A 3D stacked nanowire technology -Applications in advanced CMOS and beyond

T. Ernst, L. Duraffourg, C. Dupré, K. Tachi, E. Bernard, P. Andreucci, V. Maffini-Alvaro,
S. Bécu, E. Ollier, E. Colinet, P. Cherns, A. Hubert, C. Halté, C. Vizioz, S. Barnola,
J. Buckley, O. Thomas, G. Delapierre, V. Delaye, J.-M. Hartmann, M. Cassé, P. Rivallin,
M. A. Jaud, E. Saracco, M. Jublot, B. de Salvo, J.P. Colonna, S .Deleonibus and O. Faynot

CEA/LETI, MINATEC, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France

Contact: thomas.ernst@cea.fr

Introduction

• Stacking nanowires for MOSFETs and memories

Sensors

Conclusion

NanowireFET scalability - state of the art

Functional 10nm (I_{OFF} <1nA/µm) gate length Ω FETs with good electrostatic control, even with relaxed diameter and trigate configuration

Multi-Channel FET - state of the art

M.S. Kim et al., VLSI 06

Excellent static noise margin Several technologies for levels separation: => Preferential oxidation => Wet etching => Dry plasma etching or HCI

N. Singh et al. , IEDM06

copyright: CEA- Leti

• Introduction

• Why stacking nanowires for MOSFETs and memories ?

• Sensors and hybrid CMOS

Conclusion

Building stacked nanowires ... pitch limitation 3D overbalanced

Use of nanowires limits the available Si surface for conduction

- 3D Multi-channels: a very efficient approach to increase available surface
- Open tunable width and tunable shape possibilities

Tunable width

Internal spacers

E. Bernard, N. Vulliet, B. Guillaumot, T. Ernst et al. VLSI 2008 & Electron Device Letters Feb. 2009

CEA/LETI & STMicroelectronics collaboration on GAA/SON technology

Internal spacers reduce capacitances without impacting I_{ON}/I_{OFF} current

Multi-Chanels CV/I outperform planar in a loaded environment

copyright: CEA- Leti

11

Tunable shape for flexible designs

leti

12

Flexible process :

- Reduced gate capacitance (spacers)
- Independent gate nanowire (PhiFet)
- Finfet compatible
- Excellent current drivability due to 3D: 6.5 mA/µm !

Nanowires with independent gates $(\Phi$ -Fet) electrical results

TEM

Nanowires with independent gates allows ultra-low power management

C. Dupré et al, IEDM 08

copyright: CEA- Leti

13

 \Rightarrow Self-limited oxidation is used for small diameter control and variability reduction

A. Hubert et al., ECS Trans. 2008

copyright: CEA- Leti

16

Nanostructuration by oxidation

JP Colonna et al. To be published

Complex 3D sub-10 nm structures can be designed by (Si/SiGe)_n lateral oxidation

5nm Ge nanowires

EFTEM (V. Delaye/M. Jublot)

leti

Standard on-line SEM of 10nm suspended nanowire ...

Accurate in-line metrology for sub 10 nm 3D structures is needed

copyright: CEA- Leti

18

3D Atomic Force Microscopy

Systematic and non destructive accurate in line method

19

P. Cherns al., **POSTER THO21** A. Chabli et al, **invited**

3D accurate description along the wire, including roughness

20

3D Flash memories (concept)

T. Ernst et al. , IEDM'08

21

leti

TEM

• Introduction

• Why stacking nanowires for MOSFETs and memories ?

• Sensors and hybrid CMOS

Conclusion

Nanowires are introduced for very sensitive mass measurement

Few molecules sensitivity can be achieved => 1zg

23

copyright: CEA- Leti

leti Mass units in biology Atomic mass unity = $1Da = 1 u \approx 1.66053886 \times 10^{-27} kg$ Nanowires $1zg = 10^{-21}g = 602$ Da \approx a nucleotides pair (DNA) NEMS Parvoviridae Protein PrP Hemoglobine viruses: E. Coli bacteria (Prion) G-C A molecule A-T Hepatitis **B** 66.2 kDa 1.1 MDa 4.2×10¹¹ Da 150 kDa 613.4 Da 616.4 Da 24

Nanowire used for mass detection

Capacitive actuation & detection

leti

Capacitive actuation & piezo-resistive detection with nanowires Thermo-elastic actuation & piezo-resistive detection.

First 200 mm wafers with 3.5 millions NEMS

CALTECH & LETI VLSI NEMS Alliance copyright: CEA- Leti 25

Mass resolution with nanowire

Mass resolution according to the diameter

leti

R. He, M. Roukes et al. Nanoletters 12/08

CEA-LETI copyright: CEA- Leti

Nanowire for chemical detection

Change of Si nanowire conductance according to pH 27

copyright: CEA- Leti

Summary

- Several methods were presented to overcome some difficulties linked to 3D structures:
 - self-gate alignment
 - internal spacers
 - diameter control (oxidation ...)
 - V_T modulation/power management (by independent gates...)
- Nanowire should be seen as a natural scaling of thin film technologies and not as a one "ever ultimate" node or technology.
- New 3D nanowires matrices offer an original solution for lithography pitch limitation => possible applications to memories and CMOS
- There is a convergence between thin film nanowire CMOS and sensors technologies which open new applications opportunities.

