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How much does your life 
and security depend on 

computers?
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Problem: Security of high-assurance  
systems

Successful attacks on high-assurance systems might lead to 
catastrophe, social disturbances, political instability.

Space

Governmental 
systemsPower 

plants

 
Critical  

infrastructure

Finance / 
Health

 Rail

 
Aircraft

 Cloud
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Problem: How to formally verify security 
properties of confidential computing systems?

Security-critical systems are subject to regulations. Certification 
requires some form of verification. Formal methods/verification is 
one approach.

Policy makers Industry Academia
regulations

High-
assurance 

system
confidential computing

examples: 
IBM Secure Execution,  
OpenPower PEF,  
Intel TDX, AMD SEV,  
Intel SGX, Keystone

…
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Goal: Build an open-source 
formally verififi





Part I - Confidential Computing Architecture 
• Traditional vs confidential computing architecture


• Canonical architecture


• ACE: Implementation for RISC-V


Part II - Formal Verification 
• Methodology & verification approach


• What has to be proven?


• Demo


• Towards proving security properties

Agenda
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Traditional (Non-Confidential)  
Computing Systems

bootloaders 
& early 

firmware

runtimesecure boot

hypervisor /  
operating system

hardware components providing 
security features

virtual 
machine

power on

/ reset

Security guarantees: 
• Isolate virtual machines and hypervisor 

from other virtual machines

• Hypervisor, firmware, drivers, and system 

administrator are trusted.

• Linux-based hypervisor consists of more 

than 10 millions lines of code written in  
unsafe language.

trusted component, 
subject to the formal verification - untrusted component- - control flow direction

virtual 
machine
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Confidential Computing
Minimal security guarantees: 

• (Confidentiality), integrity of code and its 
execution.


• Confidentiality and integrity of data.

• No availability guarantees.

• Guarantees to runtime state (no leaks via 

architectural state or when information 
stored in the main memory).


Threat model: 
• Software-level adversary controlling 

hypervisor, other VMs, confidential VMs, 
peripheral devices except for the 
protected confidential VM


• Protections against hardware-level 
adversary include, for example, memory 
encryption.

is a technology that provides infrastructure to run 
computations confidentially.

bootloaders 
& early 

firmware

runtimesecure boot

hypervisor /  
operating system

hardware components providing security features

security 
monitor

confidential  
virtual 

machine

virtual 
machine

power on

/ reset

trusted component, 
subject to the formal verification - untrusted component- - control flow direction
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Canonical Architecture

confidential memorynon-confidential memory

virtual machineexecution  
privilege 2 

hypervisor

confidential  
virtual machine 

 
(most privileged)

hardware

execution  
privilege 1

execution  
privilege 0 security monitor

physical  
memory  
isolation

interrupt  
controller

endorse-
ment seed

atomic 
instruction

execution 
privilege 

separation
D FECB

immutable 
boot code

A

Hardware components: 
A. Immutable boot code 

enables integrity- and authenticity-
enforced boot of the security monitor. 

B. Execution privilege separation 
enables partitioning software to create, 
assign, and enforce roles and access 
control. 

C. Physical memory isolation 
allows isolating memory regions by 
setting and enforcing memory access 
control. 

D. Interrupt controller 
enables signaling and execution flow 
between execution privileges.


E. Atomic instruction 
required on multi-core processors to 
implement synchronization primitives. 

F. Endorsement seed 
required for attestation, used to derive 
attestation key.

Is a (threat model dependent) set of hardware and software 
components sufficient to build a minimalistic but functional 
processor-independent confidential computing architecture.

random 
number 

generator
G
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https://github.com/ 
IBM/ACE-RISCV

https://github.com/ 
riscv-non-isa/riscv-ap-tee



Part I - Confidential Computing Architecture 
• Traditional vs confidential computing architecture


• Canonical architecture


• ACE: Implementation for RISC-V


Part II - Formal Verification 
• Methodology & verification approach


• What has to be proven?


• Demo


• Towards proving security properties

Agenda
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Where are formal methods used?

