
Latent Fingerprint SDK Test API Specification  26 Jan 2007 

Latent Fingerprint SDK Test 

 API Specification 

 

Introduction 
The Latent Fingerprint SDK Test provides a means of determining core search performance of 
latent-fingerprint matchers.  This document specifies all SDK interfaces and functionality as well 
as the data formats used for this test.   
 
There will be minimal human involvement during the actual execution of the test.  A small amount 
of human assistance will probably be required to prepare the data. All such assistance will be 
provided indirectly by NIST, and may include: 
 

a) Crop and orient certain latents. 
 
b) Provide a region-of-interest. 
 
c) Provide latent experts for examining potential consolidations. 

 

Those wishing to submit software for Latent Fingerprint SDK testing shall be required to provide 
NIST with an SDK (Software Development Kit) library which complies with the API (Application 
Programmer Interface) specified in this document. 

 

1 Fingerprint Image Data 
 
1.1 Format 

The SDK must be capable of processing fingerprint images supplied to the SDK in uncompressed 
raw 8-bit (one byte per pixel) grayscale format.  The image data shall appear to be the result of a 
scanning of a conventional inked impression of a fingerprint.  Figure 1 illustrates the recording 
order for the scanned image.  The origin is the upper left corner of the image.  The x-coordinate 
(horizontal) position shall increase positively from the origin to the right side of the image.  The y-
coordinate (vertical) position shall increase positively from the origin to the bottom of the image.   

 
Figure 1 Order of scanned lines 

Page 1 of 11 



Latent Fingerprint SDK Test API Specification  26 Jan 2007 

Raw 8-bit grayscale images are canonically encoded.  The minimum value that will be assigned to 
a "black" pixel is zero.  The maximum value that will be assigned to a "white" pixel is 255.  
Intermediate gray levels will have assigned values of 1- 254.  The pixels are stored left to right, 
top to bottom, with one 8-bit byte per pixel. The number of bytes in an image is equal to its height 
multiplied by its width as measured in pixels; there is no header.  The image height and width in 
pixels will be supplied to the SDK as supplemental information. 

1.2 Resolution, Dimensions and Orientation 
The latent fingerprint images used for Phase I and II of ELFT07 will employ either 500 or 1000 
PPI resolution horizontally and vertically.  The background fingerprint images will employ 500 
PPI resolution horizontally and vertically.  The precise resolution for each individual image will 
be specified to the SDK via the API. 

All fingerprint images used for Phase I and II of ELFT07 will vary from 150 to 1000 pixels in 
both width and height dimensions.  The precise dimensions for each individual image will be 
specified to the SDK via the API. 

The latent fingerprint images used for Phase I and II of ELFT07 will vary in rotation between 
+180 and -180 degrees.  Where possible, the rotational range of the latent fingerprint image will 
be specified to the SDK via the API.   Phase I and II of ELFT07 will use rolled fingerprint images 
for the background which appear to be captured in the upright position and approximately centered 
horizontally in the field of view.  No information regarding individual background image rotation 
will be specified to the SDK. 

2 Test Interface Description 
Participants shall submit an SDK which provides the interfaces defined in section 2.3.  Section 2.2 
defines the interfaces to functions provided by NIST for use by the SDK.  Sections 2.1 and 2.4 
specify the declaration of constants, error codes, data-types and functions used by both. 

2.1 Declarations 
The following are declarations of data types and functions used in the Latent Fingerprint SDK 
testing interface: 
 
////////////////////////////////////////////////////// 
// Declarations of constants                        // 
////////////////////////////////////////////////////// 
 
// Impression type codes 
#define IMPTYPE_LP 0     // Live-scan plain 
#define IMPTYPE_LR 1     // Live-scan rolled 
#define IMPTYPE_NP 2     // Nonlive-scan plain 
#define IMPTYPE_NR 3     // Nonlive-scan rolled 
 
