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●Al-based alloys are widely used as aeronautic and civil materials

● (I)  Al-based thermodynamic database is reasonably established.

(II) Lack of reliable kinetic databases for Al alloys!

● Our work: To establish an atomic mobility database for Al alloys 
via a combination of experiments, empirical approach, first-
principles method and DICTRA approach.

Al-based 
alloys

1. Motivation
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Fig.1 Our strategy to establish an atomic mobility database in Al alloys

Data on diffusivities 
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◆Calculate the diffusion 
coefficient

◆Measurement of the 
concentration profiles via
Electron Probe 
Microanalysis (EPMA)

2.1 Diffusion couple with EPMA technique

Diffusion
Couples

EPMA
Technique

Diffusion
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◆Prepare diffusion couples

◆ annealed 
at certain  temperature
for certain time
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2.1 Diffusion couple with EPMA technique

Al ZnCu

Concentration Profiles

XRD, EPMA
Annealed at
and 817 K 
for 20240s

Melting

Fig. 2. Experimental procedure to Measure the Diffusion Coefficient of the Al-Cu-Zn system

Experimental procedure

Al-Cu-Zn (fcc in Al-rich side)

Binary and ternary alloys
Al-Cu Al-Zn Al-Cu-Zn

Al-Cu Al-Zn

Al Al-Cu-Zn

Diffusion
couples

Diffusion Coefficient
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2.2 Empirical approaches
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Our proposed equation could predict one of the four atomic mobilities .     
S.L. Cui, Y.Du et al., J.Phase Equilibria and Diffusion, in review, 2010

2.2 One new empirical approach (our work)
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2.2 One new empirical approach (our work)
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(1) Partial molar volume of solute ≅ molar volume of solvent
(2) Vegard rule holds for volume

Our proposed empirical approach could 
work for disordered substitution phase.
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2.2 Empirical approach (our work)

Al-Zn (fcc phase)

Al
AlΦ
Zn
ZnΦ

Al
ZnΦ
Zn
AlΦ

The four end-members for Al-Zn system are 

From Zhang and Du(2009)

From Du et al. (2003)

Empirical approach by Askill

Q=RTm(K+1.5V) 
D0 = 1.04 ×10-3 Q a2

-76.6KJ/mol

0.314cm2/s

123111.6 97.34*Al
Al TΦ = − −

83580.6 89.27*Zn
Al TΦ = − −

76569 86.21*Zn
Zn TΦ = − −

116100 94.28*Al
Zn TΦ = − −

Our proposed approach

fcc Zn phase is metastable.

√
√

√

=
FP (-80.57)
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2.3 First-principles method

Self-diffusion coefficient is calculated by the following equation:

CwfaD 2=

Self-diffusion coefficient
Correction factor
(for fcc-system, 0.7815) Lattice constant

Vacancy concentration

Jump Frequency
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Self-diffusion:

∆Svf = entropy of vacancy formation

∆Hf= enthalpy of vacancy formation

∆Hvmig = vacancy migration enthalpy
(energy barrier to be overcome for an atom to 
jump into the vacancy)
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νivac and νisad = Phonon frequencies in
normal and saddle-point configurations

M.Mantina,Y.Wang, R.Arryave, L.Q.Chen,Z.K.Liu, PRL, 100,215901(2008)
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2.3 First-principles method

Fig .3. Five frequency model illustration for the case of an fcc system with a dilute 
impurity concentration. The arrows indicate the direction of the vacancy jump.

(5) host atom jump in the 
absence of an impurity.

(2) impurity atom jump

(1) a host atom (nearest neighbor to an 
impurity) jump which does not ‘‘dissociate” 
the impurity from the vacancy.

(3) a host atom jump 
which ‘‘dissociates” the 
impurity and vacancy

(4) Reverse of jump .3Γ

Impurity-diffusion:

A.D. LeClaire and A.B. Lidiard, Phil. Mag., 47, 518 (1970)
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2.3 First-principles method

According to the five jump frequency model, we have: 

1

2

3

1

0

4

0

2

0

2

w
w

w
w

w
w

f
f

D
D

=

we can obtain:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Δ−Δ
−=

Tk
GG

awfD
B

bf
2

0
2

22 exp

Since jump frequency of the solute atom is:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
−=

Tk
H

vw
B

mexp*
2

So we can get the expression for impurity diffusion coefficient:
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Substitute

Solute-vacancy 
binding energy

Enthalpy of vacancy formation

Energy barrier for the exchange of the solute 
impurity with a nearest-neighbor vacancy.

Impurity-diffusion:
f2= correction factor for impurity diffusion

f0 =self-diffusion correction factor 
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DICTRA (DIffusion Controlled TRAnsformations): 

a full coupling of thermodynamics and kinetics

2.4 DICTRA approach
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Mobility for element B
frequency factor 
activation energy 
Ferromagnetic contribution

2.4 DICTRA approach

According to Andersson  and  Ågren, the atomic mobility for an 
element B can be expressed by an equation of the form:
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The Al-Cu binary system (fcc phase)

Fig. 4. Comparison between the calculated and measured coefficients of 
(a) impurity diffusion Al in pure Cu and Cu in pure Al 
(b) tracer diffusion of Cu in different fcc Al-Cu alloys 

(a) (b)

X(Al)=0.028

X(Al)=0.182
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Fig. 5. Comparison between calculated and measured coefficients of 
(a) impurity diffusion Mg in pure Al
(b) interdiffusion on Al-rich side of Al-Mg alloys .

