

NIST ELFT-EFS
Evaluation of Latent Fingerprint Technology — Extended Feature Sets
Evaluation 1
Test Plan / API / Schedule

10 July 2009

Contents
1 Overview ..1
2 Participation...2
3 Data ...2

3.1 Datasets ..2
3.2 Format ..3
3.3 Features ..3
3.4 Resolution ..3
3.5 Dimensions and orientation ..3
3.6 Exemplar types..4
3.7 Finger positions...4
3.8 Dataset size ..4

4 Evaluation Criteria..4
4.1 Performance Metrics...4
4.2 Evaluation Subtests ..5
4.3 Reporting of Results ...5

5 Latent Matching Software..5
5.1 Overview..5
5.2 Test Platform ...6
5.3

..6
Execution protocol ..6

5.3.1 Sequential
5.3.2 Multithreaded...7
5.4 API ..7
5.4.1 Test Interface Description...7
5.4.2 Declarations ..7
5.4.3 NIST Provided Functions ...9
5.4.4 SDK Provided Functions ..10
5.4.5 Error Codes and Handling ...14
5.4.6 SDK Library and Platform Requirements ..15
5.4.7 Installation and Usage...16
5.4.8 Documentation...16
5.5 Software execution process ...16
5.6 Format of Candidate List ...16
5.7 Validation...17
5.8 Timing Requirements...17

6 Schedule and Software Submission Requirements ..17
7 EFS Fields Used ...18

1 Overview
The NIST Evaluation of Latent Fingerprint Technology — Extended Feature Sets (ELFT-EFS) is an
independently administered technology evaluation of latent fingerprint feature-based matching
systems. ELFT-EFS is being conducted by the National Institute of Standards & Technology
(NIST).

7/10/2009 1/20

ELFT-EFS Proposed Test Plan
WORKING DRAFT IN PROGRESS

ELFT-EFS is a complement to NIST’s Evaluation of Latent Fingerprint Technology (ELFT) testing
program. The ELFT evaluations to date have focused solely on automated feature extraction and
matching (AFEM) in the context of latent fingerprint identification.
ELFT-EFS will evaluate the accuracy of latent matching using features marked by experienced
human latent fingerprint examiners. The purpose of this test is to evaluate the current state of the
art in latent feature-based matching, by comparing the accuracy of searches using images alone
with searches using different feature sets. The features sets will include the current IAFIS latent
feature set, and different subsets of the Extended Feature Set (EFS) features proposed by
CDEFFS . A key result of the test is to determine when human feature markup is effective.
Because human markup is expensive in terms of time, effort, and expertise, there is a need to
know when image-only searching is adequate, and when the additional effort of marking
minutiae and extended features is appropriate.

1

The following summarizes the planned test:
• The evaluation will involve 1:N searches using latent 1000ppi images provided with

human markup of EFS features.
• Exemplars for the gallery will be images only. Exemplars will be 500ppi.
• The test will be an SDK-type test, in that participants will provide software, and all

processing will take place on NIST hardware.
• Different tests will be run for the following search types:

o Image only
o Image with region of interest markup
o Image with minutiae (IAFIS EFTS LFFS equivalent)
o Image with EFS features
o Minutiae only (IAFIS EFTS LFFS equivalent)

Test results will be made publicly available in a NIST report after the conclusion of the test.

2 Participation
Participation in Evaluation 1 is limited to all participants in the ELFT-EFS Public Challenge that
submitted results by the 28 June 2009 deadline.
All systems must comply with the API outlined in Section 5.4. Anonymous participation will not
be permitted. The Application form includes details regarding application and qualification. 2

3 Data

3.1 Datasets

Validation Dataset

A Validation Dataset will be provided to participants before the evaluation to verify the correct
operation of participants’ software before and after delivery to NIST.

Evaluation Dataset

The Evaluation Dataset will contain sequestered data, formatted in the same manner as the
Validation Dataset. The Evaluation Dataset will contain Privacy Act or FOIA Protected
Information and will not be released to the participants or the public. The Evaluation Dataset will
to the extent permitted by law be protected under the Freedom of Information Act (5 U.S.C 552)
and the Privacy Act (5 U.S.C. 552a) as applicable.

1 CDEFFS is the ANSI/NIST Committee to Define an Extended Fingerprint Feature Set. The current
working draft of the Extended Fingerprint and Palmprint Features document can be found at
http://fingerprint.nist.gov/standard/cdeffs/.
2 The Application form can be found at http://fingerprint.nist.gov/latent/elft-efs/

7/10/2009 2/20

http://fingerprint.nist.gov/latent/elft-efs
http://fingerprint.nist.gov/standard/cdeffs

ELFT-EFS Proposed Test Plan
WORKING DRAFT IN PROGRESS

3.2 Format
All images and data will be contained in ANSI/NIST files. All images will be 8-bit grayscale.

Each latent ANSI/NIST file in the evaluation will contain one Type-1 record, one Type-2 record,
zero or one Type-9 records, and one Type-13 record. All latent images will be in Type-13 records,
in uncompressed format.

Each exemplar ANSI/NIST file in the evaluation will contain one Type-1 record, and ten Type-14
records (one for each finger, with finger positions identified). All exemplar images will be in
Type-14 records. 500ppi exemplar images will be compressed using WSQ.

3.3 Features

Files containing exemplars will not have any features defined: no Type-9 record will be present.

Files containing latents may or may not have any features defined: zero or one Type-9 records
will be present. There will be tests comparing the accuracy of two primary types of searches:

• Image-only searches, in which the latent image will not be accompanied by a type-9
record.