// Finger position codes 
#define FINGPOS_UK 0     // Unknown finger 
#define FINGPOS_RT 1     // Right thumb 
#define FINGPOS_RI 2     // Right index finger 
#define FINGPOS_RM 3     // Right middle finger 
#define FINGPOS_RR 4     // Right ring finger 
#define FINGPOS_RL 5     // Right little finger 
#define FINGPOS_LT 6     // Left thumb 
#define FINGPOS_LI 7     // Left index finger 
#define FINGPOS_LM 8     // Left middle finger 
#define FINGPOS_LR 9     // Left ring finger 

Page 2 of 11 



Latent Fingerprint SDK Test API Specification  26 Jan 2007 

#define FINGPOS_LL 10    // Left little finger 
 
//////////////////////////////////////////////////////////////// 
// Declarations for the NIST provided library functions       // 
//////////////////////////////////////////////////////////////// 
 
// Structure to hold a single fingerprint record (image+metadata) 
struct finger_record 
{ 

BYTE    impression_type; 
UINT16  resolution; // Image resolution in pixels/cm 
BYTE    finger_position;   
UINT16  height;  // Image height in pixels 
UINT16  width;  // Image width in pixels 
BYTE    *image_data; // 8-bit grayscale image data 

}; 
typedef struct finger_record   FINGER_REC; 
 
// Extracts 10 fingerprint records from a ten-print (AN2K) file 
INT32 extract_image_data(const char *tenprint_filename,  

FINGER_REC **finger_recs); 
 
// De-allocates the memory holding 10 fingerprint records 
void free_image_data(FINGER_REC *finger_recs); 
 
//////////////////////////////////////////////////////////////// 
// Declarations for the SDK provided library functions        // 
//////////////////////////////////////////////////////////////// 
 
// Structure to hold zero or more candidates returned in a search 

 struct candidate { 
  UINT32 background_index; 
  BYTE   finger_position; 
  DOUBLE similarity_score; 
  BYTE  probability; 
 } 
 typedef struct candidate CANDIDATE; 

 
// Structure to hold list of candidates returned by SDK 
struct candidate_list 
{ 

UINT32    num_entries; 
DOUBLE    latent_quality; 
UINT16    latent_minutiae_found; 
CANDIDATE *list; 

}; 
typedef struct candidate_list   CANDIDATE_LIST; 
 
// Enrolls the entire set of background images 
INT32 enroll_background(const INT32 num_recs,  

const char **filenames, const char *enrollment_dir, 
char *error_msg); 
 

   // Selects the current background for latent image searching 
INT32 set_background(const char *enrollment_dir); 
 
 

Page 3 of 11 



Latent Fingerprint SDK Test API Specification  26 Jan 2007 

// Enrolls the latent image 
INT32 enroll_latent(const BYTE *latent_image, 

const UINT16 width, const UINT16 height, 
const UINT16 resolution, const BYTE rotation, 
BYTE  *enrolled_latent, INT32 *enroll_length); 

 
// Searches for the latent image in the background 
INT32 image_search(const BYTE *enrolled_latent, 

CANDIDATE_LIST *candidates, char *error_msg,  
const BYTE *roi_mask); 
 

2.2 NIST Provided Functions 

2.2.1 Extract Image Data 
 
INT32  
extract_image_data(const char  *tenprint_filename, 

 FINGER_REC  **finger_recs); 
 

Description 
This function extracts ten fingerprint image records from a single (AN2K formatted) ten-
print record file.  The caller shall pass tenprint_filename as a pointer to the fully 
qualified pathname of an AN2K formatted ten-print record file, and finger_recs as the 
address of a pointer of type FINGER_REC (see 2.1 above). 

 
Upon return finger_recs will contain a pointer to an array of ten FINGER_REC 
structures ordered by finger position from 1 (right thumb) to 10 (left little finger).  For 
any fingers that are missing from the original ten-print record file, the image_data field in 
the respective FINGER_REC will be a NULL pointer. 
 

 Example 
  // Example of processing a ten-print record 

 FINGER_REC *finger_recs; 
 INT32 status=extract_image_data(“image00205.an2k”, &finger_recs); 
 if (status == 0) { 

for (i=0;i<10;i++) { 
 if (finger_recs[i].image_data != NULL) 

process_valid_finger(finger_recs[i]); 
    else 

process_missing_finger(finger_recs[i]); 
   } 

free_image_data(finger_recs); // see 2.2.2 below 
  } 

 
Parameters 

tenprint_filename (input): A pointer to a ten-print record filename. 
finger_recs  (output): The address of a FINGER_REC pointer. 
 

