
Combining Genetic Algorithms and Simulation to Search for Failure Scenarios in

System Models

Kevin Mills, Christopher Dabrowski, James Filliben and Sandy Ressler

{kmills, cdabrowski, jfilliben, sressler}@nist.gov

Information Technology Laboratory

NIST

Gaithersburg, MD, USA

Abstract—Large infrastructures, such as clouds, can exhibit

substantial outages, sometimes caused by failure scenarios not

predicted during system design. We define a method for model-

based prediction of system quality characteristics. The method

uses a genetic algorithm to search system simulations for

parameter combinations that result in system failures, so that

designers can take mitigation steps before deployment. We apply

the method to study an existing infrastructure-as-a-service cloud

simulator. We characterize the dynamics, quality, effectiveness

and cost of genetic search, when applied to seek a known failure

scenario. Further, we iterate the search to reveal previously

unknown failure scenarios. We find that, when schedule permits

and failure costs are high, combining genetic search with

simulation proves useful for exploring and improving system

designs.

Keywords—genetic algorithms; model-based prediction;

 simulation methodology; system design

I. INTRODUCTION

Modern society grows increasingly dependent on large
infrastructures, such as clouds, for computation and storage
needs. Yet, such infrastructures are prone to substantial
outages, which sometimes arise from failure scenarios that
were not considered during system design [1]. Because the
state-space of such systems is vast [2], discovering potential
failure scenarios is quite difficult, somewhat like searching for
a needle in a haystack. A collection of evolutionary
computation methods [3] exists to search for optimal solutions
in large spaces. Among those methods, genetic algorithms
(GAs) [4] provide a flexible approach, well suited for problems
where little information is available about the structure of the
solution space. Here, we investigate combining a GA with
simulation to search system designs for anti-optimal solutions,
e.g., parameter combinations that yield degraded performance,
such that only a small percentage of a system’s users can
successfully obtain needed resources. We demonstrate that this
approach can help system architects to identify potential failure
scenarios before system deployment.

Section II presents related work. Section III illustrates our
approach; describes the GA used in our case study, including
key control parameters; discusses minimum requirements for a
system simulator to be controlled by a GA; and outlines an
iterative process to hunt for failure scenarios. Section IV
describes a case study, applying the GA to search for a known
failure scenario in an existing cloud simulator. In addition to
introducing the simulator and related parameters, we explain

how the GA maps simulator parameters to ‘chromosomes’.
Further, we illustrate our deployment of GA search as a
distributed application on a cluster, and we define settings used
for key GA control parameters. Section V presents and
discusses results from our case study, illustrating the dynamics,
quality, effectiveness and costs of GA search for a known
failure scenario. We also discuss previously unknown failure
scenarios discovered in subsequent repetitions of GA search.
Section VI gives conclusions and future work.

II. RELATED WORK

Modern information systems are increasing in complexity:
growing in size and geographic scope, changing constantly as
software and hardware components are added and removed,
and providing shared support to users with many different
applications. These traits make failure scenarios both difficult
to foresee and expensive to experience; thus, researchers
actively pursue prediction techniques that can be applied
during system design (offline) and at run time (online).

Available research literature generally explores design-time
methods for complementary purposes: (1) improving system
models or, like the current paper, (2) exploring system models
to identify potential failure scenarios. One main goal of
improving system models is to provide better probability
estimates for rare events. Better estimates can help to
parameterize system models with more realistic failure
distributions. Researchers investigate two main approaches:
splitting [5-7] and importance sampling [8], or some
combination [9]. The main goal of such techniques is variance
reduction for probability estimates of rarely occurring events.
The main mechanism is to steer simulations into regions that
generate more samples of rare events, which would otherwise
occur infrequently and, thus require long simulation times in
order to generate accurate estimates.

Some researchers use system models to search for failure
scenarios that might otherwise be overlooked during design.
For example, Shultz and colleagues [10] used an approach
similar to ours, applying a GA to seek combinations of faults
that cause anomalies in control behavior within two simulators,
an autonomous aircraft and a submersible. Their work differs
from ours in two main ways. First, they devised domain-
specific encodings to match fault-scenario languages that were
unique to each simulator. Our method uses classical GA binary
encoding that can be applied generally to any simulator that
can be parameterized numerically. Second, they used domain-
specific knowledge to modify the usual genetic operators. We

mailto:sressler%7d@nist.gov

applied a classical GA without modifying the crossover and
mutation operators. Yucesan and Jacobson [11] used simulated
annealing (SA) to search for event sequences leading to failed
termination conditions. They report that SA has a major
drawback: requiring customization of control parameters to suit
particular problems. Our approach used GA control parameters
selected [12] independently of specific problems. Dabrowski
and Hunt [13] used graph analysis to search for cut sets
(indicating failure vulnerabilities) in Markov chain models,
derived from detailed system simulators. After identifying
vulnerabilities, they used perturbation analysis to determine
failure thresholds and trajectories. Their method involved
modeling processes as zero-order Markov chains, which are
"memoryless", and thus do not capture behavioral history. Our
approach directly explores detailed system simulators,
including historical behaviors, allowing assessment of detailed
system processes. Fainekos and colleagues [14] propose a
variety of optimization techniques (e.g., GAs, ant-colony
optimization, Monte Carlo simulations and cross-entropy
method) to search for parameter combinations that violate
invariant execution trace properties expressed using Metric
Temporal Logic. Exploiting such approaches requires a
specification of desired behaviors in order to look for
violations. Our approach requires only a single measure of
anti-fitness, which does not require a rigorous statement of
desired system properties.

