Elic University of
U BRISTOL

Cryptographic
Validation Beyond
Implementation Correctness

Manuel Barbosa, Francois Dupressoir,
Andreas Hulsing, Vincent Laporte,
Pierre-Yves Strub

bristol.ac.uk

Bl University of BFORMOSA
WE] BRISTOL CRYPTO

Cryptographic
Validation Beyond
Implementation Correctness

Manuel Barbosa, Francois Dupressoir, TU/e 555 INESC
Andreas Hulsing, Vincent Laporte,
Pierre-Yves Strub lovzia - "aSHIELD

P()RT()
SANDBOX F o prcuomeoecens

The Problem with Evaluating Cryptography

= Cryptographic algorithms

1462 27—t

—Proofs are (typically) published AdVE (A) < AdVEP(B) + AdvEPP(C) + AdvET(D) + ot
+Prth fi]
—But hard to read, check, trust © prociiswronal
. oo . From Joseph Jaeger, “Adventures in Metacryptography”,
— Often apply to a simplified algorithm ProTeCs 2024

= Cryptographic implementations
— Evaluation is done in private
—Incentives to obfuscate for evaluation
— Duplication of expertise

Verification for Safety

= (Judicious use of) formal methods
moves some defect detection to
the left of the V

— Abstraction and refinement are allies

= Complement other verification
tOO|S Tracelahili - Pl ~Walidation Traceabil Dualification
— Still need to verify assumptions, ...

= Traceability is key

b ility o o o e

Testing

lidation Traceabilty- ———————— System Testing

Cryptographic Security # Safety

Abstraction, Refinement,
and Cryptographic Security

= Abstractions are the adversary’s playground

[Acme] Signature misuse vulnerability in draft-barnes-acme-04
Andrew Ayer <agwa@andrewayer.name> Tue, 11 August 2015 15:54 UTCShow header

Plaintext Recovery Attacks Against SSH

Hash Gone Bad:

Martin R. Albrecht, Kenneth G. Paterson and Gaven J. Watson Automated discovery of protocol attacks that exploit hash function weaknesses

Vincent Chevalt Cas Cremers Alexander Dax*

Lucca Hirschi' Charlie Jacomme Steve Kremer*

= Refinement steps refine both the object under study
and the context in which it is deployed

Verification for Cryptographic Security

= Specify the algorithm/protocol
and its expected properties

— Veerify security properties

= Refine the algorithm into an
implementable specification
— Veerify security properties
by refinement
= Implement the specification

— Veerify security properties
by refinement

Verification for Cryptographic Security

= Specify the algorithm/protocol
and its expected properties -

— Veerify security propertiesin a partlcular adversary model
= Refine the algorithm into an - -
implementable specification

— Veerify security propertiesin a refined adversary model
by refinement

= Implement the specification

— Veerify security properties in a further refined adversary model
by refinement e

Interlude: The Formosa Crypto Way

o Jo | Ll

& PEZs
Sepurt Ml
_PFDP'Z"' / Reﬁium*t Lpfemmbbba’\
o “Mﬁu\ Si‘f‘/\:\

Refine mt) Assembl. %mw\ l

Specifying Expected Security is
Important for the Verification of Cryptography

= Refinement decisions must be informed by expected security

—Is it fine to add fragmentation?
It depends on the expected security property.

—Is it fine to use a Merkle-Damgard hash function here?
It depends on the expected security property.

—Is it fine to use a signature scheme that does not bind its public key?
It depends on the expected security property.

= Also below this!
—Is it fine to leak this secret-dependent value (through side-channels)?

On the Role of Standards in Verification

= Algorithmic description

Algorithm 2 Kyber.CPA.Enc(pk = (t.p),m = M): en-
cryption

10 7+ {0, 1}

2. t:= Decompress,(t. d;)

3 A~ RE<E = Sam(p)

4 (r.ej.ez) ~ 3y x 3y x 3, = Sam(r)

5 1= Compressq[ﬁ'f r+ep.id,)

6: v:= Compress_ (t'r+e; + -_-§J -m, d,)

T return ¢ = (W, v)

For verification to make sense, both are needed,
and the security of the specification mustbe
verified to follow from the security of the algorithm.

= Specification

Algorithm 5 Kyser.CPAPKE.Enc(pk. m, r): encryption

Input: Public key pk € Bl n/8+i2
Input: Message m £ B

Input: Random coins r € B%

Output: Ciphertext ¢ € Brlskn/8+don/s

N=0

2: t := Decompress (Decodey, (pk), d)

i:

G

16:

p=pk+d-k-n/8
for i from 0 to k — 1 do & Generate matrix A € R:}""" in NTT domain
for j from 0 to k— 1 do
AT[i][j] := Parse(XOF(p||i]|5))

end for
: end for
: for i from 0 to k —1do = Sample r £ I?:' from B,
r[i] :== CBD,(PRF(r, N')) ’
N=N+1
end for
: for i from 0 to & —1do > Sample e; £ I?j' from B,
e1i] == CBD, (PRF(r, N')) '
N:=N+1
end for
. ez '= CBD, (PRF(r,N)) - Sample ez € R, from B,
= NTT(r)
s u=NTT (AT of) + e su=A"r+e

0 vi=NTT YNTT(t) o f) +ea + Decode; (Decompress, (m. 1)) & v = t'r + e; + Decompress (m. 1)
: 1 = Encodey, (Compress,(u, d,))

2 = Encodey, (Compress, (v, d,)

: return ¢ = (cy|[e2) > ei= [Compressq\‘_u. dy). Compressﬁ,[i‘. d,))

	Slide 1: Cryptographic Validation Beyond Implementation Correctness
	Slide 2
	Slide 3: The Problem with Evaluating Cryptography
	Slide 4: Verification for Safety
	Slide 5: Cryptographic Security ≠ Safety
	Slide 6: Abstraction, Refinement, and Cryptographic Security
	Slide 7: Verification for Cryptographic Security
	Slide 8: Verification for Cryptographic Security
	Slide 9: Interlude: The Formosa Crypto Way
	Slide 10: Specifying Expected Security is Important for the Verification of Cryptography
	Slide 11: On the Role of Standards in Verification

