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Introduction 
It appears that the winds-of-change are blowing for formal verification of 
cryptographic software and, furthermore, those winds are blowing in the same 
direction. We perceive progress on several fronts: 

• Researchers in the mathematics of cryptography now publish formal 
specifications and proofs of security properties as a matter of course in their 
papers using language like EasyCrypt[10]. 

• Formal (yet executable) specification languages for cryptographic 
algorithms, such as Cryptol[11], are finally achieving acceptance and wider 
use within industry and government. 

• There has been substantial progress in automated synthesis and verification 
of cryptographic software, including the work of Fiat Crypto[12], the Jasmin 
language and toolset[13], Hax[14], our own efforts, and many others. 

• Governments are other standard-setting bodies are recognizing the 
importance of memory- and type-safe programming for critical 
applications. 

• “Evidence-based” or “Principles-based” assurance[8] is gaining ground, 
following many years of use in the safety-critical domain. 

• IETF have recently stood up a new “Usable Formal Methods Research 
Group”[15] to explore how formal notations and methods can improve 
IETF’s work in the future. 

In light of these trends, the time is right to open discussion on how formal 
verification can influence the future development, verification and certification of 
cryptographic software. 

Formal Verification of Cryptographic Software today at AWS 
At AWS, we use Automated Reasoning (AR) to support the verification of a number 
of cryptographic services and libraries. This section presents a brief tour of each, 
showing a snapshot of how AR is used today: 
 
AWS-LC 
AWS LibCrypto (AWS-LC)[1] is an open-source cryptographic library, based on a 
fork of BoringSSL, with specific features and performance improvements 
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developed to support AWS needs, particularly on x86_64 and AArch_64 (e.g. AWS 
Graviton) processors. It is certified as a FIPS 140-3, level 1 cryptographic module. 
The library is written in a combination of C and assembly language. For the most 
commonly used and recommended algorithms, parameter sets and key lengths, we 
aim for verification of full functional correctness with respect to a formal 
specification using the following technologies: 

• For establishing mathematical properties of the elliptic curves, we use the 
Coq proof assistant, working on the Cryptol specification. 

• Proofs for C and x86_64 assembly language that was inherited from 
BoringSSL are developed using Galois’ SAW toolchain, using specifications 
expressed in Cryptol. 

• Verification of AArch_64 assembly language is performed using an in-house 
symbolic simulation tool, verification condition generator, and proof 
engines including multiple SMT solvers and Lean4. Again, we use Cryptol as 
the top-level specification in these cases. 

For low-level elliptic curve and RSA functions, we use a new library called “s2n-
bignum”[2] that is hand-written in assembly language for both x86_64 and 
AArch_64, and verified using the HOL-Light proof assistant. s2n-bignum is also 
designed to offer cryptographic-constant-time, and provides performance that 
matches or exceeds all other contemporary implementations for the micro-
architectures that dominate AWS workloads. The library is permissively licensed, 
freely available, and the repository contains all the sources, HOL scripts, and 
continuous integration scripts to reproduce the proofs from scratch. 
 
s2n-tls 
s2n-tls is a clean-slate implementation of the TLS protocol stack. Its development 
and proof were carried out hand-in-hand, using Cryptol and SAW[3] for functional 
correctness, CBMC[18] for memory- and type-safety proofs, and SideTrail[19] for 
verification of constant-time properties. s2n-tls can use AWS-LC for its 
cryptographic primitives. 
 
s2n-quic 
Similarly, s2n-quic is a new implementation of the QUIC protocol, built atop s2n-
tls and AWS-LC. It is written in Rust and deploys a hybrid verification style, where 
the Kani[4] verification tool is used to verify memory-safety, type-safety, and key 
correctness properties that lie beyond Rust’s “borrow checker”, combined with 
extensive dynamic verification using KATs, constrained fuzzing[5] and so on. We 
also use an automated traceability analysis tool called Duvet[17] to trace code to 
test cases and requirements to make sure that requirements from the QUIC 
specification are not overlooked. 
 
Verified sampling for cryptographic computing 
AWS Clean Rooms is a platform to collaboratively analyze datasets between 
multiple entities. To protect the contribution of any individual's data in aggregated 



insights with differential privacy, it uses the SampCert sampler[12], a proven 
correct discrete Gaussian sampler implementation developed in Lean by AWS. 