While design-time methods seek failure scenarios that
could arise after deployment, run-time methods aim to make
specific, timely predictions of impending failures in deployed
systems, so that system operators can take remedial actions. As
Matsuo notes [15], predicting future behavior in complex
systems appears quite difficult. Yet, even moderate success can
have large positive returns, which encourages researchers to
continue investigating the efficacy of many approaches [16]
that might predict failures during system operation. Most
researchers apply offline techniques, such as machine learning
[17-18], hidden Markov models [19], GAs [20], and Bayesian
estimation [21-22] to learn patterns, which online systems can
monitor to predict failures. Other researchers [23-24] explore
monitoring techniques without an offline component.

III. METHOD

Figure 1 gives a schematic of our method, where a GA
controls a population of simulators distributed on a high-
performance computing cluster. First, an analyst selects a list
of simulator parameters to search, defining for each a range
and granularity; thus each parameter can take on a discrete set
of values. The GA uses this information to construct an internal
representation, or ‘chromosome’ map, specifying the location
and number of bits representing each parameter (see Table II,
for an example). Subsequently, the GA instantiates random bit
strings (i.e., chromosomes) for each simulator in the
population, and then transforms them to parameter files. Each
simulator reads its assigned file, updates its internal parameters
accordingly and runs a simulation. As each run finishes, the
corresponding simulator reports a metric, which we call anti-
fitness, defined by an analyst to represent a measure of system
failure. For example, in our case study (Section IV), we define
anti-fitness as the proportion of users who could not be served

by a simulated cloud. After collecting anti-fitness reports from
the current population, the GA uses an algorithm [12] to
construct a next generation of parameter combinations, and
distributes a combination to each simulator in the population.
Over multiple generations, tuples are collected (for later
analysis) giving parameter settings and corresponding anti-
fitness from each simulation run.

Figure 1. Schematic of a GA steering a population of simulators.

As generations progress, the GA steers the population of
simulators toward parameter combinations that maximize the
defined anti-fitness metric. GA steering is based solely on anti-
fitness measures achieved by each set of bit strings (i.e.,
chromosomes). The search process is blind to the existence of
parameters. The GA searches only for bit strings that achieve
maximum anti-fitness. The connection between bit strings and
model parameters occurs when the GA converts bit strings to
parameters for input to simulators. For that reason, a GA is
quite general and flexible, as we explain next.

The GA begins by generating randomly a seed population
of individuals, each consisting of an appropriate length bit
string, representing values for the chosen parameters of a
problem to be solved. The population size is a control
parameter of the GA. The GA next evaluates the anti-fitness of
each individual. Over time, the GA evaluates the anti-fitness of
many populations, where each population is called a
generation. The population for generation n+1 is created
through some transformation of individuals composing
generation n. The GA terminates after a specified number of
generations, unless terminated manually.

After evaluating a generation, the GA determines whether
the population should be rebooted, which involves randomly
regenerating all or part of the next generation. Rebooting can
increase the GA’s exploration of the search space. The GA
includes a control parameter, reboot proportion, which defines
the percentage of generations to complete before a reboot.

When selecting individuals for generation n+1, those with
highest anti-fitness (i.e., the elite) from generation n can be
included unchanged. The GA has a control parameter, elite
selection percentage, which defines how many individuals
from generation n will be placed unaltered into generation n+1.
Such elite individuals can be placed into a population whether

Model Parameter
Specifications Parallel Execution of

Model Simulators
Population of Model

Parameterizations

Selection based on

Anti-Fitness
Recombination
& Mutation

List of parameters
and for each
parameter a MIN,
MAX and
precision.

Anti-Fitness Reports

GENETIC ALGORITHM

Principal Components Analysis,
Clustering, …

MULTIDIMENSIONAL ANALYSIS TECHNIQUES

Growing Collection of Tuples:

{Generation, Individual, Fitness, Parameter 1 value,….Parameter N value}

{Generation, Individual, Fitness, Parameter 1 value,….Parameter N value}

{Generation, Individual, Fitness, Parameter 1 value,….Parameter N value}

{Generation, Individual, Fitness, Parameter 1 value,….Parameter N value}

{Generation, Individual, Fitness, Parameter 1 value,….Parameter N value}

{Generation, Individual, Fitness, Parameter 1 value,….Parameter N value}

{Generation, Individual, Fitness, Parameter 1 value,….Parameter N value}

{Generation, Individual, Fitness, Parameter 1 value,….Parameter N value}

{Generation, Individual, Fitness, Parameter 1 value,….Parameter N value}

{Generation, Individual, Fitness, Parameter 1 value,….Parameter N value}

…
{Generation, Individual, Fitness, Parameter 1 value,….Parameter N value}

MODEL SIMULATORS

or not the remaining individuals will be generated randomly or
by transformation. When the population for generation n+1 is
created by transformation, the procedure involves selecting a
pool of candidate individuals from generation n, and then
applying two genetic operators, crossover and mutation, which
mimic reproduction in biological populations.

The GA includes a control parameter, selection method,
which defines the algorithm used to select individuals from
generation n for inclusion into the candidate pool, where the
more anti-fit individuals from generation n may be included
multiple times, while some of the least anti-fit individuals may
be excluded. Given a pair of individuals, chosen randomly
from the candidate pool, a GA control parameter, number of
crossover points, determines where bits will be swapped
between them. The specified number of crossover locations is
chosen randomly, uniformly distributed within the length of bit
strings comprising chromosomes, and the bits in each
individual are swapped at those points and the two transformed
individuals are placed into the population of recombined
individuals. This continues until a sufficient number of
(possibly) transformed individuals are selected to fill a
population.

Subsequently, the GA iterates over each bit representing
each recombined individual, while deciding whether or not the
bits should be inverted. A GA control parameter, mutation
rate, specifies the probability that any given bit will be flipped.
After mutation, the GA inserts the individual into the
population for generation n+1. Subsequently, the anti-fitness of
each individual is evaluated and the GA iterates through
generation n+1, creating the population of individuals for
generation n+2, and so on until termination.

