Approaches to High Performance Conductors

David R. Forrest, ScD, PE, FASM Technology Manager Dept. of Energy, Advanced Manufacturing Office

Next Generation Electric Machines Workshop NIST, Gaithersburg, MD

8 Sept 2015

Summary

- AMO supports development of high performance conductors
 - SBIR
 - Potential NGEM solicitation
 - National Laboratory research on covetics
- Range of approaches:
 - Carbon fiber in metal
 - Powder processing
 - Extrusion processing
 - Electrodeposition
 - Melt processing

Applications including power transmission and lightweight motors

TRANSFORMING THE REINFORCED MATERIALS MARKETPLACE

HOME

PRODUCT INFORMATION

MARKET APPLICATIONS

5 TECHNICAL REPORTS

NEWS/UPDATES

CONTACT US

"ACF's unique, highperformance fibers will enable our clients to dominate their marketplace"

"We make materials lighter, stronger, and more tolerant to heat, fatigue, stress, and corrosion." The photo shown left represents a block of aluminum with alpha silicon carbide/carbon fibers integrated into the metal. These unique fibers multiply the tensile strength of the aluminum 20 times!

Approaches – CVD, carbon on metal nanoparticles

Koltsova, et al., Journal of Materials Science and Engineering B 2 (4) (2012) 240-246

Carbon nanofibers and graphene on copper

Approaches – Deposition on nanoparticles

Powder compaction and deformation processing

Hardness increase with both graphene and carbon nanofibers... Conductivity not reported

Approaches – CVD of aluminum on carbon nanotubes

Proof of concept, 10 micron thick AI on nanotube array

Bulk properties not measured, no wire produced

ARMY RESEARCH LABORATORY

Carbon Nanotube Aluminum Matrix Composites

by Brent J. Carey, Jerome T. Tzeng, and Shashi Karna

ARL-TR-5252

Approaches – Ball milling Al powder plus CNT and nanodiamond

- Kwon; ball milling then hot pressing
- Improved strength, slight conductivity increase

Materials Science & Engineering A 632 (2015) 72-77
Contents lists available at ScienceDirect

Materials Science & Engineering A

journal homepage: www.elsevier.com/locate/msea

Mechanical properties of nanodiamond and multi-walled carbon nanotubes dual-reinforced aluminum matrix composite materials CrossMark

Hansang Kwon a,* , Gil-Geun Lee a , Sung-Gyoo Kim a , Byung-Woo Lee a , Won-Chan Seo a , Marc Leparoux $^{\rm b}$

^a Department of Materials System Engineering, Pukyong National University, 365 Shinseonro, Nam-gu, 608-739 Busan, Republic of Korea ^b Enpa, Swiss Federal Laboratories for Materials Science and Technology, Advanced Materials Processing, Feuerwerkerstrasse. 39, OH-3602 Thur, Switzerland

Fig. 2. FE-SEM micrographs of (a and b) pure Al-1 vol%VGCF composite powders after ball milling process. (c) High magnified image of a single VGCF in the composite powders.

Table 1

Some properties of the hot-pressed pure Al and the single and dual nanoparticle-reinforced composite materials.

Samples	Density (g/cm ³) \pm 0.2%	Hardness (HV10)	Flexural strength (MPa)	0.2% offset Yield Strength (MPa)	Deflection (mm) ± 0.08	Crystallite size (nm) ±10%	Lattice strain (%) ± 10%
Pure Al Bulk	2.70 (100%)	27 ± 2	-	70 ± 1.5	1.50 (Stop)	240	0.08
Al-1 vol%nD composite	2.689 (99.3%)	109 ± 1	391 ± 5	160 ± 2.3	0.47	105	0.14
Al-1 vol%VGCF composite	2.693 (100%)	97 ± 1	550 ± 7	315 ± 3.5	1.50 (Stop)	127	0.13
Al-1 vol%nD-1 vol%VGCF	2.693 (99.4%)	127 ± 2	759 ± 12	Prime: 150 ± 2.1	1.40	Powder: 48	Powder: 0.27
composite				Second: 302 ± 3.2			
				Third: 600 ± 8.2		Bulk: 78	Bulk: 0.18

