
Towards formal verification of the confidential
computing framework for RISC-V

July 23-25, 2024 
NIST FMCP 2024

Wojciech
Ozga

Lennard
Gäher

Guerney D.H.
Hunt

Avraham
Shinnar

Elaine R.
Palmer

Michael V.
Le

Silvio
Dragone

IBM Research
Zürich

IBM Research
Zürich 

&  
MPI-SWS,
Germany

IBM Thomas J.
Watson Research

Center

IBM Thomas J.
Watson Research

Center

IBM Thomas J.
Watson Research

Center

IBM Thomas J.
Watson

Research Center

IBM Research
Zürich

How much does your life
and security depend on

computers?

2

Problem: Security of high-assurance
systems

Successful attacks on high-assurance systems might lead to
catastrophe, social disturbances, political instability.

Space

Governmental
systemsPower

plants

 
Critical  

infrastructure

Finance /
Health

 Rail

 
Aircraft

 Cloud

3

4

Problem: How to formally verify security
properties of confidential computing systems?

Security-critical systems are subject to regulations. Certification
requires some form of verification. Formal methods/verification is
one approach.

Policy makers Industry Academia
regulations

High-
assurance

system
confidential computing

examples: 
IBM Secure Execution,  
OpenPower PEF,  
Intel TDX, AMD SEV,  
Intel SGX, Keystone

…

5

Goal: Build an open-source
formally verififi

Part I - Confidential Computing Architecture
• Traditional vs confidential computing architecture

• Canonical architecture

• ACE: Implementation for RISC-V

Part II - Formal Verification
• Methodology & verification approach

• What has to be proven?

• Demo

• Towards proving security properties

Agenda

7

Traditional (Non-Confidential)
Computing Systems

bootloaders
& early

firmware

runtimesecure boot

hypervisor /  
operating system

hardware components providing
security features

virtual
machine

power on

/ reset

Security guarantees:
• Isolate virtual machines and hypervisor

from other virtual machines

• Hypervisor, firmware, drivers, and system

administrator are trusted.

• Linux-based hypervisor consists of more

than 10 millions lines of code written in  
unsafe language.

trusted component, 
subject to the formal verification - untrusted component- - control flow direction

virtual
machine

8

Confidential Computing
Minimal security guarantees:

• (Confidentiality), integrity of code and its
execution.

• Confidentiality and integrity of data.

• No availability guarantees.

• Guarantees to runtime state (no leaks via

architectural state or when information
stored in the main memory).

Threat model:
• Software-level adversary controlling

hypervisor, other VMs, confidential VMs,
peripheral devices except for the
protected confidential VM

• Protections against hardware-level
adversary include, for example, memory
encryption.

is a technology that provides infrastructure to run
computations confidentially.

bootloaders
& early

firmware

runtimesecure boot

hypervisor /  
operating system

hardware components providing security features

security
monitor

confidential  
virtual

machine

virtual
machine

power on

/ reset

trusted component, 
subject to the formal verification - untrusted component- - control flow direction

9

Canonical Architecture

confidential memorynon-confidential memory

virtual machineexecution  
privilege 2 

hypervisor

confidential
virtual machine

 
(most privileged)

hardware

execution  
privilege 1

execution  
privilege 0 security monitor

physical
memory
isolation

interrupt
controller

endorse-
ment seed

atomic
instruction

execution
privilege

separation
D FECB

immutable
boot code

A

Hardware components:
A. Immutable boot code

enables integrity- and authenticity-
enforced boot of the security monitor.

B. Execution privilege separation
enables partitioning software to create,
assign, and enforce roles and access
control.

C. Physical memory isolation
allows isolating memory regions by
setting and enforcing memory access
control.

D. Interrupt controller
enables signaling and execution flow
between execution privileges.

E. Atomic instruction
required on multi-core processors to
implement synchronization primitives.

F. Endorsement seed
required for attestation, used to derive
attestation key.

Is a (threat model dependent) set of hardware and software
components sufficient to build a minimalistic but functional
processor-independent confidential computing architecture.

random
number

generator
G

10

https://github.com/ 
IBM/ACE-RISCV

https://github.com/ 
riscv-non-isa/riscv-ap-tee

Part I - Confidential Computing Architecture
• Traditional vs confidential computing architecture

• Canonical architecture

• ACE: Implementation for RISC-V

Part II - Formal Verification
• Methodology & verification approach

• What has to be proven?

