July 23-25, 2024
NIST FMCP 2024

<|||

Towards formal verification of the confidential
computing framework for RISC-V

Wojciech Lennard Guerney D.H. Avraham Elaine R. Michael V. Silvio
Ozga Gaher Hunt Shinnar Palmer Le Dragone
IBM Research IBM Research IBM Thomas J. IBM Thomas J. IBM Thomas J. IBM Thomas J. IBM Research
Zlrich Zlrich Watson Research Watson Research Watson Research Watson Zurich
& Center Center Center Research Center
MPI-SWS,

Germany

How much does your life
and security depend on
computers?

Problem: Security of high-assurance

systems

Finance /
Health Governmental
Systems

Critical
Infrastructure

Successful attacks on high-assurance systems might lead to
catastrophe, social disturbances, political instability.

& SIGN IN 111eMegister® Q

{* SECURITY 7}

No big deal... Kremlin hackers 'jJumped air-gapped
networks' to pwn US power utilities

|l
Jo

HOME > TECH

INbIUtR ™ Login

The hackers that attacked a major US oil pipeline say it was
only for money — here's what to know about DarkSide

k J Natasha Dailey May 10, 2021, 5:49 PM

'Hundreds' of intrusions, switch could be pulled anytin —

Richard Chirgwin

N governmentrackrs tponcuaing ameri. A WOTst Nightmare' Cyberattack:
rl] Uncle Sam's finest reckon Moscow's agent The U ntOId Story Of The SOIarWl ﬂdS

networks within US electric utilities — to the H ac k
have virtually pressed the off switch in cont
Yanks, and plunged America into darkness| Anri| 16, 2021 - 10:05 AM ET

Heard on All Things Considered

The hackers, dubbed Dragonfly and Energ
2016, and continued throughout 2017 arﬂ

€he New Hork Eimes

Hackers Are Targeting Nuclear Faci
Homeland Security Dept. and F.B.1.

| Zoé van Dijk for NPR

S.’T'. ‘:—\
e ™

ﬁ|—

|

The Wolf Creek Nuclear power plant in Kansas in 2000. The corporation that runs the
plant was targeted by hackers. David Eulitt/Capital Journal, via Associated Press

By Nicole Periroth
July 6, 2017

An NPR investigation into the SolarWinds attack reveals a hack unlike any other, launched by a

8 sophisticated adversary intent on exploiting the soft underbelly of our digital lives.

l:

—

% REUTERS Q

INTERNET NEWS
JULY 10, 2017 / 1:57 PM / UPDATED 5 YEARS AGO

Foreign hackers probe European critical
infrastructure networks: sources

By Mark Hosenball

LONDON (Reuters) - Cyber attackers are regularly trying to attack data
networks connected to critical national infrastructure systems around
Europe, according to current and former European government sources

with knowledge of the issue.

a do Ministério
expoe dados

" | pessoais de mais de 200

milhoes de brasileiros

Erro em sistema federal de registro de casos de covid permitiu
acesso, durante seis meses, a informacoes pessoais de todos os
brasileiros cadastrados no SUS e clientes de plano de satde

Fabiana Cambricoli, O Estado de S.Paulo
02 de dezembro de 2020 | 05h00

© f

1

AN

’ .
. g
,

l

and computers are seen inside a data centre at an office in the heart of the financial
in London, Britain May 15, 2017. REUTERS/Dylan Martinez

P

Problem: How to formally verify security
properties of confidential computing systems?

| PN [xxg «— lm B

Policy makers
confidential computing

High-
assurance
system

R

Security-critical systems are subject to regulations. Certification

requires some form of verification. Formal methods/verification is
one approach.

regulations

examples:

IBM Secure Execution,
OpenPower PEF,

Intel TDX, AMD SEV,
Intel SGX, Keystone

Goal: Build an open-source

formally verified confidential
computing technology.