For a GA control, a simulation model must be able to
initialize its parameters from external inputs and must be
capable of executing in a loop, as simulations finish and new
inputs arrive. Most simulators have such capabilities, but must
be modified to asynchronously await inputs generated by a GA
and to report anti-fitness once the simulation completes. We
made these modifications via a signal file shared between each
simulator instance and the GA. As discussed in Section V.A,
more substantive simulator modifications were also necessary.

Once a complete search is finished, several potential failure
scenarios may be revealed (see Section V). The analyst is then
free to resolve those failures and repeat the GA search for
additional scenarios. This iterative process can continue until
no more failure scenarios appear or available time is exhausted.

IV. CLOUD SYSTEM CASE STUDY

We evaluated GA search while seeking a previously known
failure scenario [25] in Koala, an existing infrastructure-as-a-
service (IaaS) cloud simulator. The simulator architecture is
shown in Figure 2. A full description of Koala can be found
elsewhere [26-27]. Here, we give only a summary.

Koala simulates five layers: (1) demand from users, each
requesting a collection of virtual machines (VMs), (2) a supply
of physical nodes on which VMs can be placed, (3) a resource
allocation layer, consisting of a cloud controller and cluster
controllers that cooperate to determine a cluster on which to

place VM collections, (4) an Internet/Intranet layer providing
communication among simulated nodes, and (5) a VM
behavior layer that models variations in resource usage over
time. Available VM types and physical platforms are modeled
after the Amazon EC2 Cloud, while the three-tier cloud
architecture (cloud, cluster and node controllers) is modeled
after a public domain version (1.6) of Eucalyptus. (Mention of
commercial products or organizations in this paper does not
imply endorsement by NIST.)

Figure 2. Schematic of Koala IaaS cloud simulator.

All nodes are placed geographically in a coordinate system
of sites, where the cloud elements may be placed on one or
multiple sites. User sites are selected randomly upon each
user’s arrival; user types are also assigned randomly. User type
determines the quantity and mix of VMs the user will request,
which can include a minimum number required to start an
application and a maximum that can be exploited should
sufficient resources be available. A user requests VMs, and the
cloud controller can honor the request fully (maximum
requested VMs) or partially (at least minimum requested
VMs). If insufficient resources exist, the cloud responds with
NERA (not enough resources available). Upon receiving a
NERA response, a user may retry intermittently during a day,
and if VMs cannot be obtained, then retire for the evening and
return the next day to try again. After passing too many days
without obtaining the needed VMs, the user gives up and
leaves the system, only to be regenerated as a new user.

Upon successfully obtaining VMs, a user selects a holding
time, during which VMs may be added or terminated. Of
course, VMs may also fail within the cloud, so a user will
attempt to maintain a required minimum number of VMs by
requesting additional VMs as needed. When holding time
expires, a user requests termination of all VMs and reenters the
system as a new user.

 The cloud controller handles all user requests, checking
with subordinate cluster controllers to find available space for a
collection of VMs, which are mapped to a single cluster to
localize inter-VM communication. The cloud controller uses
one of several algorithms [27] to select a specific cluster.
Cluster controllers monitor the state of subordinate nodes, and
use one of several algorithms [27] to select specific nodes for

 INTERNET

DEMAND LAYER

SUPPLY

LAYER

VM

BEHAVIOR

 LAYER

RESOURCE

ALLOCATION

 LAYER

User

#1

User

#2

User

#n

User

#3

User

#4

User

#5

User

#6

User

#n-3

User

#n-2

User

#n-1

CLOUD CONTROLLER

Cluster

Controller #1
Cluster

Controller #c

NODE CONTROLLER #k

NODE RESOURCES
NODE CONTROLLER #k-1

NODE RESOURCES
NODE CONTROLLER #k-2

NODE RESOURCES
NODE CONTROLLER #3

NODE RESOURCES
NODE CONTROLLER #2

NODE RESOURCES
NODE CONTROLLER #1

NODE RESOURCES

NODE CONTROLLER #p

NODE RESOURCES
NODE CONTROLLER #p-1

NODE RESOURCES
NODE CONTROLLER #p-2

NODE RESOURCES
NODE CONTROLLER #3

NODE RESOURCES
NODE CONTROLLER #2

NODE RESOURCES
NODE CONTROLLER #1

NODE RESOURCES

NODE CONTROLLER #q

NODE RESOURCES
NODE CONTROLLER #q-1

NODE RESOURCES
NODE CONTROLLER #q-2

NODE RESOURCES
NODE CONTROLLER #3

NODE RESOURCES
NODE CONTROLLER #2

NODE RESOURCES
NODE CONTROLLER #1

NODE RESOURCES

IN
T

R
A

N
E

T

IN
T

R
A

N
E

T

IN
T

R
A

N
E

T

VMs

Shown for

One Node Only

VMs

Shown for

One Node Only

VMs

Shown for

One Node Only
VM1VM1VM1VM1 VM1

VM1VM1VM1VM1 VM1

VM1VM1VM1VM1 VM1

Cluster

Controller #c-

m

(1)

(4)

(4) (3)

(2)

(4) (4)

(5)

placement (or relocation) of individual VMs. Under guidance,
from a simulated administrator, the cloud controller can add
and remove clusters from the cloud, and cluster controllers can
add and remove nodes from clusters. The administrator can
also terminate VMs that the cluster controller is unable to stop.

Table I categorizes 129 Koala parameters over which we
conducted a GA search. More than half the parameters define
element behaviors, most by the user and cloud controller, while
22 describe structural elements, half related to the network.
The model also simulates failures that could occur in the
network and among the physical platforms and components. A
smaller set of parameters can inject behavioral and structural
asymmetries, such as changing user demand profiles over time
and allowing clouds to be constructed as a combination of
large and small clusters, rather than of same-sized clusters.