• Feature-based searches, in which the latent image will be accompanied by a type-9 record
with features defined in fields 9.300-9.372, formatted in accordance with “Data Format
for the Interchange of Extended Fingerprint and Palmprint Features,” abbreviated here
as the “EFS Spec” (Extended Feature Set Specification). The test will evaluate different
combinations of EFS fields, so not all EFS fields may be present in any given search. The
subsets of features used (defined as Subsets LA-LG) are defined in Section 7.

Note: The current EFS Spec version is 0.4 (June 2009).
All of the latent IAFIS/EFS features will be provided with feature markup by human experts.
Note that all human markup will be conducted outside of ELFT-EFS and is not part of the
evaluation.
Note also that conformance testing of automatic extraction of CDEFFS features is not part of this
test. In other words, the evaluation will not be measuring how close automatically extracted
features are to examiner created features. Automated algorithms can use the extended features
defined for a latent search without explicitly computing them for the exemplar image, and thus it
must be emphasized that automated extraction of the extended features on the exemplar is not
necessarily the only nor the best way to use this information. For example, an examiner may
mark an area as a scar; for the exemplar, the matcher would not necessarily have to mark the area
as a scar, but may use that information to match against a corresponding area with many false
minutiae and poor ridge flow.

3.4 Resolution

All latent images will be 1000 pixels per inch.

Exemplar images will be at 500 pixels per inch. This resolution will be contained in field 14.009
(Horizontal pixel scale), which will be identical to field 14.010 (Vertical pixel scale).

3.5 Dimensions and orientation

Latent fingerprint images may vary from 0.3”x 0.3” to 2.0” x 2.0” (width x height), all at 1000ppi.
1st & 3rd quartiles are about 700‐1200 pixels (width) or 900‐1400 pixels (height).
Exemplar images will be approximately upright (in the same orientation as they were captured).
Neither latent nor exemplar images will be larger than 2.0” in either width or height.
Latent fingerprint images may vary in orientation from upright ±180°. Images from latent
subtests LB-LG will include the orientation direction and uncertainty fields (9.301). Images from
latent subtest LA will not.

7/10/2009 3/20

ELFT-EFS Proposed Test Plan
WORKING DRAFT IN PROGRESS

4 Evaluation Criteria

3.6 Exemplar types

All exemplars will include rolled or plain (segmented slap) fingerprints. The impression types
will include optical livescan and inked paper sources. The impression type will be noted in field
14.003.
Exemplars will always include all ten fingers, and are therefore referred to here as a 10-finger
exemplar set (also commonly called a ten print set).
Note that a 10-finger exemplar set will consist of either ten rolled prints, or ten plain prints.
In some cases, multiple sets of 10-finger exemplar sets associated with one person will be
included in the gallery. This association will be made explicit in the exemplar enrollment stage: at
the time of enrollment, exemplars that are known to belong to the same person will always share
the same subject ID.

3.7 Finger positions

Exemplars will be provided in complete 10-finger sets, all contained within a single ANSI/NIST
file, with finger positions noted.
The finger positions for latents will not be noted – no searches will be restricted to specific
fingers.

3.8 Dataset size

The largest size gallery used for Evaluation 1 will contain 100,000 subjects having two 10-finger
exemplar sets (rolled and plain impressions) per subject.
The total number of unique latent images is approximately 1,500, with the number of latent
searches based on section 4.2.

4.1 Performance Metrics
Performance metrics will be based on rank and matcher score:

• Rank will be reported by the number of true matches reported in each position in the
candidate list. For example, the Rank-1 metric is the proportion of searches in which the
c curves will also be
reported to show how many latent images are correctly identified at rank 1, rank 2, etc. A
CMC is a plot of identification rate vs. recognition rank. Identification rate at rank k is the
proportion of the latent images correctly identified at rank K or lower. A latent image has
rank k if its mate is the kth largest comparison score on the candidate list. Recognition
rank ranges from 1 to 100, as 100 is the (maximum) candidate list size specified in the
API.

orrect mate appears in the top position on the candidate list. CMC3

• Matcher score metrics are evaluated in terms of DET/ROC4 performance, by plotting
False Positive Identification Rate (FPIR) and False Negative Identification Rate (FNIR) for
all score values. Note that this approach requires that a given matcher score be
comparable between different latent searches. Both the absolute matcher score and the
probability of true match values (see Section 5.6) will be used for DET analysis.

3

4
Cumulative Match Characteristic
Detection Error Trade-off/Receiver Operating Characteristic

7/10/2009 4/20

ELFT-EFS Proposed Test Plan
WORKING DRAFT IN PROGRESS

4.2 Evaluation Subtests

The Evaluation is composed of the following subtests. For precise definitions of which features
will be present for each subtest: see Section 7. All latents in each subtest may or may not be
searched against all exemplars (galleries).

• Latent Subtests
o LA – image only
o LB – image + ROI
o LC – image + ROI + Pattern Class + Quality Map
o LD – image + IAFIS/EFTS equivalent features
o LE – image + baseline EFS
o LF – image + baseline EFS + Skeleton
o LG – IAFIS/EFTS equivalent features only

• Exemplar Subtests
o E1 – 100,000 subjects; 1 set of 10 rolled and 1 set of 10 plain impressions each; 500ppi
o E2 – 10,000 subjects; 1 set of 10 rolled impressions each; 500ppi
o E3 – 10,000 subjects; 1 set of 10 plain impressions each; 500ppi
o E4 – 10,000 subjects; 2 sets of 10 rolled impressions each; 500ppi
o E5 – 10,000 subjects; 3 sets of 10 rolled impressions each; 500ppi
o E6 – 10,000 subjects; 4 sets of 10 rolled impressions each; 500ppi

4.3 Reporting of Results

The ELFT-EFS Final Report will contain descriptive information concerning the evaluation,
descriptions of each experiment, aggregate test results across all participants, and individual test
results for each participant. All results will be reported for each participating system, with the
exception of results for different combinations of EFS features. Because not all participating
systems may implement all of the EFS features, results from those evaluations will be stated in
generic terms so that participants cannot deduce which features are used by other systems.
Note that the application form stipulates that each participant consents to the disclosure of its
performance.