Acknowledgements

A part of this work is performed as part of the IBM-STMicroelectronics-CEA/LETI-MINATEC Development Alliance

A part of this work is performed within CALTECH/LETI NEMS VLSI Alliance

Dr. T. Skotnicki, N. Vulliet and B. Guillaumot from STMicroelectronics are thanks for intensive and fruitful collaborations on SON and GAA CMOS technologies

Many thanks for fruitful collaborations on nanowires to:

Pr. M. Roukes (Caltech)
Pr. G. Ghibaudo, S. Cristoloveanu and M. Mouis (IMEP/CNRS, Minatec, France)
Pr. I. Iwai (Tokyo Institute of Technology)
Pr. P. Wong (Stanford)
Pr. C. Bonafos (CEMES/CNRS, Toulouse, France,)
Pr. A. Ionescu (EPFL, Lausanne, Switzerland)
Dr. T. Baron, B. Salem (LTM/CNRS, Minatec, Grenoble , France)

NEMSIC European Project NANOSIL European Network RTRA-Core

For further information on this work

Barnola, S., C. Vizioz, et al. (2008). "Dry Etch Challenges in Gate All Around Devices for sub 32 nm Applications." <u>ECS Transactions</u> **16(10): 923-934.**

Bernard, E., T. Ernst, et al. (2009). "Multi-Channel Field-Effect Transistor (MCFET)-Part I: Electrical Performance and Current Gain Analysis." <u>Electron Devices, IEEE Transactions on</u> **56(6): 1243-1251.**

Bernard, E., T. Ernst, et al. (2009). "Multi-Channel Field-Effect Transistor (MCFET)-Part II: Analysis of Gate Stack and Series Resistance Influence on the MCFET Performance." <u>Electron Devices, IEEE Transactions on</u> **56(6): 1252-1261.**

Bernard, E., T. Ernst, et al. (2008). "Impact of the gate stack on the electrical performances of 3D multi-channel MOSFET (MCFET) on SOI." <u>Solid-State Electronics</u> **52(9): 1297-1302.**

Dornel, E., T. Ernst, et al. (2007). "Hydrogen annealing of arrays of planar and vertically stacked Si nanowires." <u>Applied Physics Letters</u> **91(23): 233502-3.**

Dupre, C., T. Ernst, et al. (2008). <u>A mobility extraction method for 3D multichannel devices</u>. Solid-State Device Research Conference, 2008. ESSDERC 2008. 38th European.

Dupré, C., T. Ernst, et al. (2009). "Method for 3D electrical parameters dissociation and extraction in multichannel MOSFET (MCFET)." <u>Solid-State Electronics</u> In Press, Corrected Proof.

Dupre, C., A. Hubert, et al. (2008). <u>15nm-diameter 3D stacked nanowires with independent gates operation: Phi-FET</u>. Electron Devices Meeting, 2008. IEDM 2008. IEEE International.

Ernst, T., C. Dupre, et al. (2006). <u>Novel 3D integration process for highly scalable Nano-Beam stacked-channels GAA (NBG) FinFETs</u> with HfO2/TiN gate stack. Electron Devices Meeting, 2006. IEDM '06. International.

Ernst, T., L. Duraffourg, et al. (2008). <u>Novel Si-based nanowire devices: Will they serve ultimate MOSFETs scaling or ultimate hybrid</u> <u>integration?</u> Electron Devices Meeting, 2008. IEDM 2008. IEEE International.

Ernst, T., R. Ritzenthaler, et al. (2007). "A Model of Fringing Fields in Short-Channel Planar and Triple-Gate SOI MOSFETs." <u>Electron</u> <u>Devices, IEEE Transactions on</u> **54(6): 1366-1375.**

Hartmann, J. M., F. Andrieu, et al. (2008). "Reduced Pressure-Chemical Vapour Deposition of Si/SiGe heterostructures for nanoelectronics." <u>Materials Science and Engineering: B</u> **154-155: 76-84.**

Ollier, E., P. Andreucci, et al. (2008). <u>NEMS based on top-down technologies: from stand-alone NEMS to VLSI NEMS</u> Electron Devices and Solid-State Circuits, 2008. EDSSC 2008. IEEE International Conference on.

Wacquez, R., P. Coronel, et al. (2007). <u>A Breakthrough Electronic Lithography Process Through Si Layer for Self Aligning Gates in Planar</u> <u>Double-Gate Transistors for 32nm Node And Below</u>. Solid State Devices and Materials (SSDM), Tsukuba (Japan), japan Society of Applied Physics. <u>Copyright: CEA- Leti</u>