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AGENDA A quick look at Formal Methods used in Cryptography

Examples of Verification Tools for cryptography

• Formal Verifiers with non or limited smart assistance

• AI-based verifiers

How AI can help Formal Verification

Challenges and Considerations

• Gaps

• How will it fit in certifications?

• Our R&D work

Wrap up and Q&A
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PART 1: FORMAL METHODS IN CRYPTOGRAPHY

VS
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TWO SCHOOLS OF CRYPTOGRAPHIC ANALYSIS

• Honest parties follow 
probabilistic/computational algorithms

• Attacker: Computational/Probabilistic

• Probabilistic security definitions:

security ≈ attacking not better than guessing

Computational 
models

• Honest parties follow symbolic 
representations of the algorithms

• Attacker: plays symbolic rules

• Symbolic security definitions:

security ≈ secret symbols not revealed

Symbolic 
models 

(formal method-based models)

GAP = analysis results are not equivalent
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FORMAL

METHODS IN 

CRYPTOGRAPHY

❑Formal specification

▪ Propositional logic:   “AES is secure”

▪ Modal logic: A believes key(KAB, A B)

▪ First-order term algebra

▪ Formal semantics: denotational, operational, axiomatic ones and so on

❑Formal reasoning

▪ Logical rules: modus ponens, universal instantiation and so on : 

▪ Cryptographic rules

❑Formal analysing

▪ Manual

▪ Automated tools

o Theorem proving: Isabelle/HOL, Coq …

o Model checking: Scyther, Proverif, CryptoVerif …
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PART 2:EXAMPLES
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EXAMPLE 1

SCYTHER

SYMBOLIC 
MODEL 
CHECKER
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BRIDGING THAT GAP

❑We want the best of the both worlds
▪Formal and mechanizable design and verification

▪Computationally sound

❑Indirect way:
▪Use a symbolic model

▪Prove that symbolic security implies computational security

❑Direct way
▪Use a formal model with computational semantics. 

▪Prove computational security directly
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EXAMPLE 2

CRYPTOVERIF

COMPUTATIONAL 
MODEL CHECKER
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EXAMPLE 3

SOFTWARE 
ANALYSIS 
WORKBENCH

REAL CODE 
EQUIVALENCE 
PROVER
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PART 3: HOW AI CAN HELP
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MACHINE LEARNING WORLD

❑Supervised Learning
▪Trained on labelled data

▪Predict the label of new data

❑Unsupervised Learning
▪Trained on unlabelled data

▪Find patterns.

❑Reinforcement Learning
▪ Interact with environments.

▪Make decisions.
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EXAMPLE 4: MACHINE-LEARNING BASED

from A machine learning-based scheme for the 
security analysis of authentication and key 
agreement protocols by Ma et al, 2018
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CHALLENGES AND CONSIDERATIONS
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HOW IS AI CHANGING OUR FIELD?

❑Old gap between the formal method and cryptography worlds is narrowed

❑New gap appears between the AI-based verifiers and the rest

❑AI-dominant methods would be good to find what can be “potentially” 
insecure or secure
▪Anomalies detection 

▪Preliminary classifications. 

❑AI-assisted methods could help existing formal methods used by 
cryptographers
• Strategy selection for theorem prover

• State space reduction for model checker

• Formal specification mining.
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HOW WILL IT FIT IN 
CERTIFICATIONS?

❑FIPS 140-3:  
• Known Answer Test (KAT) vectors are 

practically sufficient.

• Beneficial to code review

❑Common Criteria: there are different 

levels of assurance.
• High assurance functional testing

• Static analysis

• Implementation correctness

• Thorough vulnerability finding

• Side-channel attacks

• Smart fuzzing

• Resource leak
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A TOY EXAMPLE

❑Would Known Answer Tests be enough?

❑Would ChatGPT help?
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OUR R&D DIRECTIONS

•AI-assisted verification cryptographic designs

•AI-assisted implementation equivalence verification.

≡ ?
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SUMMARY + Q&A + THANK YOU

❑Formal methods have been used for cryptography in
▪Designing

▪Verifying

▪Implementing

❑Artificial Intelligence is helping Formal methods

❑Any questions now? 

❑Or later, email me at long@teronlabs.com.
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