TABLE I. SUMMARY OF KOALA PARAMETERS TO SEARCH OVER.

Among the 129 parameters, we included four Booleans to
turn on/off behaviors that control orphan VMs, a potential
problem uncovered in earlier experiments with Koala [27],
where lost messages could leave users and the cloud controller
unaware that VMs had been allocated, leading to retries,
reallocations, and ultimately to saturation of cloud resources.
Most orphan VMs arise during initial allocation, but some are
caused by failed terminations. Additionally, orphan VMs may
occur as collections of VMs are relocated before a cluster is
shut down. Logic was included in Koala to detect and remove
orphans in all three classes, and an administrator was also
simulated to allow residual orphans to be stopped manually.

When a cloud is saturated with VM orphans, users are
unable to obtain requested VMs and eventually give up after
exhausting their patience. For our GA search, we defined anti-
fitness as the ratio of users who give up to the total number of
arriving users. The larger the ratio, the more users were turned
away, and the lower the cloud’s revenue.

To guide the GA search, we defined a range and precision
for each Koala parameter (see Table II for an elided list),
yielding a mean of about six values per parameter, and thus a
search space of approximately 10

100
 parameter combinations.

Using our description, the GA computed the number of values
(and bits) needed to encode a Koala parameter combination (as
a binary string), and then randomly placed the binary encoding
for each parameter into a 334-bit chromosome, which served as
the internal form used by the GA to represent Koala
parameters. The GA also provided routines to generate Koala
parameter values from binary encodings given in chromosome
form.

We deployed a distributed population of 200 Koala
simulators on a high-performance cluster, under GA control

(see Figure 3) via signal files in a shared, network file store.
Each simulator, allocated to one core, waits for the GA to
signal that a parameter file exists and then runs a simulation,
reports the resulting anti-fitness value, and awaits the next
signal. The GA generates parameter files for each simulator
and periodically checks progress and collects anti-fitness
reports as runs complete. Once all runs in a generation finish,
the GA uses the algorithm described in Section III to create the
next generation of parameter files, and so on until completing a
specified number of generations.

TABLE II. MAPPING OF KOALA PARAMETERS TO CHROMOSOMES.

Figure 3. Schematic of simulators deployed on a cluster under GA control.

TABLE III. SETTINGS FOR KEY GA CONTROL PARAMETERS.

Table III shows settings we assigned for key GA control
parameters. Mutation rate is controlled by an adaptive
algorithm that increases mutation probability (and variance
among parameter combinations) as the range of population
fitness narrows and lowers probability upon divergence.

Model
Element

Parameter Category

Behavior Structure Asymmetry Failure Total

User 28 2 4 0 34

Cloud Controller 21 4 5 0 30

Cluster Controllers 11 5 3 0 19

Nodes 6 0 0 14 20

Intra-Net/Inter-Net 4 11 2 9 26

Totals 70 22 14 23 129

Head Node 1

Head Node 2

Shared

File

Store

Compute Node 1 Compute Node 2 Compute Node 12

Compute Node 13 Compute Node 14 Compute Node 24

E
n

te
rp

ri
s
e

 N
e

tw
o

rk

C
lu

s
te

r
N

e
tw

o
rk

License Server
8 Koala

Processes

8 Koala

Processes

12 Koala

Processes

12 Koala

Processes

12 Koala

Processes

200 Koala

Working

Directories

GA

Checkpoint

Database

Node Manager

Job Manager

GA Controller

GA

Management

Processes

CLUSTER

GA

Results

Tuples

Generations 500

Population Size 200 Individuals

Elite Per Generation 16 Individuals

Reboot After 200 Generations

Selection Method Stochastic Uniform Sampling

Crossover Points 3

Mutation Rate 0.001 < Adaptive < 0.01

PARAMETER MIN MAX PRECISION #VALUES LOW_BIT HIGH_BIT #BITS

P_CreateOrphanControlOn 0 1 1 2 36 36 1

P_TerminationOrphanControlOn 0 1 1 2 58 58 1

P_RelocationOrphanControlOn 0 1 1 2 11 11 1

P_AdministratorActive 0 1 1 2 330 330 1

P_clusterAllocationAlgorithm 0 5 1 6 31 33 3

P_describeResourcesInterval 600 3600 600 6 81 83 3

P_nodeResponseTimeout 30 90 30 3 210 211 2

P_TerminatedInstancesBackOffThreshold 3 6 1 4 56 57 2

P_TerminationBackOffInterval 180 360 60 4 88 89 2

P_TerminationRetryPeriod 600 1200 300 3 316 317 2

P_StaleShadowAllocationPurgeInterval 600 3600 600 6 242 244 3

P_cloudAllocationCriteria 0 3 1 4 321 322 2

P_clusterShadowPurgeLimit 1 21 5 5 290 292 3

P_instancePurgeDelay 180 600 60 8 98 100 3

P_clusterEvaluationResponseTimeout 60 120 30 3 14 15 2

P_MaxPendingRequests 1 10 1 10 72 75 4

P_CloudTerminatedInstancesBackOffThreshold 3 6 1 4 169 170 2

P_CloudTerminationBackOffInterval 180 360 60 4 40 41 2

P_CloudTerminationRetryPeriod 3600 10800 1800 5 297 299 3

P_ClusterShutdownGracePeriod 86400 2.59E+05 43200 5 147 149 3

P_RequestEvaluatorTimeoutWaitProportion 0.1 0.4 0.1 4 145 146 2

P_RequestEvaluatorClusterMinimumResponse 0.6 0.9 0.1 3 269 270 2

P_MaxRelocationDuratonProportion 0.65 0.95 0.1 4 90 91 2

P_MaximumRelocateDescribeRetries 4 16 2 7 254 256 3

P_AverageCloudAdministratorAttentionLatency 28800 86400 14400 5 308 310 3

P_AverageCloudAdministratorShutdownDelay 300 900 300 3 45 46 2

P_avgTimeToClusterCommunicationCut 2.88E+06 2.88E+07 2.88E+06 10 217 220 4

Genetic Algorithm Computed
Chromosome Map (Size = 2334)