Approaches – Copper powder hot extruded with CNT

- > Taysir Nayfeh, Cleveland State U.
- Nanotubes aligned
- Up to 2X conductivity increase reported

FIG. 10

Approaches – Electrodeposition

- Quanfang Chen, U. Central Florida
- Co-deposition of nanotubes and copper
- 1.8X thermal conductivity increase reported
- Electrical conductivity 1.4X increase

Table 1 - Measured electrical resistivity of samples produced by Electrolytic Co
Deposition [4]

Material Deposited	Electrical Resistivity (μΩcm)	Electrical Conductivity (% IACS)
Cu/SWCNT composite	1.22	141
Pure copper	1.72	100

Figure 5 - Other mechanical and physical properties reported by Chen [4] a) Strength and ductility b) Coefficient of thermal expansion

Covetic Process

Melt the metal, stir in carbon powder, apply voltage

- Works with a wide range of metals (Al, Cu, Au, Ag, Zn, Sn, Pb, and—they claim—Fe);
- Conventional furnaces, electrodes, electromagnetic or gas stirring, infrastructure readily available

Can remelt, dilute, alloy

Particularly promising because of scalability

Background

- GDC Industries, LLC
- Proprietary process
- Conversion occurs in melt
 - Al, Cu, Au, Ag, Zn, Sn, Pb, Fe
 - Carbon powder \rightarrow nanoscale C
 - Converted under high voltage
- Stable after conversion
- Process development is ongoing

Producing research quantities now, ~100 lbs Al, ~300 lbs Cu per heat

Increased melting point (DTA)

AA6061 solidus: $582^{\circ}C \rightarrow 619^{\circ}C$ Copper: $1085^{\circ}C \rightarrow 1105^{\circ}C$

Electrical Conductivity of Al increased

High conductivities seem possible
 Causes of variability require further study

Type of Material	Condition	%IACS	Test Lab
0%C 6061	Conventional 6061, T6 ¹	47.4	USNA
3%C 6061	Covetic T6 ground	47.8	USNA
3%C 6061	Covetic T6 EDM	56.1	USNA
3%C 6061	Covetic As-Extruded	67.3	USNA
3%C 6061	Covetic As-Extruded	54	U. Md
EC-1350	Electrical grade Al	61.8	Literature

Broad, Significant Impact

Example Application	Benefit	
High voltage power transmission cable	Higher strength, 40% higher conductivity \rightarrow \$10B annual savings for US power grid	
Substitution of nanocarbon aluminum for copper in electrical wiring, buses, and motor windings	Weight reduction, improved efficiency, especially on aircraft, but on transportation systems of all types. Cu 50 lbs/car \rightarrow 20; 737 bus bar 600lbs.	ACCC*
Thermal management in microelectronics	Higher currents, faster switching at elevated temps	ACSR
Heat exchangers	Higher efficiency, \$12B annual market	
Copper motor brushes	Better wear resistance, greater efficiency	
Electrical contacts and switches	Cooler operation, possibly increased wear resistance	
Transparent conductor thin films for electrodes in photovoltaics	Higher conductivity than conventional metal films, easier deposition than graphene	
Nuclear fuel rods	Reduce thermal gradients to improve service performance (less cracking)	
Heat pipes	Improved thermal uniformity along length	Two layors of approximate
Thermal insulators	Improved through-thickness thermal resistance	protection. Nickel plating and high temperature epoxy paint.
Fuel cell and supercapacitor electrodes	Higher efficiency electrodes (greater conductivity through oxide layers)	Fired glass seal provides positive retention of center wire and prevents used as a seal of the sea of the sea of the sea of the seal of the sea of th
Open questions: How much of the periodic table? Can we make a high conductivity steel? Ceramics? Intermetallics? Thin films? Oxide layers? Oxides? Is the electrical conductivity directional?		Plated threads prevents seizing. Nickel alloy electrodes provide excellent resistance to spark and heat erosion. Plated threads provide excellent resistance to spark and heat erosion. provide excellent provide

