Multiscale 3-D X-ray Imaging for 3-D IC Process Development and Failure Analysis

W. Yun, M. Feser, J. Gelb, L. Hunter

Xradia Inc.

Pioneer in Ultra-high Resolution 3D X-ray Microscopy

- Founded in 2000 by Wenbing Yun to commercialize high resolution x-ray imaging from synchrotron sources to the laboratory
- HQ in Pleasanton, CA
- Core competencies: x-ray optics/imaging, detectors, system architecture
- Comprehensive market focus
 - From Synchrotron large installed base of synchrotron 3D microscopes
 - To Research and Industry Labs Highest performance X-ray microscopes for:

3D X-Ray Microscopy (XRM)

Fully packaged IC Sample

3D XRM Data Set

Computed Tomography

Sample rotation angle

Sinogram

(2) 3D reconstruction by backprojection results in 3D image of the sample.

Line Image

What Can You Do With a 3D XRM Dataset?

Non-Destructive Virtual Cross Sections

Evolution of X-ray Imaging Techniques in Electronics

2-D PCB Inspection and traditional micro-CT

3-D sub-um X-ray Microscopy "VersaXRM"

3-D sub-50nm X-ray Microscopy "UltraXRM"

- Complexity of 3-D integration on IC and package level drives the need for non-destructive 3-D imaging
- Mostly for FA and process development
- Enabled by development of x-ray detector and optics technology

Multi-scale 3-D Imaging

3-D X-ray Microscope Architectures

Micro CT vs. 3D X-ray Microscopy

Traditional Projection based Micro CT

X-Ray Microscopy (XRM)

XRM Maintains High Resolution at Large Working Distances

Implication of Increased Working Distance

Working distance is pre-requisite to image larger samples relevant to electronics!

Working Distance Enabler

Even whole wafers can be imaged \rightarrow TSV development / FA

Working Distance Enabler II

High resolution, even for large, completely intact samples

What Does XRM Offer to Advanced Semiconductor Packaging?

Semi FA Example: Electro Migration Related Failure

SAM

VersaXRM

XRM for finding optimal location for physical cross section

Source: "Applications of 3D X-Ray Microscopy for Advanced Package Development", K. Fahey, R. Estrada (Xradia), L. Mirkarimi, R. Katkar, D. Buckminster and M. Huynh, Tessera Technologies, Inc, IMAPS Long Beach 2011

Non-Destructive High Res 3D for TSVs

Ability to visualize TSV failure in intact package

1.3 un

10.0 um

3-D X-ray Microscope Architectures

UltraXRM: 3D X-ray Microscope using X-ray Optics

50 nm spatial (16 nm pixel) resolution

- High brightness x-ray source (8kV)
- High efficiency reflective condenser
- High-resolution objective zone plate
- Zernike phase contrast optics
- Precision tomography system (auto-tomo!)

Mode	Mag	2D Res	Field of View
Large Field of View	200X	150 nm	65 µm x 65 µm
High Resolution	800X	50 nm	15 µm x 15 µm

Post-metallization TSV – UltraXRM

3D interconnects: Applying X-ray microscopy as a void inspection technique for Through Silicon Vias, Lay Wai Kong, CNSE Albany/NY, US FRAUNHOFER WORKSHOP ON STRESS MANAGEMENT FOR 3D IC'S USING THROUGH SILICON VIAS Oct 20, 2010

Ultra: TSV Metallization – Quantitative Analysis

From images, to information, to data

Remove Cu (voids only)

Quantifying Void Space / Volume

UltraXRM-L200 results: Segmentation enables Void Space Analysis

Segmentation of 3-D data allows objective, quantitative analysis of complex structures

Comparison with Other Imaging Modalities

	X ray UltraXRM	Optical	SEM	(S)TEM	
Wavelength	0.1nm	100-1000	0.01	0.001-0.003	
Spatial resolution	30 nm	200-300 nm	1-10 nm	0.1 nm	
Contrast Mechanism	Absorption, Phase Contrast	Transmission, Reflectivity, Refractive Index, Labels	Secondary El., Backscattered El., EDS/WED	Electron Density, EELS EDS EBSD	
Max sample thickness	~50-500 μm	Optically transparent only	< 10 nm typical	<<200 nm	
Vacuum requirement	No	No	Yes	Yes	

- Penetration of x-rays major advantage to nondestructively image a 3-Dimensional volume
- Resolution currently limited by optics (not physics)
 Single digit nm resolution should be reached for 3-D x-ray imaging eventually (not aberration limited like EM)

Same image zoomed in. 50nm smallest features

Resolution 30nm

Field of View > 32x32um 2k x 2k (1s image time)

Stanford Synchrotron SSRL Beamline 6.2 Xradia UltraXRM

Contrast Uniformity

Automated Tomography Closeup of Virtual Delayering M1

See outline in previous slide

90 nm process M1 Min. feature size 120 nm

360 pixels

Conclusion - What Makes XRM Unique?

Penetration, Large Working Distance at Highest Resolution

- X-ray microscopy (XRM) can bridge the gap between NDT and high resolution EM / FIB
- Address challenges of large, complex 3-D electronic packages
 - High Resolution
 - High Contrast
- 4D characterization (before/after stress test or cycling)
- TSV imaging (UltraXRM)
- Design verification for TRUST on ICs (UltraXRM) Not a Substitute for EM/FIB Microscopy for IC FEOL Imaging or smallest BEOL structures

