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Status of the NBSR

e The lifetime of the National Bureau
of Standards Reactor (NBSR) will be
coming to an end sometime in the
next few decades.

* NBSR Main Characteristics:
e High-Enrichment Uranium (HEU) fuel: 93 wt%
U,0q + Al
Vertically Split Fuel Element
Full Power: 20 MW

D, 0 Coolant, Moderator, Reflector




Overview of the New Reactor

e Reactor Core Characteristics:

e Low-Enrichment Uranium (LEU) fuel: 19.75 wt%
e U3Si, +Al

e Horizontally Split Core

e Two Cold Neutron Sources (CNS)
e Full Power: 20 MW

* H,0 Coolant, Moderator

e D,0 Reflector




Parameter Changes for New Reactor
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Introduction to PARET/ANL Code

 Program for the Analysis of REactor Transients developed by Argonne National
Laboratory (ANL)

Intended primarily for the safety analysis of test and research reactors that use
plate-type (flat) fuel elements

e Based on an evaluation of the coupled thermal, hydrodynamic, and nuclear
effects of the core

e Program calculates Critical Heat Flux Ratio (CHFR) using the Mirshak Correlation.




Critical Heat Flux & Onset of Flow Instability

Critical Heat Flux (CHF) Onset of Flow Instability (OFI)
e The thermal limiting condition e Excursive flow instability due to the
where a phase change occurs during onset of net vapor generation in the
heating which decreases efficiency Thermal Limits coolant channel.
of heat transfer causing localized L
overheating of the heating surface. Criteria
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Objectives

e Upgrade the critical heat flux ratio (CHFR) calculations for the PARET/ANL output
by using the Sudo-Kaminaga correlation

e Determine the safety margins for various transient cases based on the critical
heat flux ratio (CHFR) and onset of flow instability ratio (OFIR)



Sudo-Kaminaga Correlation
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Sudo-Kaminaga Correlation (Cont.)

Sudo-Kaminaga Correlation Scheme
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OFI Criteria: Saha-Zuber

Mass flow rate criteria is based on Peclet number: Pe = % < 70,000
f

For low mass flux (Pe < 70,000): Nu=—9Ph_ _ 455
kf(Tsat_T/l)

For high mass flux (Pe > 70,000): St = 1 = 0.0065
GCpf(Tsat_Txl)

" 455 * hpg * kg * (Tsqr — Ty), Pe < 70,000
1 orr = 0.0065 * G * Cpr * (Tsar — Tp), otherwise

Heat flux for OFI and OFIR:

OFIR = —L-0fL

q'""model



Coding for Calculations
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Simulated Transient Cases

Reactivity Insertion Accident (RIA) Loss of Flow Accident (LOFA)

e Positive reactivity insertion in the core e A core heat up due to malfunction of
that may be caused by experiments the cooling system even if the reactor
removed from the core power is operating at nominal value

Power During RIA ° Pa ram ete rs
ﬂ Power Applied § e Reactor operates at full power (20 MW)
------- Power when Scram occurs
. * Flow decay modeled as exponential decay

N
D
T

function

e Scram occurs when flow decay is reduced by
| 15%

Power (MW)
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Case 1: Small Reactivity Insertion Accident

* [nitiating Power: 2 W
 Reactivity insertion at slow ramp rate: S0.1/s
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Case 2: Large Reactivity Insertion Accident

Variation of the Minimum CHFR

* Initiating Power: 20 MW (full power)

 Reactivity insertion: $1.5 in 0.5s
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Case 3: Slow Loss of Flow Accident

e Decay constant (T): 25 s

Variation of the Minimum CHFR Variation of the Minimum OFIR

103 [ T T T T T T T T ] 103 n

Sudo-Kaminaga Correlation
Mirshak Correlation
------- Limiting MCHFR for LEU

MOFIR
——————— Limiting MOFIR for LEU

| /&w ] | r\/\/“" ]

10 | 3 '

105-\1

MCHFR
Minimum OFIR

—

10°

| | | | | | | | 10 | | | | | | | |
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Time (s) Time (s)



Case 4: Fast Loss of Flow Accident

e Decay constant (T): 1s

Variation of the Minimum CHFR

Variation of the Minimum OFIR
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Summary on All Cases

Sudo-Kaminaga Mirshak

1 2.81 2.17 6.06
2 3.29 2.50 7.18
3 3.63 2.99 6.99
4 3.85 2.80 3.69

All MCHFR values are above 1.778 (Thermal Limit)
All MOFIR values are above 1.828 (Thermal Limit)



Conclusion

* The results for these cases show that there is at least a 99.9%
probability of no fuel damage.

* The new reactor under these parameters can be deemed safe.
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