Enrollment, feature extraction and search timing information will also be reported, with the
explicit caveat that speed of execution, for both enrollment and latent search, is of secondary
importance. The report will specify the hardware specifications used in the evaluation, and will
also note that operational latent searching algorithms are likely to be implemented in more
sophisticated hardware.

5 Latent Matching Software

5.1 Overview

Participants shall submit a set of SDKs (Software Development Kits) that provide the interfaces
defined by the ELFT-EFS API specified below. The SDKs shall be provided as static or dynamic
libraries to run on the NIST platform specified below. The ELFT-EFS API (Application
Programmer Interface) is modeled after the API from ELFT Phase 2. The most notable differences
from the ELFT Phase 2 API are that the exemplar and latent images and data provided to the
SDK will be contained in ANSI/NIST files, and exemplar feature extraction will process a single
exemplar per invocation (instead of the complete gallery). Also, the ELFT-EFS API specifies
operational time limits on a per-processor core basis, rather than per-machine.
Each participant shall submit

• one SDK for exemplar feature extraction and exemplar enrollment
• one SDK for latent feature extraction
• one SDK for latent 1-to-N search

NIST recognizes the proprietary nature of the participant’s software and will take all reasonable
steps to protect this. The software submitted will be in an executable library format, and no

7/10/2009 5/20

ELFT-EFS Proposed Test Plan
WORKING DRAFT IN PROGRESS

algorithmic details need be supplied. NIST agrees not to use the Participant’s software for
purposes other than indicated above, without express permission by the Participant.

5.2 Test Platform

The NIST ELFT-EFS Evaluation test platform consists of an array of blade servers having a
hardware configuration similar to:
Processor

• Dual 2.8 GHz/1MB Cache, Xeon (dual-core)
• 800 MHz Front Side Bus for PE 1855

Memory
• 16GB RAM (15GB available to applications)

Secondary storage
• 300GB 15K RPM Ultra SCSI Hard drives

The operating systems available (in order of preference) are:

• RedHat Enterprise Linux Server 5.1 (64-bit)
• Windows 2008 Server (64-bit)
• (Windows Server 32-bit may be available on request)

The available RAM for 64-bit SDKs will be no more than 15GB total. The available RAM for 32-
bit SDKs will be no more than 3GB per process.

5.3 Execution protocol

Each SDK tested will be allocated multiple blades/cores from the array, along with a subset of
the test data in order to maximize (time) efficiency through parallel operation.

Each SDK instance assigned to an individual blade or core will operate on a subset of the data,
using individual data copies (as needed) from a local storage device.
For purposes of execution, there are two classes of SDKs, (1) sequential and (2) multithreaded.
And each class the SDK may utilize either 32 or 64-bit execution mode. Note that each SDK
submitted (i.e. either of the two SDKs per participant) may be of a different class and execution mode. For
example, the Exemplar feature extraction / enrollment SDK may be sequential 32-bit and the Latent feature
extraction / search SDK may be multithreaded 64-bit.

It is highly recommended that SDKs implement multithreading using 64-bit execution mode.
However, if some participants are unable to submit multithreaded or 64-bit SDKs, we support
other modes of operation as outlined below.

5.3.1 Sequential

An advantage of sequential (i.e. non-multithreaded) SDKs is the ability to “manually” parallelize
SDK execution for a given test by executing multiple instances per blade server (e.g. one per
core). A potential drawback is that individual 64-bit SDK instances have the potential to over-
allocate available RAM, which may result in “swapping,” decreasing overall execution speed.
Another potential drawback is contention for resources given that each instance is executing
independently (i.e. without coordinated resource usage). For this reason NIST does not
recommend the submission of sequential SDKs.

As a simple example, the execution of a sequential SDK for a subtest requiring M latent searches
against N exemplars (i.e. Gallery size N), may allocate M searches amongst K available cores such
that each core is executing M/K searches total. The primary choice here is whether or not to
allocate all cores available on a given blade server, or a subset thereof. How much memory is
allocated by the SDK (limited by whether it is 32 or 64-bit mode) is a primary consideration.

7/10/2009 6/20

ELFT-EFS Proposed Test Plan
WORKING DRAFT IN PROGRESS

 5.4.1 Test Interface Description

Sequential SDKs which run in 32-bit execution mode shall have access to no more than 3GB per
process. NIST will execute four (4) SDK instances (one instance per core) on each available blade
server, in order to maximize processor and memory utilization.
Sequential SDKs which run in 64-bit execution mode shall have access of up to 15GB per process,
and the participant should inform NIST at submission time as to the SDK’s memory usage
requirements. It is strongly recommended that the SDK perform most efficiently when executed
as four (4) instances (one per core) on each blade server, where each instance allocates no more
than a quarter of available RAM (i.e. 3.75GB), as opposed to when executed as a single (1)
instance on each blade server which allocates all available RAM (i.e. 15GB). If more than 3.75GB
is allocated per instance, the number of cores which can be utilized per blade server (without
swapping) is essentially 15GB divided by the amount of RAM allocated per SDK instance
(rounded to the nearest whole number).