• Demo

• Towards proving security properties

Agenda

12

Where are formal methods used?

CompCert

Formally verified C compiler

seL4

Verified microkernel

IBM Formal ML

Formalised probability theory

HACL*

High assurance cryptographic primitives

IBM HSM

Certified Hardware Security Module

SLAM

Property checks for Windows drivers

Techniques in formal verification (non-exhaustive)

Automation

Deductive verification

Bounded

Model Checking

Symbolic execution SMT Proof assistants

Viper

Why3

Coq

Isabelle

KLEECBMC
Java Pathfinder

Model checking

ABC

Type Systems

Java
C

Haskell

Rust

We use a two-pronged approach

Expressivity
Assurances

The Rust programming language provides safety

Systems programming

with zero-cost abstractions

for memory management

Aims to provide memory safety for free(*):

• no null-pointer accesses

• no use-after-free

• no data races

•…

Growing ecosystem and

increasing popularity

Brings modern programming paradigms

to systems programming

(*) more work if you use unsafe code

Deductive verification using RefinedRust
Goal: verify memory safety (of unsafe code) & functional correctness

Formal model of Rust:

Radium operational

semantics

Refinement type system
with semantic soundness

proof

Proof automation
guiding application of

typing rules

Automatic translation
Rust ⇒ Radium

Coq proof assistant

PLDI’24

16

RefinedRust: A Type System for High-Assurance Verification of Rust Programs. PLDI'24. 
Lennard Gäher, Michael Sammler, Ralf Jung, Robbert Krebbers, and Derek Dreyer.

Architecture of RefinedRust

Rust code

User-annotated
specifications

Code & Spec

1 4

Proof automation (Coq)

Radium operational
semantics

Specifications in
RefinedRust’s refinement type

system

Translated code in Coq

3

Formal code representation (Coq)Frontend (compilation)

2

Rust compiler +
RefinedRust frontend

ge
ne

ra
te

s

 Proof (Coq)

Iris separation logic
framework

RefinedRust proof rules +
automation

Manual tactics and hints

17

#[rr::args("i")]
#[rr::returns("i + 42")]

Designed to be run continuously in CI

Lemma add_42_correct : ….
Proof.

…
Qed.

✅ Proof succeeded

❌ Proof failed
fn add_42(x: i32) -> i32{
 x + 42
}

How practical is RefinedRust?

“Research prototype”

- Verified Vec library 
- Published paper

Generally usableCurrent status

Verified parts of  
security monitor

• Supports traits (≈ Rust interfaces)

• Supports closures (≈ Rust anonymous functions)

• Supports multi-module crates

• Runs in continuous integration (CI)

• Supports axiomatising Rust standard library

• Supports mixed manual-automatic proofs

• Supports Iris ghost state

• Supports statics, char, …

• Improved performance & documentation

• …. much more!

Q3’23 Q2’24 future plans

RefinedRust vs other Rust verification approaches

Tech Unsafe
code

Traits &
closures

Verified
proofs Automated User-

friendly Extensible Concurrency
Aware

RefinedRust Coq ✅ ✅ ✅ ~ ~ ✅ ✅

Prusti SMT

Support varies and
 is evolving

✅ ✅

Support varies and
 is evolving

Creusot SMT ✅ ✅

Aeneas Mixed
Verus SMT ✅ ✅

Kani Model
Checking ✅ ✅

Future Work: combine advantages of different systems

ACE: What has to be proven?

