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Abstract—Large infrastructures, such as clouds, can exhibit 

substantial outages, sometimes caused by failure scenarios not 

predicted during system design. We define a method for model-

based prediction of system quality characteristics. The method 

uses a genetic algorithm to search system simulations for 

parameter combinations that result in system failures, so that 

designers can take mitigation steps before deployment. We apply 

the method to study an existing infrastructure-as-a-service cloud 

simulator. We characterize the dynamics, quality, effectiveness 

and cost of genetic search, when applied to seek a known failure 

scenario. Further, we iterate the search to reveal previously 

unknown failure scenarios. We find that, when schedule permits 

and failure costs are high, combining genetic search with 

simulation proves useful for exploring and improving system 

designs.     

Keywords—genetic algorithms; model-based prediction;  

                    simulation methodology; system design 

I. INTRODUCTION 

Modern society grows increasingly dependent on large 
infrastructures, such as clouds, for computation and storage 
needs. Yet, such infrastructures are prone to substantial 
outages, which sometimes arise from failure scenarios that 
were not considered during system design [1]. Because the 
state-space of such systems is vast [2], discovering potential 
failure scenarios is quite difficult, somewhat like searching for 
a needle in a haystack. A collection of evolutionary 
computation methods [3] exists to search for optimal solutions 
in large spaces. Among those methods, genetic algorithms 
(GAs) [4] provide a flexible approach, well suited for problems 
where little information is available about the structure of the 
solution space. Here, we investigate combining a GA with 
simulation to search system designs for anti-optimal solutions, 
e.g., parameter combinations that yield degraded performance, 
such that only a small percentage of a system’s users can 
successfully obtain needed resources. We demonstrate that this 
approach can help system architects to identify potential failure 
scenarios before system deployment. 

Section II presents related work. Section III illustrates our 
approach; describes the GA used in our case study, including 
key control parameters; discusses minimum requirements for a 
system simulator to be controlled by a GA; and outlines an 
iterative process to hunt for failure scenarios. Section IV 
describes a case study, applying the GA to search for a known 
failure scenario in an existing cloud simulator. In addition to 
introducing the simulator and related parameters, we explain 

how the GA maps simulator parameters to ‘chromosomes’. 
Further, we illustrate our deployment of GA search as a 
distributed application on a cluster, and we define settings used 
for key GA control parameters. Section V presents and 
discusses results from our case study, illustrating the dynamics, 
quality, effectiveness and costs of GA search for a known 
failure scenario. We also discuss previously unknown failure 
scenarios discovered in subsequent repetitions of GA search. 
Section VI gives conclusions and future work. 

II. RELATED WORK 

Modern information systems are increasing in complexity: 
growing in size and geographic scope, changing constantly as 
software and hardware components are added and removed, 
and providing shared support to users with many different 
applications. These traits make failure scenarios both difficult 
to foresee and expensive to experience; thus, researchers 
actively pursue prediction techniques that can be applied 
during system design (offline) and at run time (online). 

Available research literature generally explores design-time 
methods for complementary purposes: (1) improving system 
models or, like the current paper, (2) exploring system models 
to identify potential failure scenarios. One main goal of 
improving system models is to provide better probability 
estimates for rare events. Better estimates can help to 
parameterize system models with more realistic failure 
distributions. Researchers investigate two main approaches: 
splitting [5-7] and importance sampling [8], or some 
combination [9]. The main goal of such techniques is variance 
reduction for probability estimates of rarely occurring events. 
The main mechanism is to steer simulations into regions that 
generate more samples of rare events, which would otherwise 
occur infrequently and, thus require long simulation times in 
order to generate accurate estimates. 