Koala Parameter
Space (Size = 10100)

V. RESULTS AND DISCUSSION

To assess dynamics, quality, effectiveness, and cost of GA
search, we steered a population of 200 Koala simulators over
500 generations, expecting the previously known VM orphan
problem to be revealed in cases where Koala’s orphan-control
logic was disabled. Figure 4 shows three plots, where the y-
axis gives (a) average, (b) standard deviation and (c) maximum
anti-fitness vs. time (increasing generations). Mean anti-fitness
starts low (around 0.2) for randomly generated parameter
combinations, and peaks (at 0.79) within 11 generations, before
falling to around 0.65 (2/3 of users not served) until generation
201 (also 401), when the GA randomizes parameters for the
184 non-elite individuals. After these reboots, mean anti-fitness
rises quickly to over 0.7 and then falls back to around 0.65.
Our shared file store suffered a disk crash, which required us to
restart generation 311, using checkpoint information we save
during the GA search. The restart caused a spike in mean anti-
fitness, before settling back to around 0.65.

Figure 4. GA search dynamics in anti-fitness (y-axis)–(a) average, (b) standard
deviation and (c) maximum–over 500 generations (x-axis).

The plot of standard deviation in anti-fitness inversely
mirrors the average, i.e., high averages indicate low variance.
As described previously, changes in the anti-fitness variance in
a population stimulate automatic adjustments in mutation rate.
The plot of maximum fitness shows that by generation 7 the
GA had discovered scenarios where 82% of users could not be
served, and by generation 127 the GA found scenarios where
the proportion of non-served users increased to 83%. These
results suggest that, for the Koala simulator, GA search could
uncover failure scenarios within 100-200 generations.

Figure 5 gives a frequency distribution of anti-fitness
values obtained for the (200 individuals × 500 generations =)
10

5
 scenarios explored by the GA, which represent only a tiny

fraction of the 10
100

 possible Koala scenarios. The histogram
reveals that 84% of the scenarios explored by the GA yielded
anti-fitness ≥ 0.50, despite the likelihood that most of the Koala
search space consists of scenarios with low anti-fitness, as
shown by the fact that randomly generated scenarios yielded
mean anti-fitness of 0.2. Further, only 8.12% of the scenarios
explored by the GA were duplicates, which is only slightly
larger than the 8% elite individuals carried unchanged from
generation to generation. These results indicate that the GA
search explored predominantly non-duplicative scenarios with
high anti-fitness.

Figure 5. Histogram of anti-fitness values for all 105 parameter combinations.

Various analysis methods, such as feature extraction and
clustering, may yield insights into failure causes. Here, we use
differential probability analysis; comparing the estimated
probability of each parameter-value (PV) pair appearing in
scenarios with high anti-fitness against estimated probability of
the same pair appearing in scenarios with low anti-fitness. We
postpone, for future work, using additional analysis methods.

Let C be the set of collected tuples (recall Figure 1), each
containing a vector of PV pairs and a corresponding anti-
fitness value, f. We segmented C into high-pass (H) and low-
pass (L) subsets: H = {x  C  fx > 0.70} and L = {x  C  fx <
0.15}. For each PV in the high-pass subset, we estimated the
probability of occurrence, P(PVif > 0.70), using the ratioPVi
 H∕H, representing the count of PVi in the high-pass
subset divided by the subset cardinality. We computed a
similar estimate, P(PVif < 0.15), for each PV in the low-pass
subset. Subsequently, we took the difference between the two
estimates, D = P(PVif > 0.70) – P(PVif < 0.15). A large
positive difference suggests that a PV pair contributes to a
failure scenario, while a large negative difference suggests that
a PV pair contributes to desirable system behavior. Figure 6
plots D for 684 PV pairs, sorted by decreasing D, found in our
GA search for a known failure scenario. We label significant
outliers.

Figure 6 illustrates that most PV pairs exert little influence
on failure or success scenarios, appearing about as often in
both the H and L subsets. Six PV pairs appear to drive failure
scenarios, and one PV pair shows most influence on success.
The largest positive difference (0.58) occurs in the absence of
logic to control orphans during initial VM allocation, while the
largest negative difference (-0.58) occurs when that logic is
present. In effect, this is the known failure scenario that we
were expecting the GA to find. The second highest positive

0

0.05

0.1

0.15

0.2

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

Anti-Fitness

Frequency Distribution of Anti-Fitness

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 100 200 300 400 500

Generation

(a) Average Anti-Fitness

0

0.05

0.1

0.15

0.2

0.25

0.3

0 100 200 300 400 500

Generation

(b) Standard Deviation in Anti-Fitness

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0 100 200 300 400 500

Generation

(c) Maximum Anti-Fitness Discovered

difference (0.42) occurs when users select random request
timeouts with an average of 30 s. By not waiting long enough
for responses from the cloud, users create virtual message
losses, because the receiving process has terminated before a
response arrives. Without orphan-control procedures running,
lost messages lead to a buildup of orphan VMs, leaving few
resources available to serve users. This combined effect of
short user timeouts and lack of orphan-control procedures was
previously unknown to us. From these results, a designer might
deduce that orphan-control procedures are needed, and that the
cloud must find some means to ensure clients wait long-enough
for the cloud to respond to requests.

Figure 6. D (y-axis) for 684 sorted PV pairs (x-axis) for first GA search–outlier
PV pairs labeled.