Agenaa
Part | - Confidential Computing Architecture

e Traditional vs confidential computing architecture

e Canonical architecture
 ACE: Implementation for RISC-V

Traditional (Non-Confidential)
Computing Systems

Security guarantees:

» |solate virtual machines and hypervisor
from other virtual machines

secure boot ! runtime * Hypervisor, firmware, drivers, and system

I administrator are trusted.
() a)

| virtual virtual . Linux—basgc;l hypgrvisor Consistg of more
| [machine machine than 10 millions lines of code written In
I X J\ f\ J / unsafe language.
I .)

bootloaders -

pc/>wer on_, |~ g ea Ay | I hypgrwsor/
reset firmware | | operating system

]
hardware components providing
security features

_ trusted component, _ L.
subject to the formal verification untrusted component / - control flow direction

Confidential Computing

Is a technology that provides infrastructure to run
computations confidentially. Minimal security guarantees:

(Confidentiality), integrity of code and its
execution.

Confidentiality and integrity of data.

| - .
secure boot | runtime No availability guarantees.
[) Guarantees to runtime state (no leaks via
| mvérctﬁﬁ:e architectural state or when information
I stored in the main memory).
o f v \ o . Threat model:
power on_, bogtlecg?yersi> hypervisor / [>| security coggf§;t|al « Software-level adversary controlling
/ reset firmware || |OPerating system g— monitor \q— - i hypervisor, other VMs, confidential VMSs,
| S SR J peripheral devices except for the
l l protected confidential VM

Protections against hardware-level
adversary include, for example, memory
encryption.

[hardware components providing security features J

_ trusted component, _ L.
subject to the formal verification untrusted component / - control flow direction

Hardware components:

Canonical Architecture

s a (threat model dependent) set of hardware and software enables Integrity- and authenticity-
. enforced boot of the security monitor.
components sufficient to build a minimalistic but functional

processor-independent confidential computing architecture. - Execution privilege separation

enables partitioning software to create,
assign, and enforce roles and access

control.
" non-confidential memory - confidential memory il C. Physical memory isolation
: | | allows isolating memory regions by
e | . .

i : : ' ' ' setting and enforcing memory access
execution : virtual machine [confidential] . Y 9 ry
privilege 2 L virtual machine control.

| g hypervisor . Interrupt controller
ex.egutlon enables signaling and execution flow
privilege 1 - .

between execution privileges.
execution . Atomic instruction
privilege O required on multi-core processors to

(most privileged) implement synchronization primitives.

(. \(- - (.) -
immutable |(execution | physical | interrupt)(atomic)(endorse-| random °

boot code || privilege | memory |controller{linstruction|ment seed| number Endc?rsement seed. .
separation| isolation generator required for attestation, used to derive

attestation key.

hardware A

. AN B C J_ D J\ E AN F '\ G J

https://github.com/ https://github.com/
IBM/ACE-RISCV riscv-non-isa/riscv-ap-tee

°
= O IBM / ACE-RISCV Q Type (/) to search > +~~ O 1 & ‘

<> Code () Issues I9 Pullrequests (») Actions [Projects [0 Wiki) Security [~ Insights 3 Settings

=m ACE-RISCV Public < EditPins ~ ® Unwatch 4 ~ % Fork 10 - Starred 13 -
¥ main ~ ¥ 1Branch © 0 Tags Q Gotofile t Add file ~ About Q3
[J README 38 Apache-2.0 license /s =

Assured Confidential Execution (ACE) for RISC-V

ACE-RISCV is an open-source project, whose goal is to deliver a confidential computing framework Ll 1l
with a formally proven security monitor. It is based on a canonical architecture and targets RISC-V Y

with the goal of being portable to other architectures. The formal verification efforts focus on the Q h 4
security monitor implementation. We invite collaborators to work with us to push the boundaries of uuua
provable confidential computing technology.