5.3.2 Multithreaded

An advantage of multithreaded SDKs is the automatic utilization of available processor and
memory resources through parallelization (without need for “manual” scheduling). Another
advantage is coordinated access (of each thread) to resources such as disk I/O. For this reason
NIST strongly recommends that submitted SDKs utilize multithreading aimed at maximizing
usage of 4 cores and run in 64-bit mode in order to have access of up to 15GB of RAM.
As a simple example, the execution of a multithreaded SDK for a subtest requiring M latent
searches of N exemplars (i.e. Gallery size N), will allocate M searches amongst K available blades
such that each blade is executing M/K searches total.
Multithreaded SDKs which run in 64-bit mode have full access to all cores and memory (15GB)
on each allocated blade. This approach clearly makes use of processing resources, and has the
potential to mitigate contention issues through a coordinated use of parallelism.
Multithreaded SDKs which run in 32-bit mode will be limited to 3GB of RAM per process, which
may limit their performance. Another option which exists here is for a multithreaded SDK to use
no more than 2 threads, where each SDK instance uses the maximum 3GB of RAM. If informed,
NIST could allocate two such SDKs per blade server in order to more fully utilize RAM.

5.4 API

Participants shall submit an SDK which provides the interfaces defined in section 5.4.4. Section
5.4.3 defines the interfaces to functions provided by NIST for use by the SDK. Sections 5.4.2 and
5.4.5 specify the declaration of constants, error codes, data-types and functions used by both.
The software undergoing testing will be hosted on NIST-supplied computers. The executable
software under test will be built up from two sources: participant-supplied (SDKs) and NIST
supplied (image extraction library and test driver).

5.4.2 Declarations

The following are declarations of data types and functions used in the Latent Fingerprint SDK
testing interface:

//
// Declarations of constants //
//

// Impression type codes
#define IMPTYPE_LP 0 // Live-scan plain

7/10/2009 7/20

ELFT-EFS Proposed Test Plan
WORKING DRAFT IN PROGRESS

#define IMPTYPE_LR 1 // Live-scan rolled
#define IMPTYPE_NP 2 // Nonlive-scan plain
#define IMPTYPE_NR 3 // Nonlive-scan rolled

// Finger position codes
#define FINGPOS_UK 0 // Unknown finger
#define FINGPOS_RT 1 // Right thumb
#define FINGPOS_RI 2 // Right index finger
#define FINGPOS_RM 3 // Right middle finger
#define FINGPOS_RR 4 // Right ring finger
#define FINGPOS_RL 5 // Right little finger
#define FINGPOS_LT 6 // Left thumb
#define FINGPOS_LI 7 // Left index finger
#define FINGPOS_LM 8 // Left middle finger
#define FINGPOS_LR 9 // Left ring finger
#define FINGPOS_LL 10 // Left little finger

//
// Declarations for the NIST provided library functions //
//

// Structure to hold a single fingerprint record (image+metadata)
struct finger_record
{

BYTE impression_type;
UINT16 resolution; // Image resolution in pixels/cm
BYTE finger_position;
UINT16 height; // Image height in pixels
UINT16 width; // Image width in pixels
BYTE *image_data; // 8-bit grayscale image data

};
typedef struct finger_record FINGER_REC;

// Extracts 10 fingerprint records from a ten-print (AN2K) file

INT32 extract_image_data(const char *tenprint_filename,
FINGER_REC **finger_recs);

// De-allocates the memory holding 10 fingerprint records

void free_image_data(FINGER_REC *finger_recs);

//

// Declarations for the SDK provided library functions //

//

// Extracts features from exemplar

INT32 extract_exemplar(const char *exemplarFilename,

const char *outputDir);

7/10/2009 8/20

ELFT-EFS Proposed Test Plan
WORKING DRAFT IN PROGRESS

 5.4.3 NIST Provided Functions

 5.4.3a Extract Image Data

// Creates a gallery from set of extracted exemplar features

INT32 create_gallery(const INT32 numExemplars,

const char **exemplarFeatFilenames,

const char *galleryDir);

 // Selects the current gallery for latent searching

INT32 set_gallery(const char *galleryDir);

// Extracts features from latent file

INT32 extract_latent(const char *latentFilename,

 const char *outputDir);

// Searches for the latent in the gallery

INT32 latent_search(const char *latentFeatFilename,

const char *outputDir);

INT32
extract_image_data(const char *tenprint_filename,

FINGER_REC **finger_recs);

Description
This function extracts ten fingerprint image records from a single (AN2K
formatted) ten-print record file. The caller shall pass tenprint_filename as a
pointer to the fully qualified pathname of an AN2K formatted ten-print record
file, and finger_recs as the address of a pointer of type FINGER_REC (see 5.4.2
above).

Upon return finger_recs will contain a pointer to an array of ten FINGER_REC
structures ordered by finger position from 1 (right thumb) to 10 (left little finger).
For any fingers that are missing from the original ten-print record file, the
image_data field in the respective FINGER_REC will be a NULL pointer.

Example
// Example of processing a ten-print record

FINGER_REC *finger_recs;

INT32 status=extract_image_data(“E000123.an2”, &finger_recs);

if (status == 0) {
for (i=0;i<10;i++) {

if (finger_recs[i].image_data != NULL)
process_valid_finger(finger_recs[i]);

else
process_missing_finger(finger_recs[i]);

7/10/2009 9/20

ELFT-EFS Proposed Test Plan
WORKING DRAFT IN PROGRESS

}
free_image_data(finger_recs); // see 5.4.3b below

}

Parameters

tenprint_filename (input): A pointer to a ten-print record filename.

finger_recs (output): The address of a FINGER_REC pointer.