CompCert

Formally verified C compiler

seL4

Verified microkernel

IBM Formal ML

Formalised probability theory 

HACL*

High assurance cryptographic primitives

IBM HSM

Certified Hardware Security Module

SLAM

Property checks for Windows drivers



Techniques in formal verification (non-exhaustive)

Automation

Deductive verification

Bounded

Model Checking

Symbolic execution SMT Proof assistants

Viper

Why3

Coq

Isabelle

KLEECBMC
Java Pathfinder

Model checking

ABC

Type Systems

Java
C

Haskell

Rust

We use a two-pronged approach 

Expressivity
Assurances



The Rust programming language provides safety

Systems programming 

with zero-cost abstractions

for memory management


Aims to provide memory safety for free(*):

• no null-pointer accesses

• no use-after-free

• no data races

•…

Growing ecosystem and

increasing popularity

Brings modern programming paradigms 

to systems programming

(*) more work if you use unsafe code



Deductive verification using RefinedRust
Goal: verify memory safety (of unsafe code) & functional correctness

Formal model of Rust:

Radium operational 

semantics

Refinement type system 
with semantic soundness 

proof

Proof automation 
guiding application of 

typing rules

Automatic translation 
Rust ⇒ Radium

Coq proof assistant

PLDI’24
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RefinedRust: A Type System for High-Assurance Verification of Rust Programs. PLDI'24. 
Lennard Gäher, Michael Sammler, Ralf Jung, Robbert Krebbers, and Derek Dreyer.



Architecture of RefinedRust

Rust code

User-annotated 
specifications

Code & Spec

1 4

Proof automation  (Coq)

Radium operational 
semantics

Specifications in 
RefinedRust’s refinement type 

system

Translated code in Coq

3

Formal code representation (Coq)Frontend (compilation)

2

Rust compiler + 
RefinedRust frontend

ge
ne

ra
te

s

   Proof (Coq)

Iris separation logic 
framework

RefinedRust proof rules + 
automation

Manual tactics and hints
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#[rr::args("i")]
#[rr::returns("i + 42")]

Designed to be run continuously in CI

Lemma add_42_correct : ….
Proof. 

…
Qed.

✅ Proof succeeded

❌ Proof failed
fn add_42(x: i32) -> i32{
    x + 42
}



How practical is RefinedRust?

“Research prototype”

- Verified Vec library 
- Published paper

Generally usableCurrent status

Verified parts of  
security monitor

• Supports traits (≈ Rust interfaces)

• Supports closures (≈ Rust anonymous functions)

• Supports multi-module crates

• Runs in continuous integration (CI)

• Supports axiomatising Rust standard library

• Supports mixed manual-automatic proofs

• Supports Iris ghost state

• Supports statics, char, …

• Improved performance & documentation

• …. much more!

Q3’23 Q2’24 future plans



RefinedRust vs other Rust verification approaches

Tech Unsafe 
code

Traits & 
closures

Verified 
proofs Automated User-

friendly Extensible Concurrency 
Aware

RefinedRust Coq ✅  ✅ ✅ ~ ~ ✅ ✅

Prusti SMT

Support varies and 
 is evolving

✅ ✅

Support varies and 
 is evolving

Creusot SMT ✅ ✅

Aeneas Mixed
Verus SMT ✅ ✅

Kani Model 
Checking ✅ ✅

Future Work: combine advantages of different systems



ACE: What has to be proven?

security 
guarantees

20

Informal Invariants

Security Guarantees
} Design and Code



security 
guarantees

functional correctness 

language memory safety guarantees

execution safety

e.g., buffer overflows

e.g., page tables correctly configured

e.g., no undefined system states

invariants

e.g., confidentiality of VM data

pr
oo

f d
ep

en
de

nc
ies

hardware properties and correctness e.g., leaked information via micro-architectural state

e.g., two VMs cannot access the same page
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ACE: What has to be proven?



security 
guarantees

functional correctness 

language memory safety guarantees

execution safety

e.g., buffer overflows

e.g., page tables correctly configured

e.g., no undefined system states

invariants

e.g., confidentiality of VM data

pr
oo

f d
ep

en
de

nc
ies

hardware properties and correctness e.g., leaked information via micro-architectural state

e.g., two VMs cannot access the same page

Our initial focus
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ACE: What has to be proven?



Goal: To prove that two different confidential VMs cannot access 
the same physical memory region in the confidential memory.