Some researchers use system models to search for failure 
scenarios that might otherwise be overlooked during design. 
For example, Shultz and colleagues [10] used an approach 
similar to ours, applying a GA to seek combinations of faults 
that cause anomalies in control behavior within two simulators, 
an autonomous aircraft and a submersible. Their work differs 
from ours in two main ways. First, they devised domain-
specific encodings to match fault-scenario languages that were 
unique to each simulator. Our method uses classical GA binary 
encoding that can be applied generally to any simulator that 
can be parameterized numerically. Second, they used domain-
specific knowledge to modify the usual genetic operators. We 
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applied a classical GA without modifying the crossover and 
mutation operators. Yucesan and Jacobson [11] used simulated 
annealing (SA) to search for event sequences leading to failed 
termination conditions. They report that SA has a major 
drawback: requiring customization of control parameters to suit 
particular problems. Our approach used GA control parameters 
selected [12] independently of specific problems. Dabrowski 
and Hunt [13] used graph analysis to search for cut sets 
(indicating failure vulnerabilities) in Markov chain models, 
derived from detailed system simulators. After identifying 
vulnerabilities, they used perturbation analysis to determine 
failure thresholds and trajectories. Their method involved 
modeling processes as zero-order Markov chains, which are 
"memoryless", and thus do not capture behavioral history. Our 
approach directly explores detailed system simulators, 
including historical behaviors, allowing assessment of detailed 
system processes. Fainekos and colleagues [14] propose a 
variety of optimization techniques (e.g., GAs, ant-colony 
optimization, Monte Carlo simulations and cross-entropy 
method) to search for parameter combinations that violate 
invariant execution trace properties expressed using Metric 
Temporal Logic. Exploiting such approaches requires a 
specification of desired behaviors in order to look for 
violations. Our approach requires only a single measure of 
anti-fitness, which does not require a rigorous statement of 
desired system properties. 

While design-time methods seek failure scenarios that 
could arise after deployment, run-time methods aim to make 
specific, timely predictions of impending failures in deployed 
systems, so that system operators can take remedial actions. As 
Matsuo notes [15], predicting future behavior in complex 
systems appears quite difficult. Yet, even moderate success can 
have large positive returns, which encourages researchers to 
continue investigating the efficacy of many approaches [16] 
that might predict failures during system operation. Most 
researchers apply offline techniques, such as machine learning 
[17-18], hidden Markov models [19], GAs [20], and Bayesian 
estimation [21-22] to learn patterns, which online systems can 
monitor to predict failures. Other researchers [23-24] explore 
monitoring techniques without an offline component. 

III. METHOD 

Figure 1 gives a schematic of our method, where a GA 
controls a population of simulators distributed on a high-
performance computing cluster. First, an analyst selects a list 
of simulator parameters to search, defining for each a range 
and granularity; thus each parameter can take on a discrete set 
of values. The GA uses this information to construct an internal 
representation, or ‘chromosome’ map, specifying the location 
and number of bits representing each parameter (see Table II, 
for an example). Subsequently, the GA instantiates random bit 
strings (i.e., chromosomes) for each simulator in the 
population, and then transforms them to parameter files. Each 
simulator reads its assigned file, updates its internal parameters 
accordingly and runs a simulation. As each run finishes, the 
corresponding simulator reports a metric, which we call anti-
fitness, defined by an analyst to represent a measure of system 
failure. For example, in our case study (Section IV), we define 
anti-fitness as the proportion of users who could not be served 

by a simulated cloud. After collecting anti-fitness reports from 
the current population, the GA uses an algorithm [12] to 
construct a next generation of parameter combinations, and 
distributes a combination to each simulator in the population. 
Over multiple generations, tuples are collected (for later 
analysis) giving parameter settings and corresponding anti-
fitness from each simulation run. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic of a GA steering a population of simulators. 

As generations progress, the GA steers the population of 
simulators toward parameter combinations that maximize the 
defined anti-fitness metric. GA steering is based solely on anti-
fitness measures achieved by each set of bit strings (i.e., 
chromosomes). The search process is blind to the existence of 
parameters. The GA searches only for bit strings that achieve 
maximum anti-fitness. The connection between bit strings and 
model parameters occurs when the GA converts bit strings to 
parameters for input to simulators. For that reason, a GA is 
quite general and flexible, as we explain next. 

The GA begins by generating randomly a seed population 
of individuals, each consisting of an appropriate length bit 
string, representing values for the chosen parameters of a 
problem to be solved. The population size is a control 
parameter of the GA. The GA next evaluates the anti-fitness of 
each individual. Over time, the GA evaluates the anti-fitness of 
many populations, where each population is called a 
generation. The population for generation n+1 is created 
through some transformation of individuals composing 
generation n. The GA terminates after a specified number of 
generations, unless terminated manually. 

After evaluating a generation, the GA determines whether 
the population should be rebooted, which involves randomly 
regenerating all or part of the next generation. Rebooting can 
increase the GA’s exploration of the search space. The GA 
includes a control parameter, reboot proportion, which defines 
the percentage of generations to complete before a reboot. 

