Exploring the Rheological Properties of Dense Lipid Vesicle Solutions as Models for Liposome Nanomedicines

By: Emily Blick

PRESENTATION OVERVIEW

- Background
 - What are liposomes?
 - Why do we care?
- My Project
 - Rheology experiment
 - Stability experiment
- SANS
- Summary of Conclusions
- Future Work

WHAT ARE LIPOSOMES?

- Lipids are **amphiphilic** molecules
- Lipids in solution form liposomes
 - Enclose aqueous solutions
- Using model system 1,2-Dioleoyl-snglycero-3-phosphocholine (DOPC)
 - Commonly used lipid in research
 - Relatively inexpensive

WHY LIPOSOMES?

- Liposomes are promising candidates for future drug delivery applications
 - Similar morphology to the cellular membrane
 - Biocompatible, biodegradability, and low toxicity
- Nanomedicine possibilities
- Liposomal nanomedicines can be designed to accumulate at sites of disease

RHEOLOGY-THE STUDY OF FLOW OF MATTER

- Liposome therapeutics will likely be delivered through a syringe
 - Solution will experience shear stress going through needle
- How does concentration and shear rate affect solution viscosity?
- How can we predict volume fraction of liposomes?

More viscous sample

RHEOLOGY EXPERIMENT

- Measurements were taken using a rheometer
 - Measures torque response of solution to an applied force
 - Calculate viscosity
- Made concentration series to study relationship between concentration and viscosity
 - Better estimate volume fraction

VOLUME FRACTION CALCULATIONS

Relative Viscosity
$$\rightarrow \frac{\eta}{\eta_0} = 1 + 2.5\phi$$

Specific
$$\eta_{SP} = \eta_r - 1 = 2.5\phi$$

Will allow better prediction of volume fraction for future experiments!

STABILITY

- What factors impact long term stability of vesicle system?
 - Temperature?
 - Size?
 - Concentration?
- What happens to DOPC liposomes when they become unstable at different conditions?
- Multilamellar?
- Aggregation?
- , j
- What are the consequences for drug delivery?
- Generally assumed DOPC stable at high concentration for about 2 weeks
 - No known data supporting

DYNAMIC LIGHT SCATTERING

- Popular light scattering technique
- Laser beam shot at sample and detector senses changes in scattering light
 - Particles scattered at known angle
- Can provide diffusion coefficient
 - Can be related to particle size
- Only valid at low concentrations

$$D = \frac{kT}{6\pi\eta R}$$

STABILITY EXPERIMENTS

- Set up 5 vials at different concentrations at three different temperatures
 - Concentrations: 50, 25, 12.5, 5, 1 (mg/mL)
- Set up conditions with a diameter of 60, 100, 120, 200 nm
- Took frequent DLS measurements
 - Each sample under the same conditions during measurement

STABILITY RESULTS FOR 200 NANOMETER VESICLES

- Samples at lower temperature:
 - Follow similar mostly flat path
- Samples at high temperature:
 - Show unpredictable pattern

STABILITY RESULTS FOR 120 NANOMETER VESICLES

- Samples at lower temperature:
 - Follow similar mostly flat path
- Samples at high temperature:
 - Show unpredictable pattern

STABILITY RESULTS FOR ROOM TEMPERATURE

- -200 nm
- -120 nm
- -100 nm
- **--50** nm

- Samples at room temperature:
 - Follow same path at22° C and 4° C
 - Path continues almost flat for all vesicle sizes

STABILITY RESULTS FOR 55° C

- -200 nm
- -120 nm
- -100 nm
- **--50** nm

- Samples at 55° C:
 - Different and unpredictable
 - Maintain
 unpredictability at all
 vesicle sizes
 - Lower concentration of 1(mg/mL) shows pattern of decreasing vesicle size

nm Type equation m here, nm

RAW DATA

$$g_1(t) = e^{-Dq^2t}$$

SMALL ANGLE NEUTRON SCATTERING

- Probes material structures by interacting with nucleus in sample
- Neutron scattering occurs due to the scattering length density components in sample
- Scattering vector Q can tell us about structures in our sample

SANS 100 NANOMETER RESULTS

SANS 50 NANOMETER RESULTS

CONCLUSION

- The possibility of liposomes for nanomedicines is dependent on vesicle stability and rheological properties
- What I completed:
 - Created a model to estimate volume fraction based on sample viscosity to improve future experiments
 - Ran multiple stability tests showing DOPC instability at high temperatures
 - Completed SANS experiment showing temperature dependence
 - Defies what is generally assumed

FUTURE WORK

- Study the possibility of chemical decomposition
- Analyze spin echo data
- Continue trials on smaller vesicles
- Continue trials in higher concentrations but dilute right before measurements
- Run RheoSANS experiment in relation to future injection applications
- Run SANS experiments on samples after duration of time at different temperatures

ACKNOWLEDGEMENTS

- My mentor Yun Liu
- Zhenhuan (Michael) Zhang
- NCNR SURF Directors: Julie Borchers and Joe Dura
- Brandi Toliver
- Center for High Resolution Neutron Scattering
- NIST Center for Neutron Research
- My fellow NCNR SURFers

REFERENCES

- https://www.ncbi.nlm.nih.gov/pubmed/18095927
- https://lsinstruments.ch/en/technology/dynamic-light-scattering-dls/
- https://www.eeht.org/journal/view.php?year=2014&vol=29&no=1&spage=e2014016
- https://www.eeht.org/journal/view.php?year=2014&vol=29&no=1&spage=e2014016
- http://soft-matter.seas.harvard.edu/images/1/1a/Cone_and_plate.jpg