Confidential VM Extension
(CoVE) for Confidential
Computing

This is an active research project, without warranties of any kind. Please read our paper to learn about our Version 0.6,4/2024: This document is under development. Expect potential changes. Visit

| I o [|
| N N -

http://riscv.org/spec-state for further details.
approach and goals. p g/sp

We are currently building on RISC-V with hypervisor extentions. We will adapt the AP-TEE extension once it is
ratified.

Quick Start

Follow instructions to run a sample confidential workload under an untrusted Linux-based hypervisor in an emulated
RISC-V environment.

Agenaa
Part | - Confidential Computing Architecture

e Traditional vs confidential computing architecture

e Canonical architecture

 ACE: Implementation for RISC-V
Part |l - Formal Verification

 Methodology & verification approach

 What has to be proven?
 Demo

* Towards proving security properties

Where are formal methods used?

HACL®
CompCert High assurance cryptographic primitives
Formally verified C compiler
sel 4 Certified Hardware Security Module
Verified microkernel
SLAM

Property checks for Windows drivers
Formalised probability theory

Techniques In formal verification (non-exhaustive)

Type Systems Model checking Deductive verification
e N C e
Java Haskell Bounded . Symbolic execution SMT Proof assistants
Model Checking
¢ Rust
Automation CBMC KLEE Viper Coq Expressivity
Java Pathfinder
Why3 ealsale Assurances

ABC

We use a two-pronged approach

The Rust programming language provides safety

Systems programming
with zero-cost abstractions
for memory management

Growing ecosystem and
Increasing popularity

Aims to provide memory safety for free(*):
* N0 null-pointer accesses

* NO use-after-free

* N0 data races

Brings modern programming paradigms
to systems programming

Deductive verification using RefinedRust

Goal: verify memory safety (of unsafe code) & functional correctness

~

Automatic translation
Rust = Radium

\

.
-

J
~

Formal model of Rust:
Radium operational
semantics

a4 N

Proof automation
guiding application of

typing rules

& J
4)

Refinement type system
with semantic soundness
proof

RefinedRust: A Type System for High-Assurance Verification of Rust Programs. PLDI'24.
Lennard Gaher, Michael Sammler, Ralf Jung, Robbert Krebbers, and Derek Dreyer.

'O(0 ’24

16

Architecture of RefinedRust

Code & Spec

—&—

#[rre:sargs("i")]

#[rr::returns("i + 42")]
i32) => i32{

fn add 42(x:

X + 42
}
-
Rust code
_
()

User-annotated
specifications

Frontend (compilation)

Rust compiler +
RefinedRust frontend

generates

Formal code representation (Coq)

v

Lemma add 42 correct :
Proof.

Qed.

r

Specifications in

RefinedRust’s refinement typ

»

.

system

A

r

.

Translated code in Coq J——» Proof (Coq) “

?

(-)

Radium operational
semantics

Designed to be run continuously in CI

Proof automation (Coq)

Proof succeeded
x Proof failed

()

Manual tactics and hints

. w,

}

~

.

é ?)

RefinedRust proof rules +
automation

. .

r [[] 1

Iris separation logic

framework

- .

17

How practical is RefinedRust?

“*Research prototype” Generally usable
'Q3’23 ' Q2°24 ' future plans

- Verified Vec library Verified parts of

- Published paper security monitor

e Supports traits (= Rust interfaces)

e Supports closures (= Rust anonymous functions)
* Supports multi-module crates

* Runs in continuous integration (Cl)

e Supports axiomatising Rust standard library

e Supports mixed manual-automatic proofs

* Supports Iris ghost state

* Supports statics, char, ...

e Improved performance & documentation

e much more!

RefinedRust vs other Rust verification approaches

Tech Unsafe | Traits & | Verified Automated L_Jser— Extensible Concurrency
code | closures | proofs friendly Aware
RefinedRust| Coq
Prusti SMT
Creusot SMT
Aeneas Mixed Support varies and Support varies and
Verus SMT Is evolving Is evolving
: Model
K v v
an Checking = .

