
1

Voting System Testing and Evaluation
Addressing Resolution 17-05

John Kelsey
Computer Scientist

NIST Computer Security Division
March 9, 2005 TGDC Meeting

NOTE: This is all very preliminary!

2

Overview

● The Resolution
● Checklists, Testing, and Open-Ended Evaluation
● Evaluating a Design
● Evaluating The Pieces
● Some Issues to Resolve

3

Resolution 17-05

The TGDC directs NIST to research and draft
standards documents requiring testing of
voting systems that includes a significant
amount of open-ended research for
vulnerabilities....

4

Why Do We Need Open-Ended
Evaluation?

● Can't rely on simple checklist approach
– Lots of ways to use strong components in weak ways
– Sometimes underlying design is fatally flawed

● Evaluation needs to be adversarial
– Goal is to find weaknesses before system is fielded
– Try to find a way to fail the system

● Can't trust vendor assertions w/o verification
– Vendor insiders may be in on an attack

5
Background: An Adversarial Model

of the World
● We have to assume existence of serious attackers

– Money (hundreds of millions spent on 2004 elections)
– Access (history of insider attacks in voting systems)
– Risk Tolerance (activists and extremists willing to do

major crimes for their causes)

● Don't underestimate attackers!
– Full access to system internals
– Possible insider access
– Intelligence and expertise at least equal to designers

6

Open-Ended Search for Weaknesses

● What we're looking at:
– Top-level system design and architecture
– Documentation and procedures
– Software and OS configuration
– Hardware
– Communications

● Assumptions:
– Insider access
– Full knowledge of system
– Large budget and risk tolerance

7

Open-Ended Evaluation:
Evaluating a Design

● Using system documentation, look at the whole
design and see if it really is secure
– Many attacks found at this stage don't work, because of

details that weren't mentioned in the docs
– Sometimes find very fundamental flaws in assumptions or

designs
– Check to see if procedures in documentation really

address problems
– Result: List of possible attacks, attack patterns, and things

to more closely check in later stages

New requirements on system documentation!

8

Evaluating the Pieces
● We get list of requirements on software security

from high-level evaluation and documentation:
– Evaluate S/W, OS config, physical config based on

requirements from above evaluation step

● Evaluate:
– Software (custom and COTS)
– OS configuration
– Physical configuration
– Communications

● All: Mix of checklists, automated tools, open-
ended search for weaknesses

9

Evaluating the Pieces (2)
● Communications:

– Secure communications (encryption, auth, orig ident)
– Protect from communications (lock down box)
– Test, watch communications, check S/W & config

● Software:
– Development Environment (version ctrl, security,QA)
– Testing / Vulnerability Scans
– Code Review

Verify claims in system documentation and do
open-ended search for problems with all these.

10

Evaluating the Pieces(3)

● OS/COTS configuration security
– Checklists for known systems (NIST-Win XP)
– Check of version and known problems in DBs
– Verify all unneeded stuff removed, box locked down

● Physical configuration security
– Unused HW or ports removed or irreversibly disabled
– Vulnerable but used ports locked / sealed
– Verify security of scheme for applying locks/seals.

Verify claims in system documentation and do
open-ended search for problems with all these.

11

Cost and Incentive Issues

● All this evaluation can get costly
– Estimate a minimum of 2-3 weeks of highly skilled

team members' time (see Maryland “red team eval”)
– Cost could easily go over $100,000

● Team of 4 at $200/hr for 2 wks = $64,000.

– Good architecture may be able to reduce this

● Incentive and Financing Issues
● Availability of Reports

– Free rider problems

12

Extra Details

13

Evaluating Communications Security
● Securing the Communications

– Based on risks noted in other eval steps
– Strong cryptography, good auditing, good protocols
– Applies to networks, phones, memory cards, paper,

etc.

● Securing the Box from Communications
– Every communications channel into a machine is a

potential avenue of attack
– Remove services, lock down box, use firewalls and

single-purpose protocols

● Again, open-ended evaluation needed

14

Evaluating Software Security

● Development Environment
– Version control, security on development network,

internal testing and review, coding standards, tools

● Testing
– Automated testing for function, automated searches

for known issues (buffer overruns, race conditions,
non-cannonical representations, etc.)

● Review of Code
– Adherence to coding and documentation standards
– Open-ended search for problems

15

Evaluating OS/Configuration Security
● OS and other COTS software used:

– Source code often not available
– Even with source, no coding standards, development

environment not known in detail, etc.

● Common approach: Checklists for securing OS
– NIST provides guidance for securing Windows XP
– General Rule: Remove everything not needed, lock

down everything left

● Still need open-ended search for problems
– Verify what documentation claims about installed

services, drivers, etc.

16

Evaluating Physical Configuration

● Based on top-level evaluation, other evaluations,
and voting system documentation

● Obvious stuff:
– Block access to or remove unused H/W
– Make sure design supports effective locks and seals
– Verify claims in documentation, requirements from

other evaluations

● Again, open-ended search for problems, not just
checklist!

