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Disclaimer

Certain commercial equipment, instruments, or materials are identified in
this study in order to specify the experimental procedure adequately. Such
identification is not intended to imply recommendation or endorsement by
the National Institute of Standards and Technology, nor is it intended to
imply that the materials or equipment identified are necessarily the best
available for the purpose.
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Introduction: Background Concepts

Isotopes want to be stable. They can release neutrons,
gamma rays and electrons

1;138 a kesr (factor to determine if reactor is critical)
@;*
of " L1 kesr = 1; Good! Critical
O+ — ——— () kefr > 1; Bad! Supercritical (Bomb!)
N it ~ . kesr < 1; Bad! Subcritical
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Introduction: What is the NNS NEUTRONRESEARCH
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* NNS (NIST Neutron Source) proposed to be a pool-type reactor to replace the NBSR
* Planned to deliver 20 MW of thermal energy



Introduction: Initial Core Loading

A reactor’s ‘lifetime’ is in terms of cycles

e U-10Mo (uranium and
10% molybdenum by
wt.) are loaded into the
core at the beginning of
each cycle

* We are concerned with
the initial core at Startup
(SU) of cycle 1




Introduction: Methodologies Used

* How can we ‘simulate’ what
happens in a nuclear reactor?

e \We used Monte Carlo N-Particle
(MCNP) software

 Allows us to define the
geometry and materials of our
reactor

e Returns results of physics T QY m

|
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Visual Display of Reactor Model Generated from MCNP 8



Current Problems

NNS initial loading of the 15t cycle is not optimized

Work To Do

Find the initial startup core loading for the NNS
Analyze the effects of different fuel configurations on core behavior
Find the enrichment equivalence of the equilibrium core

Determine the number of fuel plates and their positions in the
assemblies

Perform a criticality safety assessment of the NNS core during initial
loading

Prediction of the power peaking for safety assessment



MATLAB Code

~160,000 lines of input

- Inputs give you outputs!

- Need capacity to edit/remove
sections of input file and retain
formatting (indentation)

g imp:n,p=0

0187: g

:92087:9289)
@ )

0407:9409)

p=1

-11 -21 31

2001)

4034)

10187:9109)
e )
9)
10487:9409)

Change for new
outputs
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MATLAB Code — Compiling the Input File

mainlnputFileEditor()

* Gives us the ability to change a /ot in the input file automatically

. issile mass
enrichmentCalculator() | |enrichment % = — / — + 100
nonfissile mass + fissile mass

* Allows us to calculate the enrichment of the materials in the input file!



MATLAB Code

* Entire reactor core organized hierarchically in arrays

Fuel Plat : Materials within
ug rlalas Materials |
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Finding the Initial Core Loading

* To do this, we must compare with

existent Equilibrium Core State (ECS)
results

* ECS simply is the reactor under nominal
operating conditions

13



Finding the Initial Core Loading

mass of U10Mo Plate

fissile mass of assembly

= number of U10Mo Plates

Desired Fissile Mass in Each Assembly

Desired Plates to Empty/Fill

18 Plates Core
to Fill Loaded
3 to Empty

15 Plates Core
to Fill Loaded

6 to Empty

18 Plates Core
to Fill Loaded
3 to Empty

15 Plates
to Fill
6 to Empty

18 Plates
to Fill
3 to Empty

15 Plates
to Fill
6 to Empty

14



Equilibrium Core State Results - 1

 Comparing our configuration with expected results

Expected ECS Initial Core Loading | % Diff
Values (Simulated) Values
kesy kesy

Control Blade Position (cm)

0 0.986 0.981 0.51

10 0.992 0.987 0.51

20 1.004 1.000 0.40

30 1.016 1.016 0.00

40 1.030 1.031 .0.10

50 1.042 1.043 _0.10 | Uncertainties in
60 1.054 1.053 0.09 ﬁfc’]ﬁ ;: ;

70 1.060 1.059 0.09




Equilibrium Core State Results - 2

. Eff. Mult. Factor versus Shim Position For Equilibrium Core MCNP Runs

—+Expected
- FEMCNP Run

0 Dﬂ] l l
0 10 20

Shim Position
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Power Peaking Results

1.75

1.5

11.25

Relative Power

0.75

0.5

First Case: Emptying the Peripheral Plates First

SU

SU

- Empty Plate

‘Hottest plates’ are
the peripheral
plates
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Power Peaking Results

Second Case: Emptying Plates In a Distributed Pattern
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Power Peaking Results

Now, we can examine the power peaking results
What Is That?

Power
PPF =
Avg Power
dnorm = —
norm qavg

e Tells us by what factor a plate or assembly is ‘hotter’ than the
total average
Why Is That?
 Power peaking information is integral to reactor safety and
further thermal-hydraulic studies
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Power Peaking Results — Stripe Comparison

Will we see any
significant differences
between the two?
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Power Peaking Results — Assembly-Wise

-This second case layout has better power peaking values
(Maximum is lower, both located in EOC)

BOC SuU

EOC

A0S

C 103

Hottest Assembly-Wise Peaking
Factor

Second Case

First Case (EOC) (EOC)

1.18 1.06

NCNR Engineering Group
working on Machine
Learning algorithm that
is going to automate the
“shuffle” process




Power Peaking Results — Plate Wise

-As a last point of comparison, we can compare the highest
power in plates (plate-averaged axial peaking)

-~ EOC: FA-B21
i 40
E 20
g 0
S 90 . Hottest Axial Peaking Factor
= a0 = First Case Second Case
'Qﬂ | | | |
0.5 1 1.5 p 2.74 2.14
Plate-Averaged Relative Power

— _FP-1 FP-10

—  FP-4 FP-12

—_FP-6 FP-14

—FP-8 Average FP-1 - FP-21 29




Power Peaking Results — Comparison to Report NIST

-Finally, we can compare the (better) second-case power-
peaking to the NIST neutronics report results on the original
ECS configuration

BOC SU BOC

Hottest Assembly-Wise
Peaking Factor

B 098 1.02 . Bl 102 0.93 . B| 101 1.04 . Neutronics Final ECS

| Report (EOC) | Results (EOC)
o : — 1.12 1.06

A 1.03 0.99 0.94 A 1.04 0.97 0.98 A 1.01 0.99 0.96

MOC EOC - .
Hottest Axial Peaking Factor
A 1.01 1.04 0.92 A 0.99 0.90 Al 1.03 1 0.98
Neutronics Final ECS
Bl 095 Bl 095 1.04 Bl 1.01 0.98 Report Results
cl 102 cl oo 0.90 C [0S 0.99 0.98 1.98 2.14

1 2 3

Neutronics Report Results Our Final ECS Results -




Summary & Future Works

- Successfully able to find enrichment equivalence for the core

- Developed analytical code to compile input/output files as
needed

- Determined a possible plate configuration to meet ECS
requirements

- Performed power peaking analyses, needed for further
safety assessments

- |deal to examine the effect of parasitic isotopes on excess
reactivity (code is available to do this)

- Examine more feasible ECS core configurations and compare

24
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Questions??

Eric Swanson, Dr. Osman Celikten, Dr. Abdullah Weiss
NIST Center for Neutron Research
100 Bureau Drive, Gaithersburg, 20899, USA
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