Future Work: combine advantages of different systems

ACE: What has to be proven?

Informal Invariants

< > * Design and Code

Security Guarantees

security
guarantees

ACE: What has to be proven?

security

guarantees e.g., confidentiality of VM data

iInvariants e.d., two VMs cannot access the same page

execution safety e.d., ho undefined system states

functional correctness e.g., page tables correctly configured
language memory safety guarantees e.g., buffer overflows

hardware properties and correctness e.d., leaked information via micro-architectural state

21

ACE: What has to be proven?

security

guarantees e.g., confidentiality of VM data

invariants e.d., two VMs cannot access the same page
execution safety e.d., ho undefined system states

functional correctness e.g., page tables correctly configured

language memory safety guarantees e.g., buffer overflows Our initial focus

hardware properties and correctness e.g., leaked information via micro-architectural state

22

=xample: Memory Allocation

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

confidential e e e e e e e e e m - | confidenti.al
virtual machine 1 | ____g virtual machine 2

\ il cannot

can
S
N Ceess ! , access

memory ________________ / memory

S
\I page containing data | $

— o o m— o . - . o e - e o = o]

—— e e, P e, e, P e, S e, W e, O e, S e, W e, e, W e, B e, W e, e W

23

=xample: Memory Allocation

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

VM
instructions
executing on
the
processor’s
core

=xample: Memory Allocation

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

VM
read |iInstructions
executing on

the
processor’s

core

memory
management j[¢——

unit

=xample: Memory Allocation

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

4 A
s eeeble reads
root page table N~ . :
boints < ———————————————— configuration
10 I N
3 intermediate page table | \ memory
——————————————— M
management
unit
points
to
_______________ - J

— o o m— o . - . o e - e o = o]

=xample: Memory Allocation

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

VM
instructions
executing on
the
processor’s
core

i Page containing data | read value or page fault—

— o o m— o . - . o e - e o = o]

=xample: Memory Allocation

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

We must formally verity the
functional correctness of the
page table configuration.

— o - o o . . e . . - e o o= m—]

We leverage Rust’s type
poits system with its ownership and
memory safety guarantees!

— o o m— o . - . o e - e o = o]

28

=xample: Memory Allocation

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

— — — — o - - o - - - o e e

I
PageAllocator | o e e 4
rRustconstruet | 0 FPT - T - - - - - - - -- ===

—— e e, P e, e, P e, S e, W e, O e, S e, W e, e, W e, B e, W e, e W

=xample: Memory Allocation

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

— — — — o - - o - - - o e e

|
r - - - - - - -=-=-=-=-=- = = = I

PageAllocator | o L L L D .
Rust construct :‘ ““““““““ |

e e e, e, O e, e, e, W e, e, W e, e, O e, e, W e, W e,

=xample: Memory Allocation

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

root
PageTable
Rust construct

— — — — o - - o - - - o e e

|
r - - - - - - -=-=-=-=-=- = = = I

PageAllocator | o L L L D .
Rust construct :‘ ““““““““ |

e e e, e, O e, e, e, W e, e, W e, e, O e, e, W e, W e,

=xample: Memory Allocation

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

root
Pagelable \ N _________.
Rust construct
b
_ Y
Page R —

(token) o o,

r - - - - - - ----=-=-=-=-= I

|

r - - - - ---=-=-=-=-=- == = I

PageAllocator S
Rust construct :_ _______________ l

e e e, e, O e, e, e, W e, e, W e, e, O e, e, W e, W e,

=xample: Memory Allocation

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

can read/write GER R |
configuration R —

root
PageTable
Rust construct

— — — — o - - o - - - o e e

— m— m— — o - — — e m— - e e m— —]