security 
guarantees

20

Informal Invariants

Security Guarantees
} Design and Code

security 
guarantees

functional correctness

language memory safety guarantees

execution safety

e.g., buffer overflows

e.g., page tables correctly configured

e.g., no undefined system states

invariants

e.g., confidentiality of VM data

pr
oo

f d
ep

en
de

nc
ies

hardware properties and correctness e.g., leaked information via micro-architectural state

e.g., two VMs cannot access the same page

21

ACE: What has to be proven?

security 
guarantees

functional correctness

language memory safety guarantees

execution safety

e.g., buffer overflows

e.g., page tables correctly configured

e.g., no undefined system states

invariants

e.g., confidentiality of VM data

pr
oo

f d
ep

en
de

nc
ies

hardware properties and correctness e.g., leaked information via micro-architectural state

e.g., two VMs cannot access the same page

Our initial focus

22

ACE: What has to be proven?

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

Example: Memory Allocation

main memory (RAM)

page containing data

confidential
virtual machine 2

confidential
virtual machine 1

x

cannot
access 
memory

can

access 
memory

23

Example: Memory Allocation

memory
management

unit

read  
address

read value or page fault 

read  
address

hardwaremain memory (RAM)

VM
instructions
executing on

the
processor’s

core

page containing data

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

24

Example: Memory Allocation

read  
address

read value or page fault 

main memory (RAM)

page containing data

hardware

memory
management

unit

read  
address

VM
instructions
executing on

the
processor’s

core

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

25

read  
address

VM
instructions
executing on

the
processor’s

core

Example: Memory Allocation

read  
address

read value or page fault 

main memory (RAM)

page containing data

hardware

memory
management

unit

reads  
configurationroot page table

intermediate page table

points 
to

points 
to

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

26

root page table

intermediate page table memory
management

unit

read  
address

Example: Memory Allocation

main memory (RAM)

page containing data read value or page fault 

VM
instructions
executing on

the
processor’s

core

hardware

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

27

Example: Memory Allocation

main memory (RAM)

page containing data

root page table

intermediate page table

We must formally verify the
functional correctness of the
page table configuration.

We leverage Rust’s type
system with its ownership and
memory safety guarantees!

points 
to

points 
to

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

28

Example: Memory Allocation

memory
management

unit

initialization procedure executed at boot time

processor’s
core

read value or page fault 

read  
address

main memory (RAM)

PageAllocator
Rust construct

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

29

hardware

Example: Memory Allocation

memory
management

unit

initialization procedure executed at boot time

processor’s
core

read value or page fault 

read  
address

main memory (RAM)

PageAllocator
Rust construct

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

30

hardware

Example: Memory Allocation

memory
management

unit

confidential VM creation at runtime

processor’s
core

read value or page fault 

read  
address

main memory (RAM)

root
PageTable
Rust construct

PageAllocator
Rust construct

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

31

hardware

Example: Memory Allocation

memory
management

unit

confidential VM creation at runtime

processor’s
core

read value or page fault 

read  
address

main memory (RAM)

root
PageTable
Rust construct

Page
(token)

PageAllocator
Rust construct

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

32

confidential VM creation at runtime hardware

Example: Memory Allocation

memory
management

unit

confidential VM creation at runtime

processor’s
core

read value or page fault 

read  
address

main memory (RAM)

root
PageTable
Rust construct

can read/write  
configuration

PageAllocator
Rust construct

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

33

hardware

Example: Memory Allocation

memory
management

unit

confidential VM creation at runtime

processor’s
core

read value or page fault 

read  
address

main memory (RAM)

root
PageTable
Rust construct

PageTable
Rust construct

Entry constructor

PageAllocator
Rust construct

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

34

confidential VM creation at runtime

PageTable
Rust construct

(root)
PageTable
Rust construct

Entry constructor

PageAllocator
Rust construct

hardware

Example: Memory Allocation

memory
management

unit

processor’s
core

read value or page fault 

read  
address

main memory (RAM)

data page

intermediate page table

points 
to

Leaf
PageTableEntry

Rust construct

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

35

Page: Rust

36

Page: RefinedRust

37

Page: fields in RefinedRust

38

Page read: Rust

39

Page read: RefinedRust

40

security 
guarantees

functional correctness

language memory safety guarantees

execution safety

e.g., buffer overflows

e.g., page tables correctly configured

e.g., no undefined system states

invariants

e.g., confidentiality of VM data

pr
oo

f d
ep

en
de

nc
ies

hardware properties and correctness e.g., leaked information via micro-architectural state

e.g., two VMs cannot access the same page

41

ACE: What has to be proven?