Return Value

This function returns zero on success or a documented non-zero error code
otherwise.

5.4.3b Free Image Data

void
free_image_data(FINGER_REC *finger_recs);

Description
De-allocates all memory used by the array of FINGER_REC structures specified
by finger_recs which was allocated during a call to extract_image_data().

Parameters

finger_recs (input): A pointer to an array of FINGER_REC structures.

Return Value
None.

5.4.4 SDK Provided Functions

5.4.4a Exemplar Feature Extraction

INT32

extract_exemplar(const char *exemplarFilename,

const char *outputDir);

Description
This function produces a single proprietary formatted feature set file from a 10-
print exemplar set. The output from multiple calls to this function (i.e. multiple
proprietary feature set files) will be used to construct a gallery (see section 5.4.4b)
that is searchable by latent_search().

The 10-print exemplar set will be contained in an ANSI/NIST file with pathname
specified by exemplarFilename (e.g. “/mnt1/input/E1/E199999_1.an2”), and
that file will contain either 10 rolled or 10 segmented slap fingerprint images.

7/10/2009 10/20

ELFT-EFS Proposed Test Plan
WORKING DRAFT IN PROGRESS

The directory to which the proprietary feature set file shall be written is specified
by the pathname pointed to by outputDir (e.g. “/mnt/output/feats/E1/”).

The format of all pathnames will be canonical Unix style pathnames using
forward slash directory separators. The maximum total pathname length is 255
characters.

A single proprietary feature set file shall be written to the directory specified by
outputDir. No files other than the feature set file may be written. The filename of
the output feature set file is defined here as the base filename of
exemplarFilename with the extension “.an2” replaced by “.feat” (no quotes). For
example, if exemplarFilename =”/mnt1/input/E1/E199999_1.an2” and
outputDir = ”/mnt/output/feats/E1/”, the proprietary feature set file shall be
written as “/mnt/output/feats/E1/E199999_1.feat”.

No format is prescribed for the output feature data. For example if desired it
may contain images from the 10-print exemplar set. A feature file shall always be
output, regardless of any internal failures such as a failure of automated feature
extraction. The contents of the directory pointed to by outputDir (structure and
other contents) are not relevant. Pre-computation of feature data avoids
reprocessing of the original images upon subsequent calls to
latent_search().

The SDK shall use the function extract_image_data() (see 5.4.3a above)
provided by NIST to extract the raw grayscale image and metadata from the 10-
print exemplar set file specified by exemplarFilename. Note that each call to
extract_image_data() allocates memory to hold the extracted image and
metadata, so this memory should be de-allocated using the NIST provided
free_image_data() (see 5.4.3b above) function when no longer needed.

Return Value

This function returns zero on success or a documented non-zero error code
otherwise.

5.4.4b Gallery Creation

INT32

create_gallery(const INT32 numExemplars,

const char **exemplarFeatFilenames,

const char *galleryDir);

Description

This function writes a proprietary enrolled gallery to galleryDir (e.g.
”/mnt/output/gallery/E1/”), based on a list of exemplar feature set file
pathnames specified by exemplarFeatFilenames. The gallery shall be usable in
read-only mode by subsequent calls to latent_search(), and shall associate
all exemplar feature sets having the same subject ID (see below). The format of
the gallery is at the discretion of the SDK provider. Subdirectories and multiple
files may be created within galleryDir. All data produced by the SDK during the

7/10/2009 11/20

ELFT-EFS Proposed Test Plan
WORKING DRAFT IN PROGRESS

execution of this function shall be stored exclusively to the directory specified by
galleryDir.
The list of exemplar feature set file pathnames is contained in
exemplarFeatFilenames, which is an array of pointers having length
numExemplars + 1, where each element of the array is a pointer to an exemplar
feature set file pathname. The last element of the array will be equal to 0 (i.e. a
NULL pointer).

The format of all pathnames will be canonical Unix style pathnames using
forward slash directory separators. The maximum total pathname length is 255
characters.
Each exemplar feature set file pathname will be formatted dirPath“E”subjectID
“_” instance “.feat” (no quotes or spaces), where dirPath is the full directory path
of the file, subjectID is a 6-digit numeric ID (with leading zeros) uniquely
identifying the subject, and instance is a 1-digit arbitrary numeric index to
differentiate between multiple exemplar sets belonging to the same subject. For
example, “/mnt/output/feats/E1/E199999_1.feat”

Return Value

This function returns zero on success or a documented non-zero error code
otherwise.

5.4.4c Set Gallery

INT32

set_gallery(const char *galleryDir);

Description

This function selects the gallery which shall be used by all subsequent calls to
latent_search(). The directory pathname specified by galleryDir (e.g.
”/mnt/output/gallery/E1/”) shall contain the gallery produced by a prior call
to create_gallery().

The format of the pathname will be canonical Unix style pathnames using
forward slash directory separators. The maximum total pathname length is 255
characters.

Return Value

This function returns zero on success or a documented non-zero error code
otherwise.

5.4.4d Latent Feature Extraction

INT32

7/10/2009 12/20

ELFT-EFS Proposed Test Plan
WORKING DRAFT IN PROGRESS

extract_latent(const char *latentFilename,

const char *outputDir);

Description
This function produces a single proprietary formatted feature set file from an
ANSI/NIST file containing a set of 0 or more manually extracted features and a
latent fingerprint image (except for subtest LG, see section 7). The proprietary
formatted feature set file output by this function will be used as input to
latent_search().