e e e, e, O e, e, e, W e, e, W e, e, O e, e, W e, W e,

=xample: Memory Allocation

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

o m e m m e ——— - -

|

Entry constructor | o o e e e e e e e D m — - — 4

. root F:::::::::::::::I|

PageTable | o
Rust construct

r————————=—=—= == == |

| g

PageTable T |

Rust construct e

o e e e e e — - — -

r - - - - - - -=-=-=-=-=- = = = I
PageAllocator | o L L L D .
Rust construct :‘ ““““““““ |

e e e, e, O e, e, e, W e, e, W e, e, O e, e, W e, W e,

=xample: Memory Allocation

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

- r—--- - - - - - --=-=-=- ===

Entry constructor | o o e e e e e e e D m — - — 4

. (root) e =
PageTable | -

Rust construct
r—— - - - - .. — . = = = =
intermediate page table |
PageTable r |
| Rust construct points [I === =
to - — o m e mm——— - - |
\
[j Leaf | \o _ _ _ _ _ __ _ _______
PageAllocator PageTableEntry | ' +_ _ _ _ _ _ EaApge
Rust construct Rust construct :_ _______________ |

e e e, e, e e, W e, O e, e, W, BT, e, W e, W, Wt s

Page: RUSt ;Lnt;pl’ecr::nitzti;:geState {}

1 implementation

pub struct UnAllocated {}
1 implementation

pub struct Allocated {}

impl PageState for UnAllocated {}
impl PageState for Allocated {}

5 Implementations

pub struct Page<S: PageState> {
address: ConfidentialMemoryAddress,
size: PageSize,
_marker: PhantomData<S>,

36

Page: RefinedRust

#lrr::refined_by("p" : "page")]
“#[lrr::invariant(#type "p. (page_loc)" : "<#> p.(page_val)"
@ "array_t (int usize t)
(page_size_in_words_nat p.(page_sz))")]

#[rr::invariant("page_wf p")]

#[rr::context("onceG X memory_ layout")]

#[rr::exists("MEMORY CONFIG")]

#lrr::1nvariant(#iris "once_status \"MEMORY_LAYOUT\" (Some MEMORY_CONFIG)"

#[rr::1nvariant("MEMORY_CONFIG. (conf_start).2 =< p.(page_loc).2")]
#[rr::invariant("p. (page_loc).2 + (page_size in_bytes _nat p.(page_sz))
< MEMORY_ CONFIG. (conf _end).2")]

6 implementations

pub struct Page<S: PageState> {

Page: fields in RefinedRust

pub struct Page<S: PageState> {

#[rr::field("p. (page_loc)")]
address: ConfidentialMemoryAddress,

#lrr::field("p. (page_sz)")]
size: PageSize,

#lrr::field("tt")]
_marker: PhantomData<S>,

38

Page read: Rust impl<T: PageState> Page<T> {_

pub fn read(&self, offset_in_bytes: usize) —> Result<usize, Error> {

assert! (offset_in_bytes % Self::ENTRY_SIZE == 0);

let data: usize = unsafe {
// Safety: below add results 1n a valid confidential memory address
// because we ensure that it is within the page boundary and
// page 1s guaranteed to be entirely i1nside the confidential memory.
let pointer: ConfidentialMemoryAddress =

self.address.add(offset_in_bytes,
upper_bound: self.end_address_ptr()).unwrap();

// pointer is quaranteed to be 1in
// the range <0,;self.size()-size_of::(usize)>

pointer.read_volatile()
i
Ok(data)

39

Page read: ReflnedRUSt impl<T: PageState> Page<T> {_

#[rr::params("p", "off")]

#[rr::args("#p", "off")]

/// Precondition: the offset needs to be divisible by the size of usize.
#lrr::requires("H_off" : "(ly_size usize_t | off)%Z")]

/// Precondition: we need to be able to fit a usize at the offset

/// and not exceed the page bounds

#lrr::requires("H_sz" : "(off + ly _size usize_t = page_size_in_bytes _Z p.(page_sz))%Z")]l
/// Postcondition: there exists some value X ...
#lrr::exists("x" : "Z", "off'" : "pat")]

/// «...where off 1s a multiple of usize

#[rr::ensures("(off = off' % ly _size usize_ t)%zZ")]

/// ...that has been read from the byte sequence v at offset off
#[rr::ensures("p.(page_val) !! off' = Some x")]

/// «...and we return an 0Ok containing the value x
#lrr::returns("Ok(#x)")]

pub fn read(&self, offset_in_bytes: usize) —> Result<usize, Error> {

40

ACE: What has to be proven?