Return Value 

This function returns zero on success or a documented non-zero error code otherwise. 

 

Page 4 of 11 



Latent Fingerprint SDK Test API Specification  26 Jan 2007 

2.2.2 Free Image Data 
 

void 
free_image_data(FINGER_REC *finger_recs); 

 
Description 

De-allocates all memory used by the array of FINGER_REC structures specified by 
finger_recs which was allocated during a call to extract_image_data(). 

 
Parameters 

finger_recs (input): A pointer to an array of FINGER_REC structures. 
 
Return Value 

None. 

2.3     SDK Provided Functions 

2.3.1 Enroll Background 
 
INT32 
enroll_background(const INT32  num_recs, 

const char   **filenames, 
const char  *enrollment_dir, 

    char   *error_msg); 
 
Description 

This function performs the conversion of all background 10-print records into a 
proprietary dataset.  No format is prescribed for this data, but it could be a set of 
proprietary templates.  Pre-computation of background data avoids reprocessing of the 
original images upon subsequent calls to image_search().   

The SDK shall use the function extract_image_data() (see 2.2.1 above) 
provided by NIST to extract the raw grayscale image and metadata from each 10-print 
record file specified in the  filenames array.  Note that each call to 
extract_image_data() allocates memory to hold the extracted image and 
metadata, so this memory should be de-allocated using the NIST provided 
free_image_data() (see 2.2.2 above) function when no longer needed. 

All data produced by the SDK shall be stored exclusively to the directory specified by 
enrollment_dir.  The contents of this directory are at the discretion of the 
vendor. 
Upon entry the error_msg parameter will point to a pre-allocated and pre-zeroized string 
buffer of length 513 bytes (512 + 1 for the NULL terminator) that the SDK may use for 
outputting detailed information regarding errors that have occurred (signaled by a non-
zero return code).  This may be useful for debugging any problems that might occur after 
the SDK is received by NIST.  For example, this if enrollment process encounters an 
error during processing of a specific background ten-print record file, the SDK could 
output an error message including the ten-print record filename to error_msg. 

Note 1:  The order of the ten-print record file names in filenames defines (implicitly) 
the indexing scheme that shall be used henceforth for recording the ten-print record 
indices of all candidates returned by image_search().  The index of the first ten-
print record is 0. 

Page 5 of 11 



Latent Fingerprint SDK Test API Specification  26 Jan 2007 

Note 2:  During subsequent calls to image_search() the SDK is permitted to 
access the original background images.  To support this access, the path information 
supplied by filenames regarding the original background images should be stored in 
the proprietary background set in enrollment_dir. 

 
Parameters 

num_recs (input): The number of ten-print records to enroll. 
 
filenames (input): Array of pointers to all ten-print record filenames. 
 
enrollment_dir (input): The directory used to store enrollment data output. 
 
error_msg (output): Pointer to a detailed error message string. 
 

Return Value 

This function returns zero on success or a documented non-zero error code otherwise. 

 
2.3.2 Set Background 
 
INT32 
set_background(const char  *enrollment_dir); 

 
Description 

This function selects the background that shall be used by all subsequent calls to 
image_search().  The directory specified by enrollment_dir shall contain the 
enrollment data produced by a prior call to enroll_background(). 

 
Parameters 

enrollment_dir (input): The directory to be used by image_search(). 
 

Return Value 

This function returns zero on success or a documented non-zero error code otherwise. 

 
2.3.3 Enroll Latent 
 
INT32 
enroll_latent(const BYTE    *latent_image, 

  const UINT16     width, 
    const UINT16     height, 
   const UINT16  resolution, 
   const BYTE  rotation, 

  BYTE             *enrolled_latent, 
  INT32            *enroll_length); 

 
Description 

This function enrolls the latent image pointed to by latent_image, and writes the 
enrollment data to the memory location pointed by enrolled_latent.  The latent image 
itself shall be in “raw” uncompressed 8-bit grayscale format.  No format is prescribed for 
the enrollment data.  
 