The ANSI/NIST file will be specified by a pathname pointed to by
latentFilename (e.g. “/mnt1/input/L3/L12ABC.an2”). The directory to which
the proprietary feature set file shall be written is specified by the pathname
pointed to by outputDir (e.g. “/mnt/output/feats/L3/”).

The format of all pathnames will be canonical Unix style pathnames using
forward slash directory separators. The maximum total pathname length is 255
characters.

A single proprietary formatted feature set file shall be written to the directory
specified by outputDir. No format is prescribed for the feature data. The feature
data may include any or all manually extracted features already present in the
ANSI/NIST file (e.g. it may encode them in a proprietary format). For example if
desired it may contain the latent fingerprint image. No files other than the
feature set file may be written. A feature file shall always be output, regardless
of any internal failures such as a failure of automated feature extraction. The
filename of the output feature set file is defined here as the base filename of
latentFilename with the extension “.an2” replaced by “.feat” (no quotes). For
example, if latentFilename = ”/mnt1/input/L3/L12ABC.an2” and outputDir =
”/mnt/output/feats/L3/”, the proprietary feature set file shall be written as
“/mnt/output/feats/L3/L12ABC.feat”.

Return Value

This function returns zero on success or a documented non-zero error code on
failure.

5.4.4e Latent Search

INT32

latent_search(const BYTE *latentFeatFilename,

const char *outputDir);

Description

This function searches the current gallery (as selected by set_gallery()) for
zero or more candidates matching the input latent feature set (created by
extract_latent()) whose pathname is specified by latentFeatFilename, and
outputs a candidate list to the directory specified by outputDir. The format of
the candidate list is specified in section 5.6.

7/10/2009 13/20

ELFT-EFS Proposed Test Plan
WORKING DRAFT IN PROGRESS

 5.4.5 Error Codes and Handling

The selection of features on which to match is entirely at the discretion of the
SDK. Note that during the call to this function the directory containing the
current gallery and its contents are read-only.

The format of all pathnames will be canonical Unix style pathnames using
forward slash directory separators. The maximum total pathname length is 255
characters.

One candidate list file (per call to this function) shall be written to the directory
specified by outputDir. A candidate list file shall always be output, regardless of
any internal software failures. The filename of the candidate list file is defined
here as the base filename of latentFeatFilename with the extension “.feat”
replaced by “.CL” (no quotes). For example, if latentFeatFilename =
”/mnt1/output/feats/L3/L12ABC.feat” and outputDir =
”/mnt/output/clists/L3/”, the candidate list file shall be written as
“/mnt/output/clists/L3/L12ABC.CL”.

Note 1: Since it may not be possible to keep all gallery data in memory, it might be
necessary for the software to repeatedly retrieve the data from disk, and this extra fetch
time will be included in the execution time measurement.
Note 2: The candidate list shall only depend on the inputs to this function and the
currently selected gallery (not on any previous results from this function). Thus,
identical latent feature inputs and gallery data shall produce identical candidate lists
independent of all prior calls to this function.

Return Value

This function returns zero on success or a documented non-zero error code on
failure.

The participant shall provide documentation of all (non-zero) error or warning return codes (see
section 5.4.8, Documentation).
The application should include error/exception handling so that in the case of a fatal error, the
return code is still provided to the calling application.
All messages which convey errors, warnings or other information shall be suppressed, except
where they may provide additional information not conveyable by the defined error codes alone
(such as listing a specific file related to the error).

At minimum the following return codes shall be used.

Return
code

Function Explanation

0 All Success
-1 extract_image_data() unable to open file
-2 extract_image_data() Incorrect file format
-3 extract_image_data() error parsing ten-print file
-4 extract_image_data() error decompressing image
-5 extract_image_data() insufficient memory error

7/10/2009 14/20

http:mnt/output/clists/L3/L12ABC.CL

ELFT-EFS Proposed Test Plan
WORKING DRAFT IN PROGRESS

 5.4.6 SDK Library and Platform Requirements

-6 extract_image_data() unspecified error
100 extract_exemplar() exemplar file not found
101 extract_exemplar() output directory not found
102 extract_exemplar() unable to write feature data
103 extract_exemplar() error from extract_image_data (write to stdout)
201 create_gallery() feature file not found (write filename to stdout)
202 create_gallery() output directory not found
203 create_gallery() unable to write gallery enrollment data
204 create_gallery() insufficient memory available
301 extract_latent () latent file not found
302 extract_latent() output directory not found
303 extract_latent() unable to write feature data
401 set_gallery() gallery directory not found

gallery directory not set
502 latent_search() insufficient memory available
503 latent_search()

501 latent_search()

feature file not found
504 latent_search() candidate list directory not found
505 latent_search() unable to write candidate list

Participants shall provide NIST with binary code only (i.e. no source code) − supporting files
such as header (“.h”) files notwithstanding.

Note that dependencies on external dynamic/shared libraries such as compiler-specific
development environment libraries are discouraged. If absolutely necessary, external libraries
must be provided to NIST upon prior approval by the Test Liaison.
The SDK will be tested in non-interactive “batch” mode (i.e. without terminal support). Thus, the
library code provided shall not use any interactive functions such as graphical user interface
(GUI) calls, or any other calls which require terminal interaction.