When selecting individuals for generation n+1, those with 
highest anti-fitness (i.e., the elite) from generation n can be 
included unchanged. The GA has a control parameter, elite 
selection percentage, which defines how many individuals 
from generation n will be placed unaltered into generation n+1. 
Such elite individuals can be placed into a population whether 
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or not the remaining individuals will be generated randomly or 
by transformation. When the population for generation n+1 is 
created by transformation, the procedure involves selecting a 
pool of candidate individuals from generation n, and then 
applying two genetic operators, crossover and mutation, which 
mimic reproduction in biological populations. 

The GA includes a control parameter, selection method, 
which defines the algorithm used to select individuals from 
generation n for inclusion into the candidate pool, where the 
more anti-fit individuals from generation n may be included 
multiple times, while some of the least anti-fit individuals may 
be excluded. Given a pair of individuals, chosen randomly 
from the candidate pool, a GA control parameter, number of 
crossover points, determines where bits will be swapped 
between them. The specified number of crossover locations is 
chosen randomly, uniformly distributed within the length of bit 
strings comprising chromosomes, and the bits in each 
individual are swapped at those points and the two transformed 
individuals are placed into the population of recombined 
individuals. This continues until a sufficient number of 
(possibly) transformed individuals are selected to fill a 
population. 

Subsequently, the GA iterates over each bit representing 
each recombined individual, while deciding whether or not the 
bits should be inverted. A GA control parameter, mutation 
rate, specifies the probability that any given bit will be flipped. 
After mutation, the GA inserts the individual into the 
population for generation n+1. Subsequently, the anti-fitness of 
each individual is evaluated and the GA iterates through 
generation n+1, creating the population of individuals for 
generation n+2, and so on until termination. 

For a GA control, a simulation model must be able to 
initialize its parameters from external inputs and must be 
capable of executing in a loop, as simulations finish and new 
inputs arrive. Most simulators have such capabilities, but must 
be modified to asynchronously await inputs generated by a GA 
and to report anti-fitness once the simulation completes. We 
made these modifications via a signal file shared between each 
simulator instance and the GA. As discussed in Section V.A, 
more substantive simulator modifications were also necessary. 

Once a complete search is finished, several potential failure 
scenarios may be revealed (see Section V). The analyst is then 
free to resolve those failures and repeat the GA search for 
additional scenarios. This iterative process can continue until 
no more failure scenarios appear or available time is exhausted. 

IV. CLOUD SYSTEM CASE STUDY 

We evaluated GA search while seeking a previously known 
failure scenario [25] in Koala, an existing infrastructure-as-a-
service (IaaS) cloud simulator. The simulator architecture is 
shown in Figure 2. A full description of Koala can be found 
elsewhere [26-27]. Here, we give only a summary.  

Koala simulates five layers: (1) demand from users, each 
requesting a collection of virtual machines (VMs), (2) a supply 
of physical nodes on which VMs can be placed, (3) a resource 
allocation layer, consisting of a cloud controller and cluster 
controllers that cooperate to determine a cluster on which to 

place VM collections, (4) an Internet/Intranet layer providing 
communication among simulated nodes, and (5) a VM 
behavior layer that models variations in resource usage over 
time. Available VM types and physical platforms are modeled 
after the Amazon EC2 Cloud, while the three-tier cloud 
architecture (cloud, cluster and node controllers) is modeled 
after a public domain version (1.6) of Eucalyptus. (Mention of 
commercial products or organizations in this paper does not 
imply endorsement by NIST.) 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Schematic of Koala IaaS cloud simulator. 

All nodes are placed geographically in a coordinate system 
of sites, where the cloud elements may be placed on one or 
multiple sites. User sites are selected randomly upon each 
user’s arrival; user types are also assigned randomly. User type 
determines the quantity and mix of VMs the user will request, 
which can include a minimum number required to start an 
application and a maximum that can be exploited should 
sufficient resources be available. A user requests VMs, and the 
cloud controller can honor the request fully (maximum 
requested VMs) or partially (at least minimum requested 
VMs). If insufficient resources exist, the cloud responds with 
NERA (not enough resources available). Upon receiving a 
NERA response, a user may retry intermittently during a day, 
and if VMs cannot be obtained, then retire for the evening and 
return the next day to try again. After passing too many days 
without obtaining the needed VMs, the user gives up and 
leaves the system, only to be regenerated as a new user. 