How do we get here?

Towards security properties

• Goal: prove non-interference (wrt. memory; not timing etc.)

• No secrets from confidential VMs are leaked

• In a realistic system: relaxed non-interference

• Confidential VMs can selectively declassify information

• e.g. by requesting to share a page

For now: focus on strict non-interference

42

Part I: Isolating memory regions

If we prove the page table setup correct, we know that

any process (a VM or the hypervisor) cannot access another process memory.

VM1VM2 virtual memory view
of VMs

SM-internal
state

∗

physical memory view
of security monitor

HW memory isolation

set up by

security monitor! HV ∗

43

Part II: Proving non-interference for the security monitor

• The security monitor has access to the full physical memory

• We cannot prove that it is physically isolated!

• Security monitor could open side channels:

• Read memory of one VM and behave differently depending on the value

How to prove non-interference for the security monitor?

44

How do we prove non-interference?

• Typically: proved by relating two executions

 where states that the two states are equivalent on ’s memory

• But our main verification of the security monitor (in RefinedRust) reasons
about only one execution!

∀s1, s′￼1, s2, s′￼2, i . 𝗋𝖾𝗅𝖺𝗍𝖾𝖽 pi s1 s2 → 𝖾𝗑𝖾𝖼 pi s1 s′￼1 → 𝖾𝗑𝖾𝖼 pi s2 s′￼2 → 𝗋𝖾𝗅𝖺𝗍𝖾𝖽 pi s′￼1 s′￼2

𝗋𝖾𝗅𝖺𝗍𝖾𝖽 pi

45

Standard trick: information flow tracking
Future Work: add information flow tracking to RefinedRust

Ongoing & Future Work

• Formally verified hardware
memory isolation,

• ACE compliance with
RISC-V CoVE spec.

• Contribute to Linux kernel
CoVE patches.

• Proving security
properties (non-
interference) using
RefinedRust,

• Defining formal spec
for a sample
declassifier

Now EOY 2024 2025+

• Implementation of
ACE for RISC-V with
support for Linux VMs

• Formal specification of
memory isolation
subsystem

• Formally verified page
tokens and partial
proof for page
allocator

20232022

• Informal
specification of
invariants and
security properties

• Work with RISC-V
community on
CoVE (AP-TEE)
spec

• Canonical
architecture design

• ACE prototype
implementation in
Rust

Summary
• We developed a canonical architecture for confidential

computing.

• We are implementing an open source security monitor based
on the canonical architecture mapped to RISC-V called ACE.

• We defined the formal specification for the memory isolation
subsystem.

• We have formally verified part of the memory isolation
subsystem in RefinedRust.

• Developed viable approach to end-to-end verification of a
system.

Thank you

https://github.com/IBM/
ACE-RISCV

Back up slides

Outcome

• Talk at CSF'23: "New Software Abstractions for Hardware Security Technology", Ascona, 1-4
October, 2023

• Paper at HASP@MICRO’23: “Towards a Formally Verified Security Monitor for VM-based Confidential
Computing”

• Talk at Swiss Verification Day 2024, Neuchatel, 10 January, 2024

• RISC-V CoVE spec includes our architecture and use case for formally verified confidential
computing (ratification in progress)

• Open source implementation available at GitHub (Rust + formal spec and verification) - work in
progress

• RefinedRust: A Type System for High-Assurance Verification of Rust Programs. PLDI'24. 
Lennard Gäher, Michael Sammler, Ralf Jung, Robbert Krebbers, and Derek Dreyer

