
Artifacts from processes 
and tools to maintain 
trusted source code and 
verifying and mitigating 
software vulnerabilities
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My Background

Rohit Sethi
CEO, 

Security Compass

• 17 years experience focused on secure 
SDLC with Fortune 1000 customers

• Featured on Bloomberg, CNBC, FoxNews, 
CNN.com, Huffington Post and many others

• “Balancing Act” podcast host interviewing  
product security leaders from Cisco, Adobe, 
Honeywell, JCI, SAP, Dell, Carrier, Goldman 
Sachs, Yahoo, LinkedIn, Xylem & others





Organizations that have not patched this 
Confluence Server and Confluence Data Center 
vulnerability should do so on an emergency basis.
-- Rapid7

-- Kasperskey

CVE-2021-26084: Atlassian Confluence OGNL 
Injection Vulnerability Exploited in the Wild
-- Tenable



This isn’t about Atlassian, 
this an industry-wide problem



After an incident like this, all attention is on:
● Patching
● Detecting & blocking attacks in the wild
● Incident response



7

Reviewing the Root Cause

“The vulnerability is an Object-Graph Navigation Language (OGNL) 
injection...”
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A Framework for Prevention

Plan and Prevent

Identify Implement

Potential software weaknesses 
for a given product

Controls to mitigate those 
weaknesses

Find and Fix

Validate

Existence of controls and 
absence of vulnerabilities



Nothing will prevent 100% of vulnerabilities, 
we are focused on significant reduction of 

known, preventable vulnerabilities
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Current State of Best Practice: Software Security

Plan and Prevent

Identify Implement

Potential software weaknesses 
for a given product

Controls to mitigate those 
weaknesses

Find and Fix

Validate

Existence of controls and 
absence of vulnerabilities
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Current State of Best Practice: Software Security

Plan and Prevent

Identify Implement

Potential software weaknesses 
for a given product

Controls to mitigate those 
weaknesses

Find and Fix

Validate

Existence of controls and 
absence of vulnerabilities

Activities like:
● Static, dynamic & interactive 

application security testing
● Software composition analysis
● Penetration testing and/or bug 

bounties



The “Find and Fix Addiction”
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Ideal State of Best Practice: Software Security

Plan and Prevent

Identify Implement

Potential software weaknesses 
for a given product

Controls to mitigate those 
weaknesses

Activities like:
● Developer education
● Security requirements
● Threat modeling

Find and Fix

Validate

Existence of controls and 
absence of vulnerabilities

Activities like:
● Static, dynamic & interactive 

application security testing
● Software composition analysis
● Penetration testing and/or bug 

bounties



14



15

What Artifacts Should we Aim For? 

• Should not perpetuate the “Find and Fix Addiction”, need to incorporate “Plan and 
Prevent”

• Needs to recognize the current state of software development with DevOps -> 
certifying a “release” is antiquated
⁃ Focus on process over focus on releases

• To be useful to the broader public, must be easily understood by a non expert
• Needs to protect vendor IP
• Should be practical to implement (e.g. open source & commercial tool supported)
• Software Bill of Materials (SBOM) – separate discussion
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Current State of Best Practice: Software Vendor Security

Enterprise security certifications are not product/software security certifications
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Existing Standards Already Implement Holistic Software Security

Industrial Society of Automation 
62443 set of Standards

Payment Card Industry: Software 
Security Framework

NIST: Secure Software 
Development Framework
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Certification / Labelling Options

• Self attestation to NIST SSDF and/or equivalent software security framework (with 
penalties for non-compliance)

• ISA & PCI Approach: 3rd party life-cycle assessment by accredited auditors



We have an opportunity to measurably 
improve cybersecurity posture forever



Thank You
For more information, contact us at www.securitycompass.com
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