Upon successfully obtaining VMs, a user selects a holding 
time, during which VMs may be added or terminated. Of 
course, VMs may also fail within the cloud, so a user will 
attempt to maintain a required minimum number of VMs by 
requesting additional VMs as needed. When holding time 
expires, a user requests termination of all VMs and reenters the 
system as a new user. 

 The cloud controller handles all user requests, checking 
with subordinate cluster controllers to find available space for a 
collection of VMs, which are mapped to a single cluster to 
localize inter-VM communication. The cloud controller uses 
one of several algorithms [27] to select a specific cluster. 
Cluster controllers monitor the state of subordinate nodes, and 
use one of several algorithms [27] to select specific nodes for 
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placement (or relocation) of individual VMs. Under guidance, 
from a simulated administrator, the cloud controller can add 
and remove clusters from the cloud, and cluster controllers can 
add and remove nodes from clusters. The administrator can 
also terminate VMs that the cluster controller is unable to stop. 

Table I categorizes 129 Koala parameters over which we 
conducted a GA search. More than half the parameters define 
element behaviors, most by the user and cloud controller, while 
22 describe structural elements, half related to the network. 
The model also simulates failures that could occur in the 
network and among the physical platforms and components. A 
smaller set of parameters can inject behavioral and structural 
asymmetries, such as changing user demand profiles over time 
and allowing clouds to be constructed as a combination of 
large and small clusters, rather than of same-sized clusters. 

TABLE I. SUMMARY OF KOALA PARAMETERS TO SEARCH OVER. 

 

 

 

 

 

 

Among the 129 parameters, we included four Booleans to 
turn on/off behaviors that control orphan VMs, a potential 
problem uncovered in earlier experiments with Koala [27], 
where lost messages could leave users and the cloud controller 
unaware that VMs had been allocated, leading to retries, 
reallocations, and ultimately to saturation of cloud resources. 
Most orphan VMs arise during initial allocation, but some are 
caused by failed terminations. Additionally, orphan VMs may 
occur as collections of VMs are relocated before a cluster is 
shut down. Logic was included in Koala to detect and remove 
orphans in all three classes, and an administrator was also 
simulated to allow residual orphans to be stopped manually. 

When a cloud is saturated with VM orphans, users are 
unable to obtain requested VMs and eventually give up after 
exhausting their patience. For our GA search, we defined anti-
fitness as the ratio of users who give up to the total number of 
arriving users. The larger the ratio, the more users were turned 
away, and the lower the cloud’s revenue.    

To guide the GA search, we defined a range and precision 
for each Koala parameter (see Table II for an elided list), 
yielding a mean of about six values per parameter, and thus a 
search space of approximately 10

100
 parameter combinations. 

Using our description, the GA computed the number of values 
(and bits) needed to encode a Koala parameter combination (as 
a binary string), and then randomly placed the binary encoding 
for each parameter into a 334-bit chromosome, which served as 
the internal form used by the GA to represent Koala 
parameters. The GA also provided routines to generate Koala 
parameter values from binary encodings given in chromosome 
form. 

We deployed a distributed population of 200 Koala 
simulators on a high-performance cluster, under GA control 

(see Figure 3) via signal files in a shared, network file store. 
Each simulator, allocated to one core, waits for the GA to 
signal that a parameter file exists and then runs a simulation, 
reports the resulting anti-fitness value, and awaits the next 
signal. The GA generates parameter files for each simulator 
and periodically checks progress and collects anti-fitness 
reports as runs complete. Once all runs in a generation finish, 
the GA uses the algorithm described in Section III to create the 
next generation of parameter files, and so on until completing a 
specified number of generations. 

TABLE II. MAPPING OF KOALA PARAMETERS TO CHROMOSOMES.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Schematic of simulators deployed on a cluster under GA control. 

 

TABLE III. SETTINGS FOR KEY GA CONTROL PARAMETERS. 

 

 

 

 

 

Table III shows settings we assigned for key GA control 
parameters. Mutation rate is controlled by an adaptive 
algorithm that increases mutation probability (and variance 
among parameter combinations) as the range of population 
fitness narrows and lowers probability upon divergence. 