The use of multi-threading by the SDK is encouraged as the NIST test platform includes dual-
processor dual-core support. The SDK need not be “thread safe” as the NIST test driver itself is
single threaded. If multi-threading is utilized by the SDK is shall be documented.
NIST will link the provided library file(s) to a C language test driver application (developed by
NIST) using the GCC compiler (for Windows platforms Cygwin/GCC version 3.3.1 will be used; for
Linux platforms GCC version 4.1.2 and GNU ld 2.17.50.0.6-5.el5 will be used. All GCC compilers use
Libc 6). For example,

gcc –o latenttest latenttest.c -L. –lelftEfsSDK

Participants are required to provide their library in a format that is linkable using GCC with the
NIST test driver, which is compiled with GCC. All compilation and testing will be performed on
x86 platforms running either Windows 2008 Server or Red Hat Enterprise Linux Server release
5.1 “Tikanga” (kernel 2.6.18-53 or higher) dependent upon the operating system requirements of
the SDK. Thus, participants are strongly advised to verify library-level compatibility with GCC
(on an equivalent platform) prior to submitting their software to NIST to avoid linkage problems
later on (e.g. symbol name and calling convention mismatches, incorrect binary file formats, etc.).

7/10/2009 15/20

ELFT-EFS Proposed Test Plan
WORKING DRAFT IN PROGRESS

 5.4.7 Installation and Usage

 5.4.8 Documentation

 5.5 Software execution process

 5.6 Format of Candidate List

The SDK must install easily (i.e. one installation step with no participant interaction required) to
be tested, and shall be executable on any number of machines without requiring additional
machine-specific license control procedures or activation.
The SDK’s usage shall be unlimited. No usage controls or limits based on licenses, execution
date/time, number of executions, etc. shall be enforced by the SDK.

It is requested that the SDK be installable using simple file copy methods, and not require the use
of a separate installation program. Contact the Test Liaison for prior approval if an installation
program is absolutely necessary.

Complete documentation of the SDK shall be provided, and shall detail any additional
functionality or behavior beyond what is specified in this document. The documentation must
define all error and warning codes.

The execution process will take place in three passes:
• Exemplar feature extractions and Gallery creation
• Latent image feature extractions
• Latent searches against each Gallery

The result of the latent_search() function is a candidate list, saved as a tab-delimited text file. The
candidate list has a fixed length of one hundred (100) candidates. The candidate list consists of
two parts, a required and an optional part.
The required part consists of:

• the ID of the mating exemplar subject
• the matching finger number
• the absolute matching score
• an estimate of the probability of a match (0 to 100)

The optional part consists of:
• the number of minutiae identified in the latent
• the number of latent minutiae which were successfully matched

Sample Candidate List
Required Part Optional Part

Rank Mate ID Finger
No.

Abs.
Score

Prob. Of
True
Match

No. Latent
Minutiae

Minutiae
Matched

1 073141 2 3513 93 18 12

2 199999 2 605 5 18 5

3 004334 3 513 4 18 5

…

100 920792 9 422 1 18 4

Table 1: Sample candidate list

The candidate list is ordered based upon the absolute score, with the highest score in the first
position.

The parameter Probability of True Match is an estimate of the probability that the candidate is a
true match. Its values range from 0 to 100.

7/10/2009 16/20

ELFT-EFS Proposed Test Plan
WORKING DRAFT IN PROGRESS

 5.7 Validation

Each candidate list will be stored in an individual tab-delimited ASCII text file. Within the
candidate list file, all required and optional parts for an individual candidate entry (i.e. row)
should be written one per-line in the order shown above, with each part (i.e. column) separated
by a single tab character.
Note that “Mate ID” shall be written as the 6-digit subjectID (see section 5.4.4b) part of the
exemplar filename specified to the create_gallery() function. E.g. if
“/mnt/output/feats/E1/E199999_1.feat” was enrolled to the gallery being searched, the Mate ID
shall be “199999”, without quotes). Note also that the candidate list refers to a subject and finger
position, not a specific exemplar impression.

As discussed in Section 3.1, a Validation Dataset will be provided to verify the correct operation
of participants’ software before and after delivery to NIST. Using this data and the submitted
SDK, identical outputs must be generated by NIST to those submitted by participants in order for
the submitted SDK to be accepted. Acceptance of the submitted SDK must occur prior to the
deadlines specified in section 6.
The Validation Dataset will be a small subset of the ELFT-EFS Public challenge dataset.

5.8 Timing Requirements

The ELFT-EFS Evaluation test must place limits on the processing time of the major operations
involving feature extraction and enrollment (exemplars and latents) and searching. There are
two purposes for such limits. The first is to enable practical execution of the test within an
acceptable period of time. The second is to measure performance at throughput rates comparable
to large-scale operational scenarios. Our sponsors have interest in relevance of results to near-
term operational requirements. The size of the test will be dictated to a large extent by these
throughput numbers.

SDK time limits are specified on a "per-core" basis, meaning that the specified operational rates
are for a single core – in other words, rates will be specified from the perspective of a sequential
process executing on a single CPU core. For example, if the specified rate for latent search is R
exemplars per second, then a multithreaded SDK instance operating on 4 cores must achieve an
aggregate rate of 4 x R. All time limits below are averages with respect to the hardware used on
the NIST test platform specified above.

The search time requirements specified below are for Subtests LC-LG: see Section 7 for details. It
is recognized that for some implementations, throughput for image�only searches (Subtest LA)
may be slower due to less effective screening. It is allowable for throughput on Subtest LA
(image only) and LB (image+ROI) to be slower by a factor of up to 2x than the stated search time.