From the data in Figure 6, we were also able to identify two
other potential failure scenarios: (1) cloud overload and (2)
impatient users. When average cluster sizes were small (either
200 or 400 nodes), the cloud had insufficient resources to serve
user demand. When the average user rest period (think time ×
rest period multiplier) was 8 hours, users tended to retry more
frequently, and thus to give up in a shorter overall time.

A. Costs of GA Search

GA search for failure scenarios incurred costs of two types.
First, substantial programming effort was required prior to the
search. Second, GA search of simulation models can incur
significant latency. We discuss each type of cost in turn.

Although the Koala simulator had been used for several
years and executed robustly under diverse parameter settings,
generating an initial population of random parameter
combinations led to many crashes due to execution paths that
were not previously encountered. Finding and fixing these
software errors required significant effort. Further, the Koala
simulator typically executes for a specified simulated time. The
associated wall-clock time can vary widely depending upon the
specific parameter settings used. To ensure deterministic
search time, we modified Koala to terminate a simulation when
either simulated time expired or a predetermined allocation of
wall-clock time was reached. Though this was a relatively
simple change, the Koala simulator had not been coded with
the expectation that simulations could terminate from any
given dynamic system state. Subsequently, abrupt terminations
revealed many more simulator crashes, which had to be
diagnosed and fixed.

Even after the Koala simulator was made sufficiently
robust, numerous issues arose regarding the use of a cluster for
executing simulator populations. Upon node failure, the cluster
would restart simulators on some other available node. When
the entire cluster failed and restarted, race conditions ensued
among various components. Diagnosing the state of the entire
simulator population proved difficult when using only
available cluster and node management tools. To resolve such
issues, it required significant effort to create a robust
management system to control the population of simulators.

Executing a GA search can require substantial latency
because all simulators in a given generation must complete
before a next generation can be constructed. For our
experiments, we limited each simulation to use no more than
90 minutes, which meant that we could complete 500
generations in 30 days. Our results showed, however, that for
the Koala model we could generate failure scenarios within
100-200 generations. For that reason, we limited subsequent
GA search iterations to about 200 generations, which typically
complete within 14-16 days. These latency computations
assume sufficient processors (one per simulator) are available
for use over the entire search. If fewer processors are available,
the search can take longer, though often shorter simulations
can complete on a sequentially shared processor, while longer
simulations execute on other processors. We completed
iterative GA searches of 500, 205, 209, and 205 generations,
which required a total of 74 days. These latencies suggest that
GA search should be pursued only for systems with sufficient
development time, and where failure scenarios have high cost.

B. Additional Iterations of GA Search

We conducted a second GA search; this time ensuring that
orphan-control procedures and the cloud administrator were
always active. Our goal was to evaluate the ability of GA
search to find additional failure scenarios. We executed only
205 generations. Figure 7 plots estimated probability
differences for the 677 PV pairs found by the GA.

Figure 7. D (y-axis) for 677 sorted PV pairs (x-axis) for second GA search–
outlier PV pairs labeled.

The largest positive difference (0.48) occurs in Figure 7
when the average user request timeout is 30 s. This is the same
result found previously. This implies that if user timeouts are
too short, then even with orphan-control procedures active, the
cloud will fail to serve enough users, as the maximum anti-
fitness was still 0.82, though the average decreased to about

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 100 200 300 400 500 600 700

CreateOrphanControlOn = FALSE

AvgUserRequestTimeout = 30
AvgThinkTime = 900

CreateOrphanControlOn = TRUE

NodesPerCluster = 200
UserRestPeriodMultiplier = 32
NodesPerCluster = 400

D

PV pairs sorted by decreasing D

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400 500 600 700

AvgUserRequestTimeout = 30

AvgThinkTime = 900

UserRestPeriodMultiplier = 32
NumberofSitesReservedForCloud = 2
NodesPerCluster = 200
MilesPerRouterHop = 500
MaxPerHopDelay = 0.9
StdUserRequestTimeout = 30
NodesPerCluster = 400

AvgUserRequestTimeout = 120
NumberofSitesReservedForCloud = 1
AvgThinkTime = 1500
MilesPerRouterHop = 1500

D

PV pairs sorted by decreasing D

0.55. Since orphan-control procedures operate over periods
numbered in hours, virtual message losses caused by short user
timeouts can still overtax the procedures. This finding was
unknown previously. Another set of related parameters also
exhibited large positive differences. For example, small
standard deviations in user request timeouts tended to keep
short user timeouts as short as possible. Short timeouts were
exacerbated by increases in inter-site distances, especially
when combined with short inter-router distances (i.e., more
network hops between sites) and with higher simulated per-hop
queuing delays. This implies that cloud designers must take
wide latitude in considering many factors beyond their control
that could determine the best user timeouts to encourage. On
that issue, the PV with the largest negative difference (-0.24)
was the user request timeout set to 120 s. This result implies
that GA search can recommend optimal settings while
simultaneously searching for failure scenarios. Finally, the
iterated GA search also reestablished that small clusters would
lead to overload and that impatient users could be a problem.

We conducted a third GA search over 209 generations. In
that search, we changed the ranges of some parameter values to
seek new failure scenarios and additional insights into system
behavior. As expected, since we were searching for failure
scenarios, the GA search found only slightly improved
outcomes, yielding a maximum anti-fitness of 0.77 and an
average of about 0.6. On the other hand, new insights were
revealed. Figure 8 plots estimated probability differences for
the 680 PV pairs found by the GA.

Figure 8. D (y-axis) for 680 sorted PV pairs (x-axis) for third GA search–outlier
PV pairs labeled.

Though we increased (by 60 s) the range of user request
timeouts, the new minimum timeout of 90 s proved to be too
short, especially when coupled with specific network factors
(such as long distances and large per-hop delays), along with
120 s delays by the cloud controller, when awaiting responses
from clusters. Regarding response delays within the three-
tiered cloud system, when the cloud waited only 60 s for
cluster responses and clusters waited only 30 s for node
responses, the system exhibited better outcomes. The user
request timeout must accommodate delays due to network
factors and timeouts within the cloud itself. The GA search
found that an average user request timeout of at least 120 s
(borderline outlier) was required to lower anti-fitness, and that
180 s (borderline outlier) provided the lowest anti-fitness.