Model
Element

Parameter Category

Behavior Structure Asymmetry Failure Total

User 28 2 4 0 34

Cloud Controller 21 4 5 0 30

Cluster Controllers 11 5 3 0 19

Nodes 6 0 0 14 20

Intra-Net/Inter-Net 4 11 2 9 26

Totals 70 22 14 23 129
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Elite Per Generation 16 Individuals

Reboot After 200 Generations

Selection Method Stochastic Uniform Sampling

# Crossover Points 3

Mutation Rate 0.001 < Adaptive < 0.01

PARAMETER MIN MAX PRECISION #VALUES LOW_BIT HIGH_BIT #BITS

P_CreateOrphanControlOn 0 1 1 2 36 36 1

P_TerminationOrphanControlOn 0 1 1 2 58 58 1

P_RelocationOrphanControlOn 0 1 1 2 11 11 1

P_AdministratorActive 0 1 1 2 330 330 1

P_clusterAllocationAlgorithm 0 5 1 6 31 33 3

P_describeResourcesInterval 600 3600 600 6 81 83 3

P_nodeResponseTimeout 30 90 30 3 210 211 2

P_TerminatedInstancesBackOffThreshold 3 6 1 4 56 57 2

P_TerminationBackOffInterval 180 360 60 4 88 89 2

P_TerminationRetryPeriod 600 1200 300 3 316 317 2

P_StaleShadowAllocationPurgeInterval 600 3600 600 6 242 244 3

P_cloudAllocationCriteria 0 3 1 4 321 322 2

P_clusterShadowPurgeLimit 1 21 5 5 290 292 3

P_instancePurgeDelay 180 600 60 8 98 100 3

P_clusterEvaluationResponseTimeout 60 120 30 3 14 15 2

P_MaxPendingRequests 1 10 1 10 72 75 4

P_CloudTerminatedInstancesBackOffThreshold 3 6 1 4 169 170 2

P_CloudTerminationBackOffInterval 180 360 60 4 40 41 2

P_CloudTerminationRetryPeriod 3600 10800 1800 5 297 299 3

P_ClusterShutdownGracePeriod 86400 2.59E+05 43200 5 147 149 3

P_RequestEvaluatorTimeoutWaitProportion 0.1 0.4 0.1 4 145 146 2

P_RequestEvaluatorClusterMinimumResponse 0.6 0.9 0.1 3 269 270 2

P_MaxRelocationDuratonProportion 0.65 0.95 0.1 4 90 91 2

P_MaximumRelocateDescribeRetries 4 16 2 7 254 256 3

P_AverageCloudAdministratorAttentionLatency 28800 86400 14400 5 308 310 3

P_AverageCloudAdministratorShutdownDelay 300 900 300 3 45 46 2

P_avgTimeToClusterCommunicationCut 2.88E+06 2.88E+07 2.88E+06 10 217 220 4

Genetic Algorithm Computed
Chromosome Map (Size = 2334)

Koala Parameter 
Space (Size = 10100)



V. RESULTS AND DISCUSSION 

To assess dynamics, quality, effectiveness, and cost of GA 
search, we steered a population of 200 Koala simulators over 
500 generations, expecting the previously known VM orphan 
problem to be revealed in cases where Koala’s orphan-control 
logic was disabled. Figure 4 shows three plots, where the y-
axis gives (a) average, (b) standard deviation and (c) maximum 
anti-fitness vs. time (increasing generations). Mean anti-fitness 
starts low (around 0.2) for randomly generated parameter 
combinations, and peaks (at 0.79) within 11 generations, before 
falling to around 0.65 (2/3 of users not served) until generation 
201 (also 401), when the GA randomizes parameters for the 
184 non-elite individuals. After these reboots, mean anti-fitness 
rises quickly to over 0.7 and then falls back to around 0.65. 
Our shared file store suffered a disk crash, which required us to 
restart generation 311, using checkpoint information we save 
during the GA search. The restart caused a spike in mean anti-
fitness, before settling back to around 0.65. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Figure 4. GA search dynamics in anti-fitness (y-axis)–(a) average, (b) standard 
deviation and (c) maximum–over 500 generations (x-axis). 

The plot of standard deviation in anti-fitness inversely 
mirrors the average, i.e., high averages indicate low variance. 
As described previously, changes in the anti-fitness variance in 
a population stimulate automatic adjustments in mutation rate. 
The plot of maximum fitness shows that by generation 7 the 
GA had discovered scenarios where 82% of users could not be 
served, and by generation 127 the GA found scenarios where 
the proportion of non-served users increased to 83%. These 
results suggest that, for the Koala simulator, GA search could 
uncover failure scenarios within 100-200 generations. 