The memory for enrolled_latent is allocated prior to the call (i.e. by the application using 
the SDK) as a pre-zeroized one megabyte array. 

Page 6 of 11 



Latent Fingerprint SDK Test API Specification  26 Jan 2007 

 
Upon return from this function,  enroll_length shall be set by the SDK to the length (in 
bytes) of the enrollment data stored in enrolled_latent.  The memory for enroll_length is 
allocated by the caller prior to calling this function. 
 
Note that during the call to this function the directory containing the current background 
and its contents are read-only.  
 
The width and height parameters specify the width and height of the latent image in 
pixels. 
 
The resolution parameter specifies the horizontal and vertical resolution of the latent 
image in pixels per centimeter (e.g. 500 pixels per inch is specified as 197 ppcm ; 1000 
ppi is specified as 394 ppcm). 
 
The rotation parameter represents the range (+ and -) of orientation in degrees for the 
input latent image.  The range of possible values is 0 to 180.  For example, a value of 25 
specifies a range of orientation from +25 to -25 degrees. 
 

Parameters 
 

latent_image (input): Pointer to a latent fingerprint image in 8-bit grayscale format. 
 
width (input): The width of the latent fingerprint image in pixels. 

 
height (input): The height of the latent fingerprint image in pixels. 
 
resolution (input): The resolution of the latent fingerprint image in pixels/cm. 
 
rotation (input): The rotational range of the latent fingerprint image in degrees. 
 
enrolled_latent (output): Pointer to memory block receiving  the enrollment data. 
 
enroll_length  (output): Pointer to length of enrolled_latent in bytes. 
 
 

Return Value 

This function returns zero on success or a documented non-zero error code on failure. 

 
 

2.3.4 Image Search  
 
INT32 
image_search(const BYTE    *enrolled_latent, 

  CANDIDATE_LIST    *candidates, 
   char              *error_msg, 
   const BYTE        *roi_mask); 

Description 
This function searches the current background (as selected by set_background()) 
for zero or more candidates matching the input enrolled_latent parameter. The selection 
of features on which to match is entirely at the discretion of the SDK.  Note that during 
the call to this function the directory containing the current background and its contents 
are read-only. 
 

Page 7 of 11 



Latent Fingerprint SDK Test API Specification  26 Jan 2007 

When this function is called, the candidates parameter will point to a pre-initialized 
CANDIDATE_LIST (see 2.1 above) with candidates->num_entries set equal to M, the 
number of background records (N) multiplied by 10 (i.e. M = N x 10), and candidates-
>list pointing to a pre-allocated M  length array of (pre-zeroized) CANDIDATE structures. 
 
During execution of this function the SDK shall modify the CANDIDATE_LIST 
structure such that candidates->num_entries is set equal to the number of candidates 
found (S), and the first S members of the array specified by candidates->list contain all 
candidate information.  In other words, the first S structures of type CANDIDATE (see 
2.1 above) pointed to by candidate->list shall contain the original background record file 
index, finger position, similarity score, and probability for each candidate found by the 
search.  The number of candidates found S may vary between 0 and M inclusive (i.e. 0 <= 
S <= M), though it is requested that S=50 for Phase I and II testing.  The specific ordering 
of the candidates is not specified.   
 
The background_index field for each CANDIDATE shall be set equal to the relative offset 
of the original ten-print record file processed by enroll_background().  The 
finger_position for each CANDIDATE shall be set equal to the finger position information 
extracted from its associated ten-print record file.  And the similarity_score for each 
CANDIDATE shall be set to a value greater than or equal to 0 which represents the 
similarity of the input latent finger image to the respective candidate finger image in the 
background.  Note that any background fingerprint images not represented by an entry in 
candidates->list shall be implicitly assigned a similarity score equal to 0. 
 
The probability field for each CANDIDATE shall be set equal to the probability (0-100) 
that the candidate is a “likely hit.”  
 
Duplicate CANDIDATE entries or entries whose background_index field values are out of 
range (i.e. not between 0 and the N-1 inclusive) shall not be accepted. 