Example: Memory Allocation

main memory (RAM)

page containing data

confidential 
virtual machine 2

confidential 
virtual machine 1

x

cannot 
access 
memory 

can

access 
memory 
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Example: Memory Allocation

memory 
management 

unit

read  
address

read value or page fault 

read  
address

hardwaremain memory (RAM)

VM 
instructions 
executing on  

the  
processor’s 

core

page containing data

Goal: To prove that two different confidential VMs cannot access 
the same physical memory region in the confidential memory.
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Example: Memory Allocation

read  
address

read value or page fault 

main memory (RAM)

page containing data

hardware

memory 
management 

unit

read  
address

VM 
instructions 
executing on  

the  
processor’s 

core

Goal: To prove that two different confidential VMs cannot access 
the same physical memory region in the confidential memory.
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read  
address

VM 
instructions 
executing on  

the  
processor’s 

core

Example: Memory Allocation

read  
address

read value or page fault 

main memory (RAM)

page containing data

hardware

memory 
management 

unit

reads  
configurationroot page table

intermediate page table

points 
to

points 
to

Goal: To prove that two different confidential VMs cannot access 
the same physical memory region in the confidential memory.
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root page table

intermediate page table memory 
management 

unit

read  
address

Example: Memory Allocation

main memory (RAM)

page containing data read value or page fault 

VM 
instructions 
executing on  

the  
processor’s 

core

hardware

Goal: To prove that two different confidential VMs cannot access 
the same physical memory region in the confidential memory.
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Example: Memory Allocation

main memory (RAM)

page containing data

root page table

intermediate page table

We must formally verify the 
functional correctness of the 
page table configuration.


We leverage Rust’s type 
system with its ownership and 
memory safety guarantees!

points 
to

points 
to

Goal: To prove that two different confidential VMs cannot access 
the same physical memory region in the confidential memory.
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Example: Memory Allocation

memory 
management 

unit

initialization procedure executed at boot time

processor’s 
core

read value or page fault 

read  
address

main memory (RAM)

PageAllocator 
Rust construct

Goal: To prove that two different confidential VMs cannot access 
the same physical memory region in the confidential memory.
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hardware

Example: Memory Allocation

memory 
management 

unit

initialization procedure executed at boot time

processor’s 
core

read value or page fault 

read  
address

main memory (RAM)

PageAllocator 
Rust construct

Goal: To prove that two different confidential VMs cannot access 
the same physical memory region in the confidential memory.
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hardware

Example: Memory Allocation

memory 
management 

unit

confidential VM creation at runtime

processor’s 
core

read value or page fault 

read  
address

main memory (RAM)

root 
PageTable 
Rust construct

PageAllocator 
Rust construct

Goal: To prove that two different confidential VMs cannot access 
the same physical memory region in the confidential memory.
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hardware

Example: Memory Allocation

memory 
management 

unit

confidential VM creation at runtime

processor’s 
core

read value or page fault 

read  
address

main memory (RAM)

root 
PageTable 
Rust construct

Page 
(token)

PageAllocator 
Rust construct

Goal: To prove that two different confidential VMs cannot access 
the same physical memory region in the confidential memory.
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confidential VM creation at runtime hardware

Example: Memory Allocation

memory 
management 

unit

confidential VM creation at runtime

processor’s 
core

read value or page fault 

read  
address

main memory (RAM)

root 
PageTable 
Rust construct

can read/write  
configuration

PageAllocator 
Rust construct

Goal: To prove that two different confidential VMs cannot access 
the same physical memory region in the confidential memory.
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hardware

Example: Memory Allocation

memory 
management 

unit

confidential VM creation at runtime

processor’s 
core

read value or page fault 

read  
address

main memory (RAM)

root 
PageTable 
Rust construct

PageTable 
Rust construct

Entry constructor

PageAllocator 
Rust construct

Goal: To prove that two different confidential VMs cannot access 
the same physical memory region in the confidential memory.
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confidential VM creation at runtime