Figure 5 gives a frequency distribution of anti-fitness 
values obtained for the (200 individuals × 500 generations =) 
10

5
 scenarios explored by the GA, which represent only a tiny 

fraction of the 10
100

 possible Koala scenarios. The histogram 
reveals that 84% of the scenarios explored by the GA yielded 
anti-fitness ≥ 0.50, despite the likelihood that most of the Koala 
search space consists of scenarios with low anti-fitness, as 
shown by the fact that randomly generated scenarios yielded 
mean anti-fitness of 0.2. Further, only 8.12% of the scenarios 
explored by the GA were duplicates, which is only slightly 
larger than the 8% elite individuals carried unchanged from 
generation to generation. These results indicate that the GA 
search explored predominantly non-duplicative scenarios with 
high anti-fitness. 

 

 

 

 

 

 

 

Figure 5. Histogram of anti-fitness values for all 105 parameter combinations. 

Various analysis methods, such as feature extraction and 
clustering, may yield insights into failure causes. Here, we use 
differential probability analysis; comparing the estimated 
probability of each parameter-value (PV) pair appearing in 
scenarios with high anti-fitness against estimated probability of 
the same pair appearing in scenarios with low anti-fitness. We 
postpone, for future work, using additional analysis methods. 

Let C be the set of collected tuples (recall Figure 1), each 
containing a vector of PV pairs and a corresponding anti-
fitness value, f. We segmented C into high-pass (H) and low-
pass (L) subsets: H = {x  C  fx > 0.70} and L = {x  C  fx < 
0.15}. For each PV in the high-pass subset, we estimated the 
probability of occurrence, P(PVif > 0.70), using the ratioPVi 
 H∕H, representing the count of PVi in the high-pass 
subset divided by the subset cardinality. We computed a 
similar estimate, P(PVif < 0.15), for each PV in the low-pass 
subset. Subsequently, we took the difference between the two 
estimates, D = P(PVif > 0.70) – P(PVif < 0.15). A large 
positive difference suggests that a PV pair contributes to a 
failure scenario, while a large negative difference suggests that 
a PV pair contributes to desirable system behavior. Figure 6 
plots D for 684 PV pairs, sorted by decreasing D, found in our 
GA search for a known failure scenario. We label significant 
outliers. 

Figure 6 illustrates that most PV pairs exert little influence 
on failure or success scenarios, appearing about as often in 
both the H and L subsets. Six PV pairs appear to drive failure 
scenarios, and one PV pair shows most influence on success. 
The largest positive difference (0.58) occurs in the absence of 
logic to control orphans during initial VM allocation, while the 
largest negative difference (-0.58) occurs when that logic is 
present. In effect, this is the known failure scenario that we 
were expecting the GA to find. The second highest positive 
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difference (0.42) occurs when users select random request 
timeouts with an average of 30 s. By not waiting long enough 
for responses from the cloud, users create virtual message 
losses, because the receiving process has terminated before a 
response arrives. Without orphan-control procedures running, 
lost messages lead to a buildup of orphan VMs, leaving few 
resources available to serve users. This combined effect of 
short user timeouts and lack of orphan-control procedures was 
previously unknown to us. From these results, a designer might 
deduce that orphan-control procedures are needed, and that the 
cloud must find some means to ensure clients wait long-enough 
for the cloud to respond to requests. 

 

 

 

 

 

 

 

 

 

Figure 6. D (y-axis) for 684 sorted PV pairs (x-axis) for first GA search–outlier 
PV pairs labeled. 

From the data in Figure 6, we were also able to identify two 
other potential failure scenarios: (1) cloud overload and (2) 
impatient users. When average cluster sizes were small (either 
200 or 400 nodes), the cloud had insufficient resources to serve 
user demand. When the average user rest period (think time × 
rest period multiplier) was 8 hours, users tended to retry more 
frequently, and thus to give up in a shorter overall time. 

A. Costs of GA Search 

GA search for failure scenarios incurred costs of two types. 
First, substantial programming effort was required prior to the 
search. Second, GA search of simulation models can incur 
significant latency. We discuss each type of cost in turn. 

Although the Koala simulator had been used for several 
years and executed robustly under diverse parameter settings, 
generating an initial population of random parameter 
combinations led to many crashes due to execution paths that 
were not previously encountered. Finding and fixing these 
software errors required significant effort. Further, the Koala 
simulator typically executes for a specified simulated time. The 
associated wall-clock time can vary widely depending upon the 
specific parameter settings used. To ensure deterministic 
search time, we modified Koala to terminate a simulation when 
either simulated time expired or a predetermined allocation of 
wall-clock time was reached. Though this was a relatively 
simple change, the Koala simulator had not been coded with 
the expectation that simulations could terminate from any 
given dynamic system state. Subsequently, abrupt terminations 
revealed many more simulator crashes, which had to be 
diagnosed and fixed. 

