Enhanced Safety Analysis Code Suites for the New Reactor Design at NCNR

Richard Leos NIST Center for Neutron Research

Reactor Operations and Engineering Group

Status of the NBSR

- The lifetime of the National Bureau of Standards Reactor (NBSR) will be coming to an end sometime in the next few decades.
- NBSR Main Characteristics:
 - High-Enrichment Uranium (HEU) fuel: 93 wt%
 - U₃O₈ + Al
 - <u>Vertically</u> Split Fuel Element
 - Full Power: 20 MW
 - D_2O Coolant , Moderator, Reflector

Overview of the New Reactor

- Reactor Core Characteristics:
 - Low-Enrichment Uranium (LEU) fuel: 19.75 wt%
 - $U_3Si_2 + AI$
 - Horizontally Split Core
 - Two Cold Neutron Sources (CNS)
 - Full Power: 20 MW
 - H₂O Coolant, Moderator
 - D₂O Reflector

Parameter Changes for New Reactor

Views of Single Channel

Introduction to PARET/ANL Code

- Program for the Analysis of REactor Transients developed by Argonne National Laboratory (ANL)
- Intended primarily for the safety analysis of test and research reactors that use plate-type (flat) fuel elements
- Based on an evaluation of the coupled thermal, hydrodynamic, and nuclear effects of the core
- Program calculates Critical Heat Flux Ratio (CHFR) using the Mirshak Correlation.

Critical Heat Flux & Onset of Flow Instability

Critical Heat Flux (CHF)

 The thermal limiting condition where a phase change occurs during heating which decreases efficiency of heat transfer causing localized overheating of the heating surface.

Thermal Limits Criteria

Onset of Flow Instability (OFI)

• Excursive flow instability due to the onset of net vapor generation in the coolant channel.

(A)

(B)

(C)

Objectives

- Upgrade the critical heat flux ratio (CHFR) calculations for the PARET/ANL output by using the <u>Sudo-Kaminaga</u> correlation
- Determine the safety margins for various transient cases based on the critical heat flux ratio (CHFR) and onset of flow instability ratio (OFIR)

Sudo-Kaminaga Correlation

- Used to calculate CHFR for vertical rectangular channels of a research reactor
- Possesses greater geometric similarities to the new reactor
- Considers effects:
 - \circ Pressure
 - \circ Inlet sub-cooling
 - \circ Outlet sub-cooling
 - o Channel configuration
 - o Mass flux
 - $\circ\,$ Flow direction

• $q_{CHF,1}^* = 0.005 |G^*|^{0.611}$

•
$$q_{CHF,2}^* = \frac{A}{A_H} |G^*| \Delta T_{sub,in}^*$$

•
$$q_{CHF,3}^* = 0.7 \frac{A}{A_H} \frac{\sqrt{\frac{W}{\lambda}}}{\left(1 + \left(\frac{\rho_g}{\rho_l}\right)^{\frac{1}{4}}\right)^2} (1.0 + 3.0\Delta T_{sub,in}^*)$$

•
$$q_{CHF,4}^* = 0.005 |G^*|^{0.611} \left(\frac{5000}{|G^*|} \Delta T_{sub,0}^*\right)$$

• $q_{CHF}^{\prime\prime} = q_{CHF}^* h_{fg} \sqrt{\lambda(\rho_l - \rho_g)\rho_g g}$

•
$$CHFR = \frac{q_{CHF}^{\prime\prime}}{q_{model}^{\prime\prime}}$$

Sudo-Kaminaga Correlation (Cont.)

Sudo-Kaminaga Correlation Scheme

OFI Criteria: Saha-Zuber

• Mass flow rate criteria is based on Peclet number:

$$Pe = \frac{GD_h C_{pf}}{k_f} \le 70,000$$

• For low mass flux (Pe \leq 70,000):

$$Nu = \frac{q''D_h}{k_f(T_{sat} - T_\lambda)} = 455$$

• For high mass flux (Pe > 70,000):

$$St = \frac{q''}{GC_{pf}(T_{sat} - T_{\lambda})} = 0.0065$$

$$q''_{OFI} = \begin{cases} 455 * h_{fg} * k_f * (T_{sat} - T_{\lambda}), & Pe \le 70,000\\ 0.0065 * G * C_{pf} * (T_{sat} - T_{\lambda}), & otherwise \end{cases}$$

•
$$OFIR = \frac{q''_{OFI}}{q''_{model}}$$

Coding for Calculations

Simulated Transient Cases

Reactivity Insertion Accident (RIA)

 Positive reactivity insertion in the core that may be caused by experiments removed from the core

Loss of Flow Accident (LOFA)

 A core heat up due to malfunction of the cooling system even if the reactor power is operating at nominal value

• Parameters

- Reactor operates at full power (20 MW)
- Flow decay modeled as exponential decay function
- Scram occurs when flow decay is reduced by 15%

Case 1: Small Reactivity Insertion Accident

- Initiating Power: 2 W
- Reactivity insertion at slow ramp rate: \$0.1/s

Case 2: Large Reactivity Insertion Accident

- Initiating Power: 20 MW (full power)
- Reactivity insertion: \$1.5 in 0.5s

Case 3: Slow Loss of Flow Accident

• Decay constant (T): 25 s

Case 4: Fast Loss of Flow Accident

• Decay constant (T): 1 s

Summary on All Cases

	Sudo-Kaminaga	Mirshak	
Case #	MCHFR	MCHFR	MOFIR
1	2.81	2.17	6.06
2	3.29	2.50	7.18
3	3.63	2.99	6.99
4	3.85	2.80	3.69

All MCHFR values are above 1.778 (Thermal Limit) All MOFIR values are above 1.828 (Thermal Limit)

Conclusion

- The results for these cases show that there is at least a 99.9% probability of no fuel damage.
- The new reactor under these parameters can be deemed safe.

Acknowledgements

- Advisors: Dr. Zeyun Wu & Dr. Robert Williams
- SURF Directors: Dr. Julie Borchers and Dr. Joseph Dura

