
Artifacts from processes
and tools to maintain
trusted source code and
verifying and mitigating
software vulnerabilities

Our Team

2

My Background

Rohit Sethi
CEO,

Security Compass

• 17 years experience focused on secure
SDLC with Fortune 1000 customers

• Featured on Bloomberg, CNBC, FoxNews,
CNN.com, Huffington Post and many others

• “Balancing Act” podcast host interviewing
product security leaders from Cisco, Adobe,
Honeywell, JCI, SAP, Dell, Carrier, Goldman
Sachs, Yahoo, LinkedIn, Xylem & others

Organizations that have not patched this
Confluence Server and Confluence Data Center
vulnerability should do so on an emergency basis.
-- Rapid7

-- Kasperskey

CVE-2021-26084: Atlassian Confluence OGNL
Injection Vulnerability Exploited in the Wild
-- Tenable

This isn’t about Atlassian,
this an industry-wide problem

After an incident like this, all attention is on:
● Patching
● Detecting & blocking attacks in the wild
● Incident response

7

Reviewing the Root Cause

“The vulnerability is an Object-Graph Navigation Language (OGNL)
injection...”

8

A Framework for Prevention

Plan and Prevent

Identify Implement

Potential software weaknesses
for a given product

Controls to mitigate those
weaknesses

Find and Fix

Validate

Existence of controls and
absence of vulnerabilities

Nothing will prevent 100% of vulnerabilities,
we are focused on significant reduction of

known, preventable vulnerabilities

10

Current State of Best Practice: Software Security

Plan and Prevent

Identify Implement

Potential software weaknesses
for a given product

Controls to mitigate those
weaknesses

Find and Fix

Validate

Existence of controls and
absence of vulnerabilities

11

Current State of Best Practice: Software Security

Plan and Prevent

Identify Implement

Potential software weaknesses
for a given product

Controls to mitigate those
weaknesses

Find and Fix

Validate

Existence of controls and
absence of vulnerabilities

Activities like:
● Static, dynamic & interactive

application security testing
● Software composition analysis
● Penetration testing and/or bug

bounties

The “Find and Fix Addiction”

13

Ideal State of Best Practice: Software Security

Plan and Prevent

Identify Implement

Potential software weaknesses
for a given product

Controls to mitigate those
weaknesses

Activities like:
● Developer education
● Security requirements
● Threat modeling

Find and Fix

Validate

Existence of controls and
absence of vulnerabilities

Activities like:
● Static, dynamic & interactive

application security testing
● Software composition analysis
● Penetration testing and/or bug

bounties

14

15

What Artifacts Should we Aim For?

• Should not perpetuate the “Find and Fix Addiction”, need to incorporate “Plan and
Prevent”

• Needs to recognize the current state of software development with DevOps ->
certifying a “release” is antiquated
⁃ Focus on process over focus on releases

• To be useful to the broader public, must be easily understood by a non expert
• Needs to protect vendor IP
• Should be practical to implement (e.g. open source & commercial tool supported)
• Software Bill of Materials (SBOM) – separate discussion

16

Current State of Best Practice: Software Vendor Security

Enterprise security certifications are not product/software security certifications

17

Existing Standards Already Implement Holistic Software Security

Industrial Society of Automation
62443 set of Standards

Payment Card Industry: Software
Security Framework

NIST: Secure Software
Development Framework

19

Certification / Labelling Options

• Self attestation to NIST SSDF and/or equivalent software security framework (with
penalties for non-compliance)

• ISA & PCI Approach: 3rd party life-cycle assessment by accredited auditors

We have an opportunity to measurably
improve cybersecurity posture forever

Thank You
For more information, contact us at www.securitycompass.com

	Artifacts from processes and tools to maintain trusted source code and verifying and mitigating software vulnerabilities
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21

