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Strain-Mediated Magnetoelectric Coupling

Strain

Magnetization 
direction

Magnetostrictive
effect: Co changes 
magnetization 
direction under strain

Favored rotation 
direction exists due to 
magnetic anisotropy

2

PMN-PT

Ti/Pt

Co 1

Oblique view Top view

Ferroelectric 
PMN-PT produces 
strain under 
applied electric 
field

90°



Parallel-Antiparallel Magnetization Reorientation
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Achieve a large change in electrical resistance 
using an applied magnetic field

Giant Magnetoresistance (GMR)

Figure from: Tsymbal & Pettifor, 
“Perspectives of Giant 
Magnetoresistance” (2001). [1] 4
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Magnetic Memory

• Strain-mediated magnetic memory (SME-RAM)
• No write current needed

• Potential for much lower write energy

Table values transcribed from: Hu et al., Nat Commun 2, 553 (2011). [2]
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Flash-NAND MRAM STT-RAM SME-RAM

Storage capacity >1 Gb 16 Mb 1 Gb >>1 Gb

Write time 1 ms 20 ns 3-10 ns <10 ns

Read time 50 ns 10 ns 10 ns 10 ns

Write energy (pJ per bit) >0.01 70 0.1 1.6×10-4



Project Overview
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Outline
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• Film growth
• Depositing the electrode

and multilayer

• Strain hysteresis
• Measuring the bulk PMN-PT substrate



Outline
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• Film growth
• Depositing the electrode

and multilayer

• Strain hysteresis
• Measuring the bulk PMN-PT substrate

• Magnetic hysteresis
• Characterizing the magnetic properties 

under different growth conditions
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Outline

• Film growth
• Depositing the electrode

and multilayer

• Strain hysteresis
• Measuring the bulk PMN-PT substrate

• Magnetic hysteresis
• Characterizing the magnetic properties 

under different growth conditions

• X-ray diffraction & reflectivity
• Verifying the structure of the materials
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Film Growth
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Film growth

• Objectives
• Grow electrodes, Co & Cu thin films

• Control magnetic anisotropy of Co by placing 
magnets in sputter chamber

Image: NanoFab Tool: Denton 
Vacuum Discovery 550 Sputtering 
System B104 Right | NIST
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https://www.nist.gov/laboratories/tools-instruments/nanofab-tool-denton-vacuum-discovery-550-sputtering-system-b104-right
https://www.nist.gov/laboratories/tools-instruments/nanofab-tool-denton-vacuum-discovery-550-sputtering-system-b104-right
https://www.nist.gov/laboratories/tools-instruments/nanofab-tool-denton-vacuum-discovery-550-sputtering-system-b104-right
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Measurement Setup

• Objective: demonstrate that we can 
place PMN-PT in two distinct strain 
states at zero voltage PMN-PT

Ti/Pt

Strain gauge

High voltage supply
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Source Measure Unit

Strain gauge used
Image from: omega.com

https://www.omega.com/en-us/force-and-strain-measurement/strain-gauges/trosette-strain-gauges/sgd-biaxial/p/SGD-2-120-XY41
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Magnetic hysteresis measurement

• Objective: show that placing 
magnets in sputter growth 
chamber controls magnetic 
anisotropy direction
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X-Ray 
Measurements
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X-ray Diffraction & Reflectivity

Image: NanoFab Tool: Rigaku SmartLab X-
Ray Diffraction | NIST

• Objectives
• Estimate film thicknesses to determine 

sputter growth rates

• Determine PMN-PT substrate orientations

• Identify possible texturing in Co films
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https://www.nist.gov/laboratories/tools-instruments/nanofab-tool-rigaku-smartlab-x-ray-diffraction
https://www.nist.gov/laboratories/tools-instruments/nanofab-tool-rigaku-smartlab-x-ray-diffraction


Conclusions
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Summary

• Grew electrodes, Co, Cu films by sputter deposition

• Began x-ray diffraction and reflectivity measurements for these films

• Demonstrated that two PMN-PT strain states can be achieved

• Showed effects of magnets during growth on magnetic anisotropy of 
sputtered Co films

20



Further Work

• Continue x-ray characterization
• Identify structure changes in Co when magnets used during growth

• Take more strain hysteresis measurements of PMN-PT 
• Measure both directions with a new sample

• Take magnetic hysteresis measurements of Co films from all angles
• Understand magnetic anisotropy characteristics

• Grow Co/Cu multilayers for magnetic measurement
• Verify parallel to antiparallel reorientation

• Grow Co/Cu on PMN-PT to complete the device
• Verify giant magnetoresistance-like effect
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Figure from: Wang et al., Adv Theory Simul 4, 3 (2021). [3]
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