_lgjae;unrtigés e.g., confidentiality of VM data How do we get here?

invariants e.d., two VMs cannot access the same page

execution safety e.d., ho undefined system states

functional correctness e.g., page tables correctly configured
language memory safety guarantees e.g., buffer overflows

hardware properties and correctness e.g., leaked information via micro-architectural state

41

Towards security properties

* (Goal: prove non-interference (wrt. memory; not timing etc.)
* No secrets from confidential VMs are leaked

* |n a realistic system: relaxed non-interference
* Confidential VMs can selectively declassify information

* e.g. by requesting to share a page
For now: focus on strict non-interference

42

Part |: Isolating memory regions

HW memory isolation —/\A/\‘\

set up by
security monitor!

virtual memory view
of VMs

SM-internal physical memory view
state of security monitor

If we prove the page table setup correct, we know that
any process (a VM or the hypervisor) cannot access another process memory.

43

Part ll: Proving non-interference for the security monitor

* The security monitor has access to the full physical memory
* We cannot prove that it is physically isolated!
e Security monitor could open side channels:

 Read memory of one VM and behave differently depending on the value

How to prove non-interference for the security monitor?

44

How do we prove non-interference?

» [ypically: proved by relating two executions
Vs, 87,8, 55, 1. related p; s; s, — exec p; s; s; = exec p; s, s, — related p; s; s,
where related states that the two states are equivalent on p;’s memory

 But our main verification of the security monitor (in RefinedRust) reasons
about only one execution!

Standard trick: information flow tracking
Future Work: add information flow tracking to RefinedRust

45

Ongoing & Future Work

2022 2023 Now EQY 2024 2025+
Informal e Canonical * |mplementation of e Formally verified hardware * Proving security
specification of architecture design ACE for RISC-V with memory isolation, properties (non-
invariants and ACE prototype support for Linux VMs « ACE compliance with interference) using
security properties implementationin ¢ Formal specification of RISC-V CoVE spec. RefinedRust,
Work with RISC-V Rust memory isolation . Contribute to Linux kernel ¢ Defining formal spec
community on subsystem CoVE patches. for a sample
CoVE (AP-TEE) Formally verified page declassifier
spec tokens and partial

proof for page
allocator

Summary

 \We developed a canonical architecture for confidential
computing.

 We are implementing an open source security monitor based
on the canonical architecture mapped to RISC-V called ACE.

* We defined the formal specification for the memory isolation
subsystem.

* We have formally verified part of the memory isolation https://github.com/IBM/
subsystem in RefinedRust. ACE-RISCV

* Developed viable approach to end-to-end verification of a
system.

Thank you

Back up slides

Outcome

Talk at CSF'23: "New Software Abstractions for Hardware Security Technology”, Ascona, 1-4
October, 2023

Paper at HASP@MICRO’23: “Towards a Formally Verified Security Monitor for VM-based Confidential
Computing.

Talk at Swiss Verification Day 2024, Neuchatel, 10 January, 2024

RISC-V CoVE spec includes our architecture and use case for formally verified confidential
computing (ratification in progress)

Open source implementation available at GitHub (Rust + formal spec and verification) - work in
progress

RefinedRust: A Type System for High-Assurance Verification of Rust Programs. PLDI'24.
Lennard Gaher, Michael Sammler, Ralf Jung, Robbert Krebbers, and Derek Dreyer