Upon entry the error_msg parameter will point to a pre-allocated and pre-zeroized string 
buffer of length 513 bytes (512 + 1 for the NULL terminator) that the SDK may use for 
outputting detailed information regarding errors that have occurred (signaled by a non-
zero return code).  This may be useful for debugging any problems that might occur after 
the SDK is received by NIST. 
 
The function may be optionally supplied with a “region of interest” in the form of an 
image mask.  In cases where no “region of interest” information is provided, the input 
roi_mask parameter shall be a NULL pointer.  Otherwise, roi_mask shall point to a “raw” 
uncompressed raw 8-bit grayscale image with the same dimensions as the latent 
fingerprint image.  The region (or regions) of interest in the latent fingerprint image are 
identified by the corresponding x,y locations in the roi_mask which have non-zero pixels. 
 
Optionally, the quality of the input latent fingerprint image (as determined by the SDK) 
and the number of minutiae found in that image may be returned via the candidates-
>latent_quality and candidates->latent_minutiae_found fields respectively. 
 

Note 1: Matcher architectures in which “advanced matchers” are selectively 
invoked (depending upon initial screening results for the latent) are allowed. The 
SDK might decide to invoke (call) computationally intensive matchers only for those 
comparisons which show initial good results. However, the SDK must decide if the 
additional features (if any) used by these “advanced matchers” will be written to 
persistent storage during the call to enroll_background().  

Page 8 of 11 



Latent Fingerprint SDK Test API Specification  26 Jan 2007 

Note 2: Since it may not be possible to keep all background images in memory, it 
might be necessary for the software to repeatedly retrieve the data from disk, and 
this extra fetch time will be included in the execution time measurement. 
 

Parameters 
 

enrolled_latent (input): Pointer to the latent image’s enrollment data. 
 
candidates (input/output): A list of candidates matching the latent fingerprint image. 
 
error_msg (output): Pointer to a detailed error message string. 
 
roi_mask (input): Pointer to optional image mask identifying ROI(s). 
 

Return Value 

This function returns zero on success or a documented non-zero error code on failure. 

2.4 Error Codes and Handling 
The participant shall provide documentation of all (non-zero) error or warning return codes (see 
section 3.3, Documentation). 

The application should include error/exception handling so that in the case of a fatal error, the 
return code is still provided to the calling application. 

All messages which convey errors, warnings or other information shall be suppressed.  
Information supplemental to the documented error codes returned by the SDK shall be conveyed 
via the error_msg parameter (see 2.3 above) only. 
 
At minimum the following return codes shall be used. 
 
Return Function Explanation 
code 

0 All Success 
-1 extract_image_data() file not found 
-2 extract_image_data() error parsing ten-print file 
-3 extract_image_data() error decompressing image 
-4 extract_image_data() insufficient memory error 
-5 extract_image_data() unspecified error 

100 enroll_background() enrollment directory not found 
101 enroll_background() error extracting image(s) from ten print 
102 enroll_background()  error writing enrollment data                          
103 enroll_background() insufficient memory error 
200 set_background() enrollment directory not found 
300 enroll_latent() image size not supported 
301 enroll_latent() image resolution not supported 
302 enroll_latent() insufficient features found in latent 
400 image_search() enrollment directory not set 
401 image_search() insufficient memory available for search 
402 image_search() unable to access original ten-print record 

Page 9 of 11 



Latent Fingerprint SDK Test API Specification  26 Jan 2007 

3 Software and Documentation 

3.1 SDK Library and Platform Requirements 
Individual SDKs shall not include multiple “modes” of operation, or algorithm variations which 
require explicit activation by the calling application.  If participants wish to separately compare 
the performance of such features, they must submit separate SDKs.  Note that this requirement 
does not preclude implementation of internally (i.e. autonomously) selected modes or algorithm 
variations within a single SDK.  Only such features requiring external selection by the calling 
application are forbidden. 