Options and ideas for the future 
We anticipate and encourage further deployment of AR in cryptography. In 
particular, we see AR providing additional trust and assurance for our customers 
and regulators, plus the potential to improve the latency of FIPS evaluation (or any 
other evaluation scheme for that matter.). This section proposes a number of 
forward-looking ideas. In no particular order: 
 
Verified memory- and type-safe programming 
In line with guidance from US Government[6] and other national bodies, we 
anticipate a gradual shift to the use of programming approaches that facilitate 
sound formal verification of basic correctness properties such as memory-safety 
and type-safety. This style of development is well-established in the regulated 
safety-critical systems community (e.g. aerospace, nuclear, and rail), and some 
early experiments with cryptographic code has shown its feasibility for reference 
implementations[7]. 
 
Open and Evidence-Based Assurance 
Again, this is a common practice in the safety-critical systems community. We can 
see a future where a submission for evaluation will include all design and 
verification artefacts including code, tests cases, proofs and the necessary tools to 
allow a recipient to reproduce the entire assurance case. A submission could take 
the form of a virtual machine image or a “Docker” file that contains all the 
artefacts and can be delivered electronically. We also anticipate that source code 
and proofs would be unchanged for multiple target platforms, allowing 
certification of a single module on multiple platforms to be achieved much faster 
than at present. This seems compatible with recent guidance from UK NCSC on 
“Principles-based Assurance”[8]. We hope that (re-)certification would be 
noticeably faster using this model, but only if regulators and test labs are willing 
to accept and give credit for AR-generated evidence. This brings us to... 
 
Soundness cases for tools 
In presenting such evidence, some sceptical person will always say “Ah... but why 
should I trust your proof tool?” Good point. We should advocate and encourage 
tool vendors to produce and make available their own assurance case. This requires 
a commercial and competitive market to emerge for verification tools, compilers 
and so on. Some verification tools and compilers have reached this level of 
maturity in the safety-critical sector. 
 
Lightweight formal methods and hybrid verification 
There still exists a perception that “formal methods” is an all-or-nothing activity, 
painful, and limited to a few specialist practitioners. We disagree. There is room for 
lighter styles of verification that can offer practical benefit without sacrificing 
soundness. Lightweight methods also tend to be faster, so can fit within a 
constructive “verify first” development style. Based on risk, there is also room for a 



“hybrid” verification style that combines formal (static) verification of key 
correctness properties such as type-safety with dynamic verification (e.g. testing) 
for functional correctness using KATs, a reference Oracle (e.g. an executable 
specification in Cryptol), fuzzing and so on. 
 
Equivalence proof and automatic optimization 
Proof of equivalence of two (simple) programs is a well-established field in formal 
verification. Its utility in cryptographic software extends to proving that a (simple, 
easy-to-prove) reference implementation of a particular algorithm is functionally 
equivalent to a faster, more optimized version. Furthermore, we have encouraging 
results with the use of automatic optimization of assembly language[9], combined 
with “before and after” proofs of functional correctness. This removes some of the 
reliance on humans to hand-optimize the most time-critical functions. We can also 
foresee utility in proving the equivalence of a single module for multiple targets 
 
Wider definition of “cryptographic module” to include novel applications 
We are actively involved in many novel applications of cryptography, such as 
cryptographic computing, zero-knowledge proofs, fully homomorphic encryption, 
and differential privacy. Will the scope of FIPS certification expand in the future to 
cover these applications and their implementation in software? 

Conclusion and Open questions 
We hope this position paper inspires debate at the workshop and subsequent 
action. Open questions include: 

• How will we (as a community) build trust with formal verification 
approaches and tool vendors? 

• How will the results of automated reasoning tools be presented to 
customers, labs and regulators? 

• How will the assumptions that underpin formal verification be presented 
and challenged? 

• What incentive is there for test labs to accept and evaluate formal evidence? 
• What are the training needs for NIST, the test labs and developers? 
• Could the community run a “trial evaluation” of one or more formally 

verified cryptographic algorithms, giving the developers freedom to present 
and defend whatever formal evidence they choose? For example, there are 
at least 3 implementations of MLKEM that claim formal verification of 
various correctness properties. 
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