Even after the Koala simulator was made sufficiently 
robust, numerous issues arose regarding the use of a cluster for 
executing simulator populations. Upon node failure, the cluster 
would restart simulators on some other available node. When 
the entire cluster failed and restarted, race conditions ensued 
among various components. Diagnosing the state of the entire 
simulator population proved difficult when using only 
available cluster and node management tools. To resolve such 
issues, it required significant effort to create a robust 
management system to control the population of simulators. 

Executing a GA search can require substantial latency 
because all simulators in a given generation must complete 
before a next generation can be constructed. For our 
experiments, we limited each simulation to use no more than 
90 minutes, which meant that we could complete 500 
generations in 30 days. Our results showed, however, that for 
the Koala model we could generate failure scenarios within 
100-200 generations. For that reason, we limited subsequent 
GA search iterations to about 200 generations, which typically 
complete within 14-16 days. These latency computations 
assume sufficient processors (one per simulator) are available 
for use over the entire search. If fewer processors are available, 
the search can take longer, though often shorter simulations 
can complete on a sequentially shared processor, while longer 
simulations execute on other processors. We completed 
iterative GA searches of 500, 205, 209, and 205 generations, 
which required a total of 74 days. These latencies suggest that 
GA search should be pursued only for systems with sufficient 
development time, and where failure scenarios have high cost. 

B. Additional Iterations of GA Search 

We conducted a second GA search; this time ensuring that 
orphan-control procedures and the cloud administrator were 
always active. Our goal was to evaluate the ability of GA 
search to find additional failure scenarios. We executed only 
205 generations. Figure 7 plots estimated probability 
differences for the 677 PV pairs found by the GA. 

 

 

 

 

 

 

 

 

 

Figure 7. D (y-axis) for 677 sorted PV pairs (x-axis) for second GA search–
outlier PV pairs labeled. 

The largest positive difference (0.48) occurs in Figure 7 
when the average user request timeout is 30 s. This is the same 
result found previously. This implies that if user timeouts are 
too short, then even with orphan-control procedures active, the 
cloud will fail to serve enough users, as the maximum anti-
fitness was still 0.82, though the average decreased to about 
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0.55. Since orphan-control procedures operate over periods 
numbered in hours, virtual message losses caused by short user 
timeouts can still overtax the procedures. This finding was 
unknown previously. Another set of related parameters also 
exhibited large positive differences. For example, small 
standard deviations in user request timeouts tended to keep 
short user timeouts as short as possible. Short timeouts were 
exacerbated by increases in inter-site distances, especially 
when combined with short inter-router distances (i.e., more 
network hops between sites) and with higher simulated per-hop 
queuing delays. This implies that cloud designers must take 
wide latitude in considering many factors beyond their control 
that could determine the best user timeouts to encourage. On 
that issue, the PV with the largest negative difference (-0.24) 
was the user request timeout set to 120 s. This result implies 
that GA search can recommend optimal settings while 
simultaneously searching for failure scenarios. Finally, the 
iterated GA search also reestablished that small clusters would 
lead to overload and that impatient users could be a problem. 

We conducted a third GA search over 209 generations. In 
that search, we changed the ranges of some parameter values to 
seek new failure scenarios and additional insights into system 
behavior. As expected, since we were searching for failure 
scenarios, the GA search found only slightly improved 
outcomes, yielding a maximum anti-fitness of 0.77 and an 
average of about 0.6. On the other hand, new insights were 
revealed. Figure 8 plots estimated probability differences for 
the 680 PV pairs found by the GA. 

 

 

 

 

 

 

 

 

 

 

Figure 8. D (y-axis) for 680 sorted PV pairs (x-axis) for third GA search–outlier 
PV pairs labeled. 

Though we increased (by 60 s) the range of user request 
timeouts, the new minimum timeout of 90 s proved to be too 
short, especially when coupled with specific network factors 
(such as long distances and large per-hop delays), along with 
120 s delays by the cloud controller, when awaiting responses 
from clusters. Regarding response delays within the three-
tiered cloud system, when the cloud waited only 60 s for 
cluster responses and clusters waited only 30 s for node 
responses, the system exhibited better outcomes. The user 
request timeout must accommodate delays due to network 
factors and timeouts within the cloud itself. The GA search 
found that an average user request timeout of at least 120 s 
(borderline outlier) was required to lower anti-fitness, and that 
180 s (borderline outlier) provided the lowest anti-fitness. 