Though we increased (by 400 nodes) the range of cluster
sizes, a 600-node minimum size still proved too small. The GA
found that at least 800 nodes per cluster were needed to avoid
cloud overload for the parameters within the search space.
Further, the GA discovered that a 30 s average inter-user
startup delay, a parameter intended to gradually introduce load
into the cloud, was too short, leading to cloud overload.

The GA found that homogeneous cluster sizes lowered
anti-fitness, when compared with cases where 20% of clusters
were large and 80% small. The GA also found that increasing
and decreasing cloud size by 30% yielded higher anti-fitness
than smaller size changes of 10% and 20%. Further, the GA
found that cloud administrators needed to complete individual
operations in a mean of 300 s (borderline outlier); 900 s
(borderline outlier) was too long.

The GA also found insights related to platform types. First,
assigning platform types randomly from a specified set
(simulating a cloud constructed by adding any available nodes)
increased anti-fitness. Second, one specific arrangement of
platform types, where 28% of nodes had 32-bit architectures,
increased anti-fitness when combined with simulated user
types (60% web-service and 40% distributed-search
applications) that required 64-bit architectures for all VMs.

All searches described above had the property that H
subsets contained over 10

4
 tuples, while comparable L subsets

contained fewer than 10
3
 tuples. This discrepancy in samples

occurred naturally because the GA was searching for scenarios
more likely to fall into H subsets. L subsets had as many as
hundreds of tuples only because, as discussed previously, the
low anti-fitness landscape of the Koala simulator was much
larger than the high anti-fitness landscape. One could increase
samples in L subsets by inverting the GA search to look for
scenarios with low anti-fitness.

Figure 9. D (y-axis) for 683 sorted PV pairs (x-axis) for fourth GA search–
outlier PV pairs labeled.

We inverted a fourth GA search. We used the same
parameter space as in the third search, but instructed the GA to
seek high fitness (i.e., low anti-fitness) scenarios. We ran the
inverted search for 205 generations, and then combined the
collected tuples with the tuples collected during the third
search. After filtering, the resulting H subset contained 14601
tuples and the L subset contained 42253 tuples. Analysis of the

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400 500 600 700

NodesPerCluster = 600 UserTypeArraySelector = 4
AvgThinkTime = 1200 AvgUserRequestTimeout = 90
SiteDistanceMultiplier = 7
MinSiteCoordinate = 0 UserRestPeriodMultiplier = 32
StdUserRequestTimeout = 30
MinReservationRetries = 2

AvgInterUserStartDelay = 30

MinIntrasiteDelay = 2x10-8
MinClusters = 9

MaxSiteCoordinate = 16000
MaxPerHopDelay = 0.9

MaxIntrasiteDelay = 1.5x10-5

CloudSizeChangeFraction = 0.3
ClusterResponseTimeout = 120
MaxIntersiteLossRate = 10-7

PlatformTypeArraySelector = 4 ProbabilityImageNotFound = 10-6

ChoosePlatformTypesRandomly = FALSE
RandomizeMinMaxVMsRequested = TRUE
MinRestPeriods = 2
NodeResponseTimeout = 30

D

PV pairs sorted by decreasing D

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 100 200 300 400 500 600 700

AvgUserRequestTimeout = 90 AvgThinkTime = 1200
SiteDistanceMultiplier = 7 UserRestPeriodMultiplier = 32
NodesPerCluster = 600 UserTypeArraySelector = 4
MinSiteCoordinate = 0 StdUserRequestTimeout = 30
MaxSiteCoordinate = 16000 AvgInterUserStartDelay = 30
MinIntrasiteDelay = 2x10-8 MinReservationRetries = 2
MinClusters = 9 RandomizeMinMaxVMsRequested = FALSE

AvgAdminDelay = 900 CloudSizeChangeFraction = 0.3
ClusterResponseTimeout = 120

RandomizeMinMaxVMsRequested = TRUE
NodeResponseTimeout = 30
MinRestPeriods = 2
ChoosePlatformTypesRandomly = FALSE
MaxSiteCoordinate = 12000
AvgAdminDelay = 300

D

PV pairs sorted by decreasing D

probability differences, shown in Figure 9, confirmed findings
obtained from the third GA search.

VI. CONCLUSIONS AND FUTURE WORK

We defined a design-time method, combing GA search
with simulation, to seek failure scenarios in system models. We
applied the method in a case study, seeking (and finding) a
known failure scenario in an existing IaaS cloud simulator. We
iterated the GA search to reveal previously unknown failure
scenarios. We used the case study to evaluate the dynamics,
quality, effectiveness, and cost of GA search. Our GA searches
explored predominantly non-duplicative scenarios with high
anti-fitness. We uncovered evidence that GA search could
reveal insights about optimal parameter settings, while
simultaneously searching for failure scenarios. We also found
that, due to high latency, GA search should be pursued only for
systems with sufficient schedule time, and where failure
scenarios have high cost.

We can extend our work in five directions. First, additional
analysis methods need to be explored, to further mine the data
collected by our GA searches. We can envision using statistical
and information-theoretic techniques to extract features from
the collected tuples, and then applying clustering algorithms to
suggest specific classes of failure scenarios. Second, we should
continue to explore our case study, attempting to uncover
parameter subspaces where no failure scenarios can be found,
and also using GA search under alternate definitions of anti-
fitness to discover other kinds of system failure scenarios that
might exist. Third, we should apply our method to models of
other complex information systems, such as communication
networks and other forms of computational clouds. This would
allow us to confirm the generality of our approach. Fourth, we
should seek partners, operating cloud computing systems or
test beds, against which we can validate our method. Finally,
we should investigate run-time methods to provide early
signals of incipient failures. Such run-time methods are
necessary because design-time methods are unlikely to
discover all possible failure scenarios that could arise in a
deployed system.