Density remains unusually high Naval Academy, CAPT Lloyd Brown

3.8 wt % Cu Covetic

- Compressed 50% in Gleeble to consolidate porosity
- Ultrapycnometer 1000
- Before compression = 8.7894 g/cm^3
- After compression = 8.8777 g/cm^3
- Compared with $\rho_{Cu} = 8.94 \text{ g/cm}^3$
- Only 0.7% reduction in density with 3.8 wt % C vs. 10% expected

Carbon Atoms in Between Metal Atoms

Lourdes Salamanca-Riba, U. Maryland College Park

SEM – Cu covetic, as-cast, 3.8% C

- 5 -200 nm diameter particles
- Seem to occur in connected clusters
- Remain intact upon remelting and resolidification

Metallographically as-polished surface

Element	Wt %	At %
C K	03.78	16.65
O K	01.29	04.25
FeK	00.32	00.30
CuK	94.61	78.79

SEM – AA6061 as-extruded, 2.7% nanoC Lourdes Salamanca-Riba

Tensile fracture surface

Lourdes Salamanca-Riba, U. Maryland College Park

5.0kV 17.4mm x30.0k

1.00um

EDS Map of Ribbon in Al 6061 cv 3%

EELS: Similar to spectrum of SWCNT in Ag, more like amorphous C in Cu and AA6061

Lourdes Salamanca-Riba, U. Maryland College Park

Schlittler, et al., "Single Crystals of Single-Walled Carbon Nanotubes Formed by Self-Assembly," Science, New Series, Vol. 292, No. 5519 (May 11, 2001), pp. 1136-1139

In bulk, Covetic virtually identical to pure Cu

XPS:

- Overall metallic character confirmed
- No difference in electron binding energies
- No evidence for carbide formation

Foil:0% CCovetic:3.5 wt% C

Evidence of *sp***2 Carbon in Covetics**

- Ag covetic shows clear D and G peaks at ~1,300 and 1,600 cm⁻¹ in all 20 points of the sample.
- Ag metal shows weak signal in this region in all 20 points.
- Good match to single wall carbon nanohorn and to damaged graphene.

Melbs Lemieux

DFT: Graphene in Ag Covetic

• Wider graphene ribbons have flatter surfaces.

Bonding between Ag and C occurs at edges of ribbons.

Maija Kukla, University of Maryland. (DARPA funding)

Nature of Chemical Bonding Between Graphene Layer and Surface Ag Atoms

Conly under-coordinated carbon atoms positioned around vacancy and/or at the edges of graphene ribbons attach to Ag atoms.

>Analysis indicates that C-Ag bond is a typical **covalent bond** (common electronic orbitals formation) similar to C-H bonds in hydrocarbons.

Carbon Atoms in Between Metal Atoms

Lourdes Salamanca-Riba, U. Maryland College Park

Open Questions on Fine Structure (and why we're so keen on the ANL tomography)

- What is the proportion of carbon disks vs. ribbons? What is the 3D structure of the disks?
- > What is the spatial distribution of the disks and ribbons?
- Do the ribbons form a network to provide conductive pathways?
- What is the nature of the interface between metal and nanocarbon phases? Is the registration edges-only or whole surface? If it's the whole surface, how do the phases accommodate this while retaining their fundamental structures? e.g. first shell distance maintained for metal atoms and graphene-like structure for the nanocarbon

What is the role of oxygen, and how is its distribution related to that of the nanocarbon?

Analytical Methods for C Determination

- LECO and GDMS do not seem to detect nanoscale C
- SEM-EDS and XPS best
- DC-PES may be better with higher carbon levels and provide better averaging with larger samples
- Standardization work needed
- Reference materials needed

Method	Result (wt. %)
LECO	0.0016
DC-PES*	0.56
GDMS	0.0060
XPS	0.13, 2.1

* Direct Current Plasma Emission Spectroscopy ASTM E1097 to detect Cu

AA5083 Remelting and Strand Casting

Induction furnace at Surface Treatment Technologies

Remelting and Strand Casting

Remelting and Strand Casting

Remelting and Strand Casting

Remelting and Casting

Friction Stir Welding

Hot Rolled

Porosity in Copper Covetic

Top portion of ingot

Rectangular center section

Bottom portion of ingot

Center section dimensions: 6.62" X 1.895" X 0.730"

Significant amount of porosity present, with severity increasing as radius decreases. Percent of porosity estimated at 18.9%.