Proposed time limits for the ELFT-EFS Evaluation are (per single CPU core):

Exemplar feature extraction 100 sec/10-finger exemplar set (rolled or pre-segmented slap)

Latent enroll 120 sec/latent

Search 0.025 sec/10-finger exemplar set
Rate of 40 exemplar sets/sec, per latent (exemplar set = 10 all rolled or all plain prints)

Table 2: Timing requirements

To enable enrolling the gallery before the evaluation itself takes place, we are requesting the
exemplar feature extraction/enrollment SDKs prior to the latent feature extraction/search SDKs.
For each SDK, we have both early and final deadlines: we will accept SDKs as early as the early
deadline, and will use the period from receipt of the SDKs until the final deadline to validate
correct operation of the SDKs, but must have fully operational software by the final deadline.
Between the early and final deadlines, we will report any software issues encountered, and will
accept software replacements.

7/10/2009 17/20

6 Schedule and Software Submission Requirements

ELFT-EFS Proposed Test Plan
WORKING DRAFT IN PROGRESS

7 EFS Fields Used

If major software problems arise during the execution of the evaluation (i.e. after the submission
deadline), reasonable attempts will be made to resolve the issue(s) through reporting and receipt
of replacement software. However replacement software must not include algorithm
enhancements beyond those addressing the specific problem(s) reported.

Registration/Withdraw
• Registration form online: 13 July 2009
• Registration deadline: 27 July 2009
• Deadline for anonymous withdraw: 16 August 2009

Exemplar feature extraction / enrollment SDKs:
• Early deadline: 2 August 2009
• Final deadline: 16 August 2009
• Preparation of galleries will start when SDKs are validated, but no later than Monday 17

August

Latent feature extraction / search SDKs:
• Early deadline: 16 August 2009
• Final deadline: 30 August 2009
• Latent evaluations to start post SDK validation, but no later than Monday 31 August

Subtest combinations for ELFT-EFS Evaluation 1

Abb. # Field Name

Subtest
LA:

Image
only

Subtest
LB:
ROI

Subtest
LC:
ROI,

Pattern
Class,
Quality

Map

Subtest
LD:

IAFIS/
EFTS

equivalent

Subtest
LE:

Baseline
EFS

Subtest
LF:

Baseline
EFS
with

Skeleton

Subtest
LG:

IAFIS/
EFTS

equivalent

With Image Without
Image

LEN 9.001 Logical Record
Length Yes Yes Yes Yes Yes Yes Yes

IDC 9.002 Image Designation
Character

Yes Yes Yes Yes Yes Yes Yes
IMP 9.003 Impression Type

Yes Yes Yes Yes Yes Yes Yes
FMT 9.004 Minutiae Format

Yes Yes Yes Yes Yes Yes Yes
ROI 9.300 Region of Interest Yes Yes Yes Yes Yes Yes
ORT 9.301 Orientation Yes Yes Yes Yes Yes Yes
FPP 9.302 Finger/Palm

Position(s)
PAT 9.307 Pattern Classification Yes Yes (**) Yes Yes Yes (**)
RQM 9.308 Ridge Quality Map Yes Yes Yes
RQF 9.309 Ridge Quality Map

Format Yes Yes Yes
RFM 9.310 Ridge Flow Map Yes
RFF 9.311 Ridge Flow Map

Format Yes
RWM 9.312 Ridge Wavelength

Map
RWF 9.313 Ridge Wavelength

Map Format

7/10/2009 18/20

ELFT-EFS Proposed Test Plan
WORKING DRAFT IN PROGRESS

TRV 9.314 Tonal Reversal Yes Yes Yes Yes Yes Yes
PLR 9.315 Possible Lateral

Reversal

FQM 9.316
Friction Ridge Quality
Metric

PGS 9.317 Possible Growth or
Shrinkage

COR 9.320 Cores Yes Yes Yes Yes
DEL 9.321 Deltas Yes Yes Yes Yes
CDR 9.322 Core-Delta Ridge

Counts Yes Yes Yes Yes
CPR 9.323 Center Point of

Reference Yes Yes
DIS 9.324 Distinctive

Characteristics Yes Yes
NCR 9.325 No Cores Present Yes Yes
NDL 9.326 No Deltas Present Yes Yes
NDC 9.327 No Distinctive Areas

Present Yes Yes
MIN 9.331 Minutiae Yes (*) Yes Yes Yes (*)
MRA 9.332 Minutiae Ridge Count

Algorithm
MRC 9.333 Minutiae Ridge

Counts Yes Yes Yes Yes
NMP 9.334 No Minutiae Present Yes Yes
RCC 9.335 Ridge Count

Confidence Yes Yes
DOT 9.340 Dots Yes Yes
INR 9.341 Incipient Ridges Yes Yes
CLD 9.342 Creases and Linear

Discontinuities Yes Yes
REF 9.343 Ridge Edge Features Yes Yes
NPP 9.344 No Pores Present Yes Yes
POR 9.345 Pores Yes Yes
NDT 9.346 No Dots Present Yes Yes
NIR 9.347 No Incipient Ridges

Present Yes Yes
NCR 9.348 No Creases Present Yes Yes
NRE 9.349 No Ridge Edges

Present Yes Yes
MFD 9.350 Method of Feature

Detection
COM 9.351 Comments

LPM 9.352 Latent Processing
Method

EAA 9.353 Examiner Analysis
Assessment Yes Yes

EOF 9.354 Evidence of Fraud

LSB 9.355 Latent Substrate

LMT 9.356 Latent Matrix

LQI 9.357 Local quality issues Yes Yes
AOC 9.360 Area of

Correspondence
CPF 9.361 Corresponding Points

or Features
ECD 9.362 Examiner

Comparison
Determination

SIM 9.372 Skeletonized Image Yes (***)
RPS 9.373 Ridge Path Segments

7/10/2009 19/20

ELFT-EFS Proposed Test Plan
WORKING DRAFT IN PROGRESS

7/10/2009 20/20