PageTable 
Rust construct

(root) 
PageTable 
Rust construct

Entry constructor

PageAllocator 
Rust construct

hardware

Example: Memory Allocation

memory 
management 

unit

processor’s 
core

read value or page fault 

read  
address

main memory (RAM)

data page

intermediate page table

points 
to

Leaf 
PageTableEntry  

Rust construct

Goal: To prove that two different confidential VMs cannot access 
the same physical memory region in the confidential memory.
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Page: Rust
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Page: RefinedRust
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Page: fields in RefinedRust
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Page read: Rust
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Page read: RefinedRust
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security 
guarantees

functional correctness 

language memory safety guarantees

execution safety

e.g., buffer overflows

e.g., page tables correctly configured

e.g., no undefined system states

invariants

e.g., confidentiality of VM data

pr
oo

f d
ep

en
de

nc
ies

hardware properties and correctness e.g., leaked information via micro-architectural state

e.g., two VMs cannot access the same page
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ACE: What has to be proven?

How do we get here?



Towards security properties

• Goal: prove non-interference (wrt. memory; not timing etc.)


• No secrets from confidential VMs are leaked


• In a realistic system: relaxed non-interference


• Confidential VMs can selectively declassify information 


• e.g. by requesting to share a page

For now: focus on strict non-interference
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Part I: Isolating memory regions

If we prove the page table setup correct, we know that 

any process (a VM or the hypervisor) cannot access another process memory.

VM1VM2 virtual memory view 
of VMs

SM-internal 
state

∗

physical memory view 
of security monitor

HW memory isolation

set up by


security monitor! HV ∗
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Part II: Proving non-interference for the security monitor

• The security monitor has access to the full physical memory


• We cannot prove that it is physically isolated!


• Security monitor could open side channels:


• Read memory of one VM and behave differently depending on the value

How to prove non-interference for the security monitor?
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How do we prove non-interference?

• Typically: proved by relating two executions





 where  states that the two states are equivalent on ’s memory


• But our main verification of the security monitor (in RefinedRust) reasons 
about only one execution!

∀s1, s′￼1, s2, s′￼2, i . 𝗋𝖾𝗅𝖺𝗍𝖾𝖽 pi s1 s2 → 𝖾𝗑𝖾𝖼 pi s1 s′￼1 → 𝖾𝗑𝖾𝖼 pi s2 s′￼2 → 𝗋𝖾𝗅𝖺𝗍𝖾𝖽 pi s′￼1 s′￼2

𝗋𝖾𝗅𝖺𝗍𝖾𝖽 pi
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Standard trick: information flow tracking 
Future Work: add information flow tracking to RefinedRust 



Ongoing & Future Work

• Formally verified hardware 
memory isolation,


• ACE compliance with 
RISC-V CoVE spec.


• Contribute to Linux kernel 
CoVE patches.


• Proving security 
properties (non-
interference) using 
RefinedRust,


• Defining formal spec 
for a sample 
declassifier

Now EOY 2024 2025+

• Implementation of 
ACE for RISC-V with 
support for Linux VMs


• Formal specification of 
memory isolation 
subsystem


• Formally verified page 
tokens and partial 
proof for page 
allocator

20232022

• Informal 
specification of 
invariants and 
security properties


• Work with RISC-V 
community on 
CoVE (AP-TEE) 
spec

• Canonical 
architecture design


• ACE prototype 
implementation in 
Rust



Summary
• We developed a canonical architecture for confidential 

computing.


• We are implementing an open source security monitor based 
on the canonical architecture mapped to RISC-V called ACE.


• We defined the formal specification for the memory isolation 
subsystem.


• We have formally verified part of the memory isolation 
subsystem in RefinedRust.


• Developed viable approach to end-to-end verification of a 
system.

Thank you

https://github.com/IBM/
ACE-RISCV



Back up slides



Outcome

• Talk at CSF'23: "New Software Abstractions for Hardware Security Technology", Ascona, 1-4 
October, 2023


• Paper at HASP@MICRO’23: “Towards a Formally Verified Security Monitor for VM-based Confidential 
Computing”


• Talk at Swiss Verification Day 2024, Neuchatel, 10 January, 2024


• RISC-V CoVE spec includes our architecture and use case for formally verified confidential 
computing (ratification in progress)


• Open source implementation available at GitHub (Rust + formal spec and verification) - work in 
progress


• RefinedRust: A Type System for High-Assurance Verification of Rust Programs. PLDI'24. 
Lennard Gäher, Michael Sammler, Ralf Jung, Robbert Krebbers, and Derek Dreyer


