
2/28/22, 10:48 AM blob:https://www.fdms.gov/fb3177f0-d9a0-4a0e-879c-71ea56a13dec

blob:https://www.fdms.gov/fb3177f0-d9a0-4a0e-879c-71ea56a13dec 1/1

PUBLIC SUBMISSION
As of: 2/28/22 10:48 AM
Received: February 24, 2022
Status: Pending_Post
Tracking No. l01-1act-udke
Comments Due: April 25, 2022
Submission Type: Web

Docket: NIST-2022-0001
Evaluating and Improving NIST Cybersecurity Resources: The Cybersecurity Framework and
Cybersecurity Supply Chain Risk Management

Comment On: NIST-2022-0001-0001
RFI-2022-03642

Document: NIST-2022-0001-DRAFT-0004
Comment on FR Doc # N/A

Submitter Information
Email: rossayoung@gmail.com

 Organization: Erudite Candor LLC

General Comment
See attached file(s)

Attachments
SupplyChain

Rossa Young

Let’s talk about 6 important steps that you can do right now to secure your organization against
supply chain attacks.

1. You need to centralize your software code repository. You do not want to have to
check github.com, 100 private gitlab repositories, 25 bitbuckets, and 20 codecommit
locations. You want everything to be in one Software Code Repository. Thus if
someone says do you have XYZ software in your organization, you can say let me do a
quick search to see if any software repositories return a result. You should also make
sure that your software code repository ties back to ownership. Who owns each
software repository and is responsible for maintaining the code. This person who
hopefully is still in your company can make the call to remove software that is outdated.

2. You need to centralize your artifact repository. Solutions such as Artifactory or
Sonatype Nexus provide a location for you to host all of your binaries, containers, and
executables across your organization. Remember if developers can go externally to
download software whenever they want vs using approved software from an approved
source, then it’s just a waiting game till a developer finds malware or
cryptominers. Make it easy to say here’s a mirror of every NPM, Java, RedHat library
within our own network on your artifact repository. This allows you to gain important
insights from a security perspective. When a piece of software is identified as bad you
can say not only do we have this library within our artifact repository, but we also know
that it has been downloaded 1,000 times by developers. Additionally, if you want to
remove it for the organization after you are sure it won’t break the software of others, this
is one place you can do that.

3. You should scan open source software for malware. If someone you didn’t know
emailed you an executable would you just double click it? Hopefully not. If you thought
there was an important business reason to see the executable then you should at least
scan it for malware. Truth is most software organizations don’t do this. As a CISO you
should see if the artifact repository solution used by your organization has two types of
malware scanning. First, Does it check for malware before adding open source software
to it’s holdings? Second, Does it have a recurring scan to identify if malware is within it’s
holdings when malware signatures get updated by the Antivirus Software? This will
minimize crypto miners and other harmful malware from staying in your
organization. Here’s one way you can build a secure pipeline for malware
scanning. Take open source software that your developers want to use and put it in a
public S3 bucket with read only access. Then use virus total to perform a URL scan on
your S3 bucket. This allows you to scan open source software with 50+ different
antiviruses. Since AV software is known to have false positives you might set a
threshold that says if 3 or more of the 50 antivirus vendors flag this as malware then we
will not allow this software to enter the company.

4. You need to scan software for vulnerabilities and vendor support. One of the
biggest problems today is developers leverage software with known vulnerabilities. This
can be because there’s issues with running the latest version of software, there’s no
patch for xyz vulnerability since it just came out, or we didn’t know newer software
exists. Most organizations will purchase software called Software Composition Analysis
Software. Things like Blackduck, Snyk, or GitHub’s Dependabot will scan your software
and say you are on version 1.3. Which is known to contain 2 critical vulnerabilities and 5
highs. You should update to version 2.1 or newer. This is helpful
information. Developers can put this into a continuous integration pipeline with tools like
Jenkins or GitHub actions that check all software for vulnerabilities. If you see a high or
critical vulnerability then please break the software build and don’t release it. Guess