Centrifugally-Cast Microstructure

200um

200um

Surface Effects

Surface Effects

Depth Profile Concentrations for Cu Covetic (# 021, Polished and Un-Polished Surfaced)

Mechanical Properties

Covetic YS 30% higher as-extruded 400F

T6 condition: No difference in tensile curves

- One cylindrical specimen (H49, extrusion number 14422, heat treated to T6 condition) was provided by NSWC Carderock
- Specimen Dimensions: 1.8125" long, 0.523" diameter

As received condition, prior to machining

Initial Conductivity Measurement

- Prior to H49 testing, resistivity was determined for a specimen of 6061 – T6. Resistivity was then converted to %IACS. The specimen was "off the shelf" and had a stock finish.
- 6061 T6 %IACS = 48.44%
- Expected value: 40 45% (MATWEB)
- Value higher than expected, no explanation for variation.

Specimen Preparation

- H49 specimen was turned on lathe, after having ends cut clean, to a mirror finish.
- Conductivity measurement: <u>55.06%</u>
- This value is higher than previous USNA measurements of conductivity for H49 in T6 condition. [47.81% -- Fall of 2010]
- The Fall 2010 measurement was taken with oxide still present on extrusion, but the specimen had been hand polished using emery cloth.

11/17/2011

Test Matrix

- H49 specimen cut into rectangular shape from original extrusion
- Conductivity then measured for the following nominal % RA values
 - 0%, 2.5%, 5%, 7.5%, 10 %
 - An attempt was made to roll to higher value, but specimen curved.
 - Rockwell B hardness measured at five locations after each rolling, then averaged.

Conductivity Comments

- Specimen was fabricated using EDM technique.
- Prior to rolling, conductivity was 56.11 %IACS, which was slightly higher than previous measurement in turned condition (55.06 %IACS), and significantly higher than in as extruded condition (47.81 %IACS).

Conductivity vs %RA

Percent Reduction in Area vs. Conductivity

Conductivity vs Hardness

Hardness vs. Conductivity

At the Conclusion of Testing

Current Efforts at DOE

- Argonne (Balachandran):
 - Characterization of nanocarbon morphology, size, distribution, and interface
 - Thermal and electrical conductivity
 - Analytical methods
- ORNL (Feng): development of rapid synthesis methods, study process of conversion of carbon to tenacious nanocarbon
- NETL Albany (Jablonski): Replicate process for kilogram scale heats, develop methods to improve uniformity of carbon

Summary

- Covetic nanomaterials have potential to provide improved performance for electrical and thermal conductivity, amenable to scalable high throughput processing
- Covetics can be processed using many traditional metals processing methods for melting, casting, deformation, and heat treatment
- There are unique challenges:
 - Combination of analytic methods needed to measure C
 - High variability in carbon distribution
 - Porosity in castings
 - Variability in property measurements
 - Surface finish effects

Good correspondence: XPS and EDS

Copper covetic

Method	Result (wt. %)	
Energy Dispersive	3.8	
Spectroscopy		
X-Ray Photoelectron	2 5	
Spectroscopy	3.0	

In bulk, Covetic virtually identical to pure Cu

- EXAFS/Fourier transforms:
- Overall metallic character confirmed
- FCC structure
- No evidence for a solid solution
- No evidence for carbon-Cu bonds except possibly at the interface region

Effect of carbon level on 7075 strength Third Millennium Metals Rolling

Work Hardening of Cu: No difference Cold Rolling at 0.21% C

Applications

- Anisotropic, high thermal conductivity, high strength Cu/Cu alloy
 - Heat exchangers
 - Microelectronics
 - Electrodes and electrical contacts
- High electrical conductivity, high strength aluminum alloy
 - High tension lines
 - Wiring
 - Electrodes and contacts

 Currently evaluating AA5083 covetic for naval structural applications

XPS Binding Energies for Graphene