Participants shall provide NIST with binary code only (i.e. no source code) − supporting files such 
as header (“.h”) files notwithstanding.  It is preferred that the SDK be submitted in the form of a 
single static library file (ie. “.LIB” for Windows or “.a” for Linux).  However, dynamic/shared 
library files are permitted.   

If dynamic/shared library files are submitted, it is preferred that the API interface specified by this 
document be implemented in a single “core” library file with the base filename ‘liblatent’ (for 
example, ‘liblatent.dll’ for Windows or ‘liblatent.so’ for Linux).  Additional dynamic/shared 
library files may be submitted that support this “core” library file (i.e. the “core” library file may 
have dependencies implemented in these other libraries). 

Note that dependencies on external dynamic/shared libraries such as compiler-specific 
development environment libraries are discouraged.  If absolutely necessary, external libraries 
must be provided to NIST upon prior approval by the Test Liaison. 

The SDK will be tested in non-interactive “batch” mode (i.e. without terminal support).  Thus, the 
library code provided shall not use any interactive functions such as graphical user interface (GUI) 
calls, or any other calls which require terminal interaction (e.g. calls to “standard input” or 
“standard output”). 

NIST will link the provided library file(s) to a C language test driver application (developed by 
NIST) using the GCC compiler (for Windows platforms Cygwin/GCC version 3.3.1 will be used; 
for Linux platforms GCC version 2.96 and GNU ld 2.11.90.0.8 will be used.  All GCC compilers  
use Libc 6).  For example, 

 
gcc  –o latenttest  latenttest.c  -L. –llatent 

 

Participants are required to provide their library in a format that is linkable using GCC with the 
NIST test driver, which is compiled with GCC.  All compilation and testing will be performed on 
x86 platforms running either Windows 2000 Professional SP4 (or higher) or Linux (kernel 2.4.7-
10 or higher) dependent upon the operating system requirements of the SDK.  Thus, participants 
are strongly advised to verify library-level compatibility with GCC (on an equivalent platform) 
prior to submitting their software to NIST to avoid linkage problems later on (e.g. symbol name 
and calling convention mismatches, incorrect binary file formats, etc.). 

3.2 Installation and Usage 
The SDK must install easily (i.e. one installation step with no participant interaction required) to 
be tested, and shall be executable on any number of machines without requiring additional 
machine-specific license control procedures or activation. 

The SDK’s usage shall be unlimited. No usage controls or limits based on licenses, execution 
date/time, number of executions, etc. shall be enforced by the SDK. 

Page 10 of 11 



Latent Fingerprint SDK Test API Specification  26 Jan 2007 

It is requested that the SDK be installable using simple file copy methods, and not require the use 
of a separate installation program.  Contact the Test Liaison for prior approval if an installation 
program is absolutely necessary. 

3.3 Documentation 
Complete documentation of the SDK shall be provided, and shall detail any additional 
functionality or behavior beyond what is specified in this document.  The documentation must 
define all error and warning codes. 

3.4 Speed Requirements (Phase I and II) 
All times given assume the use of a 2.8GHz Pentium IV equivalent or faster processor.  Time will 
be measured as “wall clock” elapsed time. 

The average time to enroll a single background ten-print record shall take no more than 150 
seconds (15 sec/image) for the primary SDK, and 80 seconds (8 sec/image) for the secondary 
SDK. 

The average time to enroll a single latent image shall take no more than 350 seconds for the 
primary SDK, and 250 seconds for the secondary SDK. 

The average time to search a single background ten-print record shall take no more than 0.2 
seconds for the primary SDK (0.02 sec/image), and 0.1 seconds for the secondary SDK (0.01 
sec/image). 

 

Page 11 of 11 


	Introduction
	1 Fingerprint Image Data
	1.2 Resolution, Dimensions and Orientation

	2 Test Interface Description
	2.1 Declarations
	2.2 NIST Provided Functions
	2.2.1 Extract Image Data
	2.2.2 Free Image Data

	2.3     SDK Provided Functions
	2.3.1 Enroll Background

	2.4 Error Codes and Handling

	3 Software and Documentation
	3.1 SDK Library and Platform Requirements
	3.2 Installation and Usage
	3.3 Documentation
	3.4 Speed Requirements (Phase I and II)