(a) (b)

The Al-Mg binary system (fcc phase)

648K

848 K
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Fig. 6. Comparison between calculated and measured interdiffusion coefficients of Al-Zn alloys.  

The Al-Zn binary system (fcc phase)
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Fig. 7. Comparison between calculated and measured coefficients of
(a) Interdiffusion on Al-Zn alloys
(b) Predicted concentration profiles of  Al-2.53at.%Zn/Al diffusion couple

(a) (b)

The Al-Zn binary system (fcc phase)

X(Zn)=0.0253

X(Zn)=0.12

Al

Al-2.53 at.% Zn

t=0

t=2400 s

t=14280 s

t=37680 s

t=222540 s
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Fig. 8. Comparison between calculated and measured coefficients of 
(a) tracer diffusion coefficients of Zn in Al-Cu and Al-Cu-Zn alloys
(b) interdiffusion coefficients in the Al-Cu-Zn alloy

The Al-Cu-Zn ternary system (fcc phase)

(a) (b)

Al-0.69Cu

Al-2.04Zn-1.56Cu
DAlZnCu

DAlAlCu
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Fig. 9. Comparison between calculated and measured coefficients of 
(a) main diffusion coefficients in Al-Cu-Zn alloys
(b) tracer diffusion coefficients: Zn in Al-Cu alloy, Al in Cu-Zn alloy. 

(a) (b)

The Al-Cu-Zn ternary system (fcc phase)
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The Al-Cu-Zn ternary system (fcc phase)

Close up on Fig. 9 (a). Comparison between calculated and measured
main diffusion coefficients in Al-Cu-Zn alloys
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Fig. 10. Comparison between calculated and measured coefficients of
(a) Predicted concentration profiles of Al/Al-1.47 at.% Cu-3.34 at.% Zn diffusion couple 
(b) Predicted concentration profiles of Cu-7.8 at.%Al /Cu-17.1 at.%Zn diffusion couple 

(a) (b)

The Al-Cu-Zn ternary system (fcc phase)

Al

Al-1.47Cu-3.34Zn

Zn

Cu

Cu-17.1ZnCu-7.8Al

Al
Zn
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Fig. 11. Calculated diffusion path for ternary diffusion couples annealed at 817K for 20240s

The Al-Cu-Zn ternary system (fcc phase)

Al-1.7Cu-1.05Zn
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(a) (b)

Fig. 12. Comparison between calculated and measured coefficients of 
(a) main diffusion coefficients in Al-1at.%Cu-1at.%Mg  
(b) main diffusion coefficients in Al-Cu-Mg alloy at 813K

The Al-Cu-Mg ternary system (fcc phase)



33Fig. 13. 3D view of atomic mobility surfaces for Al,Cu and Mg at the Al-rich side at 813K 

The Al-Cu-Mg ternary system (fcc phase)
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(a) (b)

Fig.14. Chemical mobilities of ternary Al-Cu-Mg alloys at 813K, (a)             (b) 

Al

CuCuM
~Al

MgMgM
~

~ Al

MgMgM
~ Al

CuCuM

The Al-Cu-Mg ternary system (fcc phase)
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(a) (b)

Fig. 15. Comparison between calculated and measured coefficients of 
(a) Predicted concentration profile of Al/Al-0.99 at.% Cu-1.74 at.% Mg diffusion couple 
(b) Predicted concentration profile of Al-1.12at.% Cu /Al-2.69 at.% Mg diffusion couple

The Al-Cu-Mg ternary system (fcc phase)

Mg

Cu

Mg

Cu
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Fig. 16. Calculated diffusion path for  ternary diffusion couples annealed at 813K for 18570s

The Al-Cu-Mg ternary system (fcc phase)

Al

Al-1.33Cu-0.94Mg
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5. Summary
A hybrid approach combing key experiments, empirical methods, 

first-principles calculations and DICTRA method is used to establish 

the atomic mobility database in Al alloys.

The current progress in the binary and ternary systems were 

reported, and some typical results were presented.

The established atomic mobility can be used to predict various kinds 

of diffusion coefficients, concentration profiles, diffusion path and 

even solidfication in Al alloys. 

Two representative papers:
1,Lijun Zhang, Yong Du, et al., “Atomic mobilities, diffusivities, and simulation of diffusion 
growths in the Co-Si system”, Acta Mater., 56, 3940-3950 (2008). 
2, Lijun Zhang, Yong Du, et al., “Diffusivities of the Al-Fe-Ni melt and their effects on the 
microstructure during solidification”, Acta Mater., in press (2010).
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Welcome to
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