Biometric Testing And

Jean-Christophe.Fondeur@sagem.com

Introduction

Biometric testing

- Objectives
- Test protocole
- Test database
- Test criteria

Performance extrapolation

- Accuracy
- Sizing

Conclusion

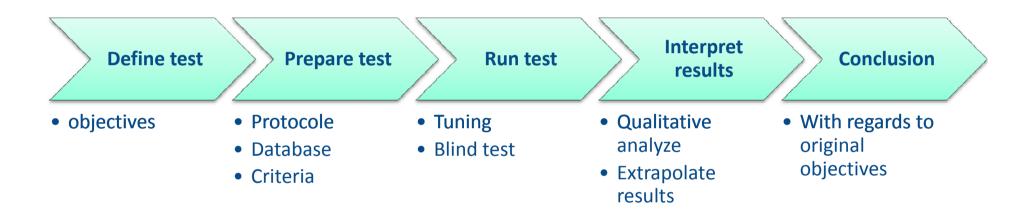
Operational system

- Large scale
- Complex

Observation: Test results

- Limited
- Potentially biased

We need:


- To characterize the target system
- A reliable observation
 - => Test protocole, database, criterias
- A way to extrapolate from this observation
 - Accuracy & Sizing
- A risk analysis approach
 - No testing is perfect ...

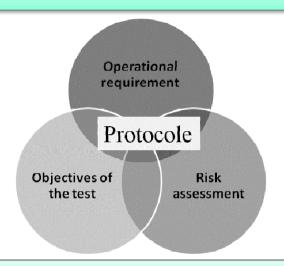
Focus on

- large scale back end systems (capture, human factors not in the scope)
- Biometric aspects (architecture, security not in the scope)

Testing overview

Testing can have many objectives

- Check feasibility
- Estimate system performance, cost, risk
 - Accuracy, HW sizing, operator workload, ...
- Select best technology provider
- Make some key system design choices
 - Mono/multi modal, enrolment workflow,


Test shall be explicitely designed for the desired purpose

- Impact on test protocole, type and size of database, ...
- Specific sub test may be required to reach some of the objectives

Test Protocoles are defined from

- Objectives of the test
 - « Why are we doing this test »
- Operational requirement
 - « What the system should do »
- Risk assessment
 - « What are the main risks? »

Several subtest scenarii are often necessary

Accuracy, throughput, resistance to fraud & erors, ...

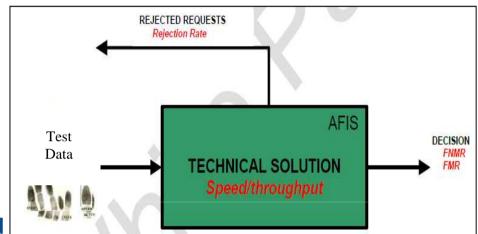
No test will ever be perfect, biases must be identified and analyzed.

Test preparation: Database

Test database must be

- Representative of system scenario
 - Acquisition conditions and workflow, Population characteristics, ...
- Unbiased
 - Sequestered (blind test), not correlated with automated system
 - Mix of database shall be avoided (Better to conduct the test on each database)
 - Synthetic data are likely to introduce biases and shall be avoided
- Large enough
 - To capture diversity of situations
 - To enable extrapolation: database should be at least ~ 1/100 of the final system size
- ... and reasonably known and characterized (Ground truth, quality distribution, ...)

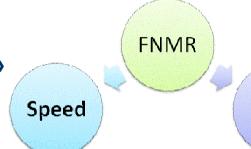
No database is perfect


Analysis shall be performed to assess risks and biases

Test preparation: Criteria

Test criteria must be directly linked to system behavior

- Classical biometric indicators are
 - Rejection rate (FTE/FTA)
 - Accuracy (FMR, FNMR)
 - Throughput (Speed)
- Other indicators can be
 - Robustness to biometric errors & fraud
 - Interoperability,



- Internal parameter may be measured to help modeling system behavior
 - Filtering rate, number of correct minutiae,
 - They shall not be directly used as system performance criteria
- Specify the information that will be needed to calculate and interprete the results

FMR

- Those Indicators are linked
 - FMR ⇔ FNMR: « Decision policy »
 - Speed ⇔ FNMR: « Tuning policy »
 - FTE/FTA ⇔ FNMR: « Rejection policy »

FTE

- ⇒ Those policies are business policies, not technology policies
 - Weight of those criteria must be known before testing to enable system tuning
- **⇒** Tuning to system requirement is necessary
 - Tuning to business policies and -to some extent- to system data
- ⇒ Those indicators must be measured simultaneously

Set up

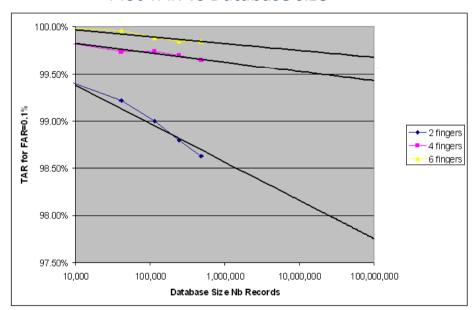
• Install, tuning, smoke test

Blind test

• no modification to system

Documentation, logging and monitoring are critical during this phase

- Biometric results
- Timing information
- Errors and anomalies
- System behavior (CPU, I/O, ...)


Interprete results

- First thing to do is to check and validate the results
 - Calculate performance indicators
 - Is blind test consistent with the tuning tests?
 - Accuracy, speed
 - Analyze potential errors (corrupted files, problems in the data, ...)
 - Validate ground truth
 - Are there unexpected hits?
 - Are there any surprising results ?
- Then you can do more interpretation
 - Detailled analysis
 - Correlation with data characteristics
 - Extrapolation

Accuracy Extrapolation

- Use statistical methods (parametric and non parametric):
 - See "Biometrics system: Technology, Design and performance evaluation",
 Springer, 2005 by Wayman, Jain, Maltoni, Maio, p 263-287
- Use empirical methods
 - Plot TAR vs Database size

- Raises fundamental statistical issues
 - Independence of measurements
- In practice, Simplistic extrapolation approach
 - Provide acceptable results (if extrapolating by less than 100)
 - Permits to project conclusions (at least qualitatively)
- ROC curves: FNMR (FMR, 10xDBSize) ~ FNMR (FMR/10, DBSize)

Sizing Extrapolation

- Extrapolating sizing from test measurements is very complex
 - Biometric factors
 - Algorithm speed (can be estimated in testing providing test DB is large enough)
 - Non biometric factors
 - Architecture considerations, hardware limitation, ...

- However simple « rule of three » on matching time can and must be done
 - It is certainly not sufficient to prove scalability
 - It is often sufficient to prove non-scalability
 - Throughput = 100,000 requests/day
 - Database size =100,000,000 people
 - Measured matching speed = 1,000 record / sec / server
 - => Requires over 115,000 servers ...

Conclusion

- Testing is application dependent
 - Need to define objectives, protocole, database and criteria
- Main biometric criteria (FTE/FMR/FNMR/Speed) are linked
 - Trade off must be decided by business, not by technology
 - Some tuning (to policies and to data) is necessary
- There are biases in every test and extrapolation
 - They need to be minimized
 - They need to be known and taken into account when drawing conslusions
- Simplisitic extrapolation techniques are useful (even if not sufficient)

Thanks!