what, if Log4J gets a critical vulnerability or CVE score of > 9 assigned to it, then your
developers get timely feedback that they need to update as soon as possible since they
can’t release their build. The one thing to also understand here is that just because
there isn’t a public CVE doesn’t mean the software is good. There’s a lot of software
that doesn’t have support from a vendor. So developers should actually use tools like
Maven Versions if you are writing java code to detect if your software is on the latest
version of software. This is super important. Let’s say a software company has a huge
bug in their software that gets patched. In the release notes the company says bug
fixes. Well you don’t know if the bug is a software vulnerability, a memory leak which
can crash your app, or something else. Plus new software usually has new features
which can help your organization. So please stay current because software ages like
milk not like wine. Tools like Maven Versions will tell you how far every java library that
you declare in your software bill of materials is from the latest version from the vendor.

5. Run a Web Application Firewall to quickly patch your organization. Let’s say you have
100 development teams that run a piece of vulnerable software such as Log4J. Your
cyber security team has to track the status of 100 teams to identify when they are all
patched to ensure the organization isn’t vulnerable. Well then you are only safe when
your slowest development team is patched. This could be weeks or months. Enter the
biggest benefit of a Web Application Firewall or WAF. If every web application sits
behind a WAF, then you might only have to make a change to the WAF to block Log4J
on all applications. This means you can secure the organization quickly and give the
developers some breathing room when the fix takes longer to patch than hackers can
exploit.

6. Run a Runtime Application Security Protection tool. One of the best features of a
RASP is it can inspect software for application libraries. Remember this: Vulnerability
Management Tools like Qualys and Nessus will miss finding custom applications
containing Apache Struts vulnerabilities. Now it’s true that Software Composition
Analysis and Container Scanning tools can find application libraries. There’s things
those tools don’t have that a RASP does. They don’t tell you if the vulnerable library is
actually in production. You only know if the vulnerability is in your code. RASP is used
on Production boxes so now you know. You can quickly query RASP technologies to
obtain an accurate software inventory for application libraries used on the same box as a
RASP agent. RASP actually protects software, unlike SCA/container scans since it has
an in-built WAF. Financially RASP also has another amazing feature. RASP can
actually look into binaries and tell you what libraries they are running. This is super
helpful when looking at Vendor Software. Let’s say you host financial software on your
own servers. You can install a RASP agent on the software and look at application
libraries the financial software is running. You could find out if Log4J or OpenSSL was
being used by these vendors and then reach out to the vendors and ask for a patch. If
you didn’t have RASP, you would probably be flying blind unless the vendor publicly
exposes they are vulnerable or provides a software bill of material.

So now that you know the important steps you can take to defend your organization let's talk a
little about where the industry is headed. There’s a new industry collaboration called the Supply
Chain Levels for Software Artifacts, or SLSA (salsa). https://slsa.dev/ This organization is led by
a vendor neutral steering committee from Citigroup, Cloud Native Computing Foundation,
Google, The Linux Foundation, Intel, VMWare, Datadog, and Chain Guard. They are creating
levels of security for organizations to follow. Rather than just running untrusted software we
need to add some security.

 Step 1: Lets introduce a software build process that is fully automated and generates
provenance. Provenance is metadata about how the software artifacts were built,
including the build process, the source code, and it’s dependencies.

 Step 2: Require using version control and generate authenticated provenance. We can
think of a certificate authority that ensures that a website is who it says it is. We need
signed software from vendors that is unique and trusted.

 Step 3: We need an accreditation process whereby auditors certify that platforms meet
requirements. Similar to having a SOC 2 Type 2 report or ISO 27000 an outside auditor
can show that a company actually does something after reviewing evidence.

 Step 4: Requiring two-person review of all changes and a reproducible build
process. Similar to moving money for a bank, a two-person review is an industry best
practice for catching mistakes and bad behavior. It limits one person’s ability to cause
harm or fraud. We need more checks and balances for software.

