to-
gether, as they are controlled by the evolving voltage field.

Many problems in the physical sciences are well
adapted to such a SPMD parallel treatment. Large arrays
corresponding to a spatial domain can be partitioned across
many processes. Such algorithms can often be simply ex-
pressed in Fortran 90, and DPARLIB enables a quick transi-
tion from a serial to a parallel environment, without the
need to learn complex communications techniques between
processes.

For portability, the code was run under SGI
~MIPSpro! and IBM ~xpf! compilers. The size of the ex-
ecutable code depends on the choice of grid bounds. The
executable version on the SGI Onyx, for a grid of 128
31283128, was roughly 110 Mbytes for each of four pro-
cesses. This was easily within the 3-Gbyte memory capac-
ity of the machine. Speed, using the R10000 MIPS proces-
sors with a 195-MHz rate, was sufficient for completion of
most runs within 24 h in the absence of time-sharing com-
petition.

A desirable feature for this type of Fortran 90 pro-
gramming is the ability to handle a large number of very-
large-sized arrays within the local process memory. Often a
salient issue in physics computing is space, not time. To
easily spread a problem over many compute nodes can
mean the difference between being able to study a problem
and not being able to do it at all.

Comparative timings have been carried out for the
routine running on the IBM SP2 and on two SGI multipro-
cessors ~Onyx and Origin!. These are for the linear statis-
tical comparison, running on a ~small! 64364364 lattice.
Because the choice of random-number seeds varies with the
number of processes, the actual executions are for slightly
different problems. The numbers give a general idea of
speed on dedicated multiprocessors.

The timings, in seconds, using 1, 2, 4, and 8 proces-
sors are as follows:

~1! IBM SP2: 12,445, 5336, 3256, 1770;
~2! SGI Power Onyx: 7767, 3590, 1588, 824;
~3! SGI Origin: 5467, 2310, 1328, 690.

Gains in timing are clearly achieved when adding pro-
cessors, until the communication burden ~between bound-
ary planes on adjacent process blocks! becomes an impor-
tant fraction of the total effort.

Full run times on the larger 12831283128 lattice are
roughly 10 times as long, since the larger problem involves
a longer path from anode to cathode, as well as greatly
enlarged Laplacian convergence tasks. The execution of
Fig. 11, for example, was carried out on four processors of
a shared SGI Power Onyx, with overnight turnaround time.

DPARLIB is based only on standard Fortran 9030 and on
the MPI.7 MPI is an industry-standard library that imple-
ments message passing in parallel-computing environ-
ments. Both Fortran 90 and MPI are available on a variety

Figure 11. Cube-law streamer simulation on a grid of 12831283128.
The concentrating needle is two grid steps in length. The spare appear-
ance of the filament tree, limited lateral branching, and directed alignment
along the uniform field are characteristic of growth simulations with this
power-law exponent. This simulation was produced with the time-
compression version of the algorithm. It resembles experimental observa-
tions by Miyano et al. (Ref. 29).
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of computers and workstations. LAM is an open cluster
environment for workstations or multiprocessors.23

Our dielectric-breakdown code, named CADMUS, will
be available through our Web site http://www.itl.nist.gov/
div895/sasg/.
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