Though we increased (by 400 nodes) the range of cluster 
sizes, a 600-node minimum size still proved too small. The GA 
found that at least 800 nodes per cluster were needed to avoid 
cloud overload for the parameters within the search space. 
Further, the GA discovered that a 30 s average inter-user 
startup delay, a parameter intended to gradually introduce load 
into the cloud, was too short, leading to cloud overload.  

The GA found that homogeneous cluster sizes lowered 
anti-fitness, when compared with cases where 20% of clusters 
were large and 80% small. The GA also found that increasing 
and decreasing cloud size by 30% yielded higher anti-fitness 
than smaller size changes of 10% and 20%. Further, the GA 
found that cloud administrators needed to complete individual 
operations in a mean of 300 s (borderline outlier); 900 s 
(borderline outlier) was too long. 

The GA also found insights related to platform types. First, 
assigning platform types randomly from a specified set 
(simulating a cloud constructed by adding any available nodes) 
increased anti-fitness. Second, one specific arrangement of 
platform types, where 28% of nodes had 32-bit architectures, 
increased anti-fitness when combined with simulated user 
types (60% web-service and 40% distributed-search 
applications) that required 64-bit architectures for all VMs. 

All searches described above had the property that H 
subsets contained over 10

4
 tuples, while comparable L subsets 

contained fewer than 10
3
 tuples. This discrepancy in samples 

occurred naturally because the GA was searching for scenarios 
more likely to fall into H subsets. L subsets had as many as 
hundreds of tuples only because, as discussed previously, the 
low anti-fitness landscape of the Koala simulator was much 
larger than the high anti-fitness landscape. One could increase 
samples in L subsets by inverting the GA search to look for 
scenarios with low anti-fitness.  

 

 

 

 

 

 

 

 

 

 

Figure 9. D (y-axis) for 683 sorted PV pairs (x-axis) for fourth GA search–
outlier PV pairs labeled. 

We inverted a fourth GA search. We used the same 
parameter space as in the third search, but instructed the GA to 
seek high fitness (i.e., low anti-fitness) scenarios. We ran the 
inverted search for 205 generations, and then combined the 
collected tuples with the tuples collected during the third 
search. After filtering, the resulting H subset contained 14601 
tuples and the L subset contained 42253 tuples. Analysis of the 
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probability differences, shown in Figure 9, confirmed findings 
obtained from the third GA search. 

VI. CONCLUSIONS AND FUTURE WORK 

We defined a design-time method, combing GA search 
with simulation, to seek failure scenarios in system models. We 
applied the method in a case study, seeking (and finding) a 
known failure scenario in an existing IaaS cloud simulator. We 
iterated the GA search to reveal previously unknown failure 
scenarios. We used the case study to evaluate the dynamics, 
quality, effectiveness, and cost of GA search. Our GA searches 
explored predominantly non-duplicative scenarios with high 
anti-fitness. We uncovered evidence that GA search could 
reveal insights about optimal parameter settings, while 
simultaneously searching for failure scenarios. We also found 
that, due to high latency, GA search should be pursued only for 
systems with sufficient schedule time, and where failure 
scenarios have high cost. 

We can extend our work in five directions. First, additional 
analysis methods need to be explored, to further mine the data 
collected by our GA searches. We can envision using statistical 
and information-theoretic techniques to extract features from 
the collected tuples, and then applying clustering algorithms to 
suggest specific classes of failure scenarios. Second, we should 
continue to explore our case study, attempting to uncover 
parameter subspaces where no failure scenarios can be found, 
and also using GA search under alternate definitions of anti-
fitness to discover other kinds of system failure scenarios that 
might exist. Third, we should apply our method to models of 
other complex information systems, such as communication 
networks and other forms of computational clouds. This would 
allow us to confirm the generality of our approach. Fourth, we 
should seek partners, operating cloud computing systems or 
test beds, against which we can validate our method. Finally, 
we should investigate run-time methods to provide early 
signals of incipient failures. Such run-time methods are 
necessary because design-time methods are unlikely to 
discover all possible failure scenarios that could arise in a 
deployed system. 
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