REFERENCES

[1] D. Takahashi, “Amazon’s outage in third day: debate over cloud
computing’s future begins”, VB/News, April 23, 2011.

[2] Z. Michalewicz and D. Fogel, How to Solve It: Modern
Heuristics, Springer, 2nd ed., 2004.

[3] D. Fogel (ed), Evolutionary computation: the fossil record,
IEEE Press, 1998.

[4] M. Mitchell, An introduction to genetic algorithms, MIT Press,
1998.

[5] M. Fischer and J. Shortle, “Rare event simulation: enhancing
efficiency, Sigma noblis, 10:1, Sept. 2011, p. 52.

[6] C. Kelling and G. Hommel, “Rare event simulation with an
adaptive “RESTART” method in a Petri net modeling
environment”, Proceedings of the 4th WPDRTS, IEEE, Jan.
1996, pp. 229-235

[7] P. Ecuyer and B. Tuffin, “Splitting for rare-event simulation”,
Proceedings of the Winter Simulation Conference, IEEE, Dec.
2006, pp. 137-148.

[8] D. Reijsbergen, P-T de Boer, W. Scheinhardt, and B. Haverkort,
“Rare event simulation for highly dependable systems with fast
repairs”, Performance Evaluation, 69:7-8, 2010, pp. 336-355.

[9] G. Galati, M. Naldi, and G. Pavan, “Stochastic simulation
techniques as related to innovation in communications-
navigation-surveillance and air traffic management”, Simulation
Modeling Practice and Theory, 11, 2003, pp. 197-209.

[10] A. Shultz, J. Grefenstette, and K. DeJong, “Learning to break
things: adaptive testing of intelligent controllers”, Handbook of
Evolutionary Computation, Chapter G3.5, IOP Publishing Ltd
and Oxford University Press, 1995, pp. 1-11.

[11] E. Yucesan and S. Jacobson, “Computational issues for
accessibility in discrete event simulation”, ACM Transactions
on Modeling and Computing Simulation, 6:1, 1996, pp. 53-75.

[12] A. Haines, K. Mills, and J Filliben, “Determining relative
importance and best settings for genetic algorithm control
parameters”, NIST Pub. #912472, Nov. 2012, pp 1-22.

[13] C. Dabrowski and F. Hunt, "Using Markov chains and graph
theory concepts to analyze behavior in complex distributed
systems", Proceedings of the 23rd European Modeling and
Simulation Symposium, Sept. 2011, pp. 1-10.

[14] G. Fainekos, S. Sankaranarayanan, K Ueda, and H. Yazarel,
"Verification of automotive control applications using S-
TaLiRo," American Control Conference (ACC), Jun. 2012, pp.
3567-3572.

[15] Y. Matsuo, “Prediction, forecasting, and chance discovery”,
Chapter 3 in Chance Discovery, Springer, 2003, pp. 30-42.

[16] F. Salfner, M. Lenk, and M. Malek, “A survey of online failure
prediction methods”, ACM Computing Surveys, 42:3, 2010,
Article 10, pp. 1-42.

[17] P. Gross et al., “Predicting electricity distribution feeder failures
using machine learning susceptibility analysis”, Proceedings of
the National Conference on Artificial Intelligence, 21:2, MIT
Press, Jul. 2006, pp. 1705-1711.

[18] Q. Guan, Z. Zhang, and S. Fu, “Proactive failure management
by integrated unsupervised and semi-supervised learning for
dependable cloud systems”, 6th International Conference on
Availability, Reliability and Security, Aug. 2011, pp. 83-90.

[19] F. Salfner, “Predicting failures with hidden Markov models”,
Proceedings of 5th European Dependable Computing
Conference, Apr. 2005, pp. 41-46.

[20] G. Weiss and H. Hirsh, “Learning to predict extremely rare
events”, Proceedings of the AAAI Workshop on Learning from
Imbalanced Data Sets, Jul. 2000, pp. 64-68.

[21] Q. Guan, Z. Zhang, and S. Fu. “Ensemble of bayesian predictors
for autonomic failure management in cloud computing”,
Proceedings of IEEE International Conference on Computer
Communications and Networks, Jul. 2011, pp. 1-6.

[22] Y. Watanabe, H. Otsuka, M. Sonoda, S. Kikuchi, and Y.
Matsumoto, “Online failure prediction in cloud datacenters by
real-time message pattern learning”, IEEE 4th International
Conference on Cloud Computing Technology and Science, Dec.
2012, pp. 504-511.

[23] T. Chalermarrewong, T. Achalakul, and S. Wee See, "Failure
prediction of data centers using time series and fault tree
analysis”, Proceedings of the IEEE 18th International
Conference on Parallel and Distributed Systems, Dec. 2012,
pp.794-799.

[24] F. Salfner and P. Tröger, “Predicting cloud failures based on
anomaly signal spreading”, 42nd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, Jun. 2012,
pp. 1-2.

[25] C. Dabrowski and K. Mills, "VM leakage and orphan control in
open-source clouds", Proceedings of IEEE CloudCom, Dec.
2011, pp. 554-559.

[26] K. Mills, J. Filliben, and C. Dabrowski, "An efficient sensitivity
analysis method for large cloud simulations", Proceedings of the
4th International Cloud Computing Conference, IEEE, Jul. 2011,
pp. 1-8.

[27] K. Mills, J. Filliben, and C. Dabrowski, "Comparing VM-
placement algorithms for on-demand clouds", Proceedings of
IEEE CloudCom, Dec. 2011, pp. 91-98.

