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Abstract

We introduce a parallelization of the maximum-
likelihood cosine transform. This transform consists of a
computationally intensive iterative fitting process, but is
readily decomposed for parallel processing. The parallel
implementation is not only scalable, but has also brought
the execution time of this previously intractable problem to
feasible levels using contemporary and cost-efficient high-
performance computers, including an SGI Origin 2000, an
SGI Onyx, and a cluster of Intel-based PCs.

Key words : parallel processing, emission spectroscopy,
cosine transform, maximum-likelihood inversion, perfor-
mance evaluation, DParLib, MPI.

1 Introduction

Michelson interferometers used in optical spectroscopy
produce interferograms that can be considered a super-
position of cosine functions. The optical spectrum is
estimated from this interferogram using some transform
method, typically the Fourier transform, a least-squares
procedure, which presumes normally-distributed noise. A
more general maximum-likelihood cosine transform has
been demonstrated to have several advantages over the
Fourier transform when estimating the spectrum for typi-
cally sparse emission spectra. In particular, a maximum-
likelihood inversion derived for a Poisson noise distributed
signal has been demonstrated to eliminate the often trouble-
some noise redistribution associated with the Fourier trans-
form of such signals [2]. The Fourier transform distributes
all noise in the signal as white (the spectral character of
the noise) while the maximum-likelihood cosine transform

distributes the signal-carried noise to the signal, preventing
the masking of small spectral features by the signal-carried
noise from the large spectral features. The spectral esti-
mates obtained using maximum-likelihood inversion have
another potentially useful property—a line-shape which is
burdened with a less distorting transform-function than the
sinc function of the Fourier transform.

In this paper we present a parallel implementation of the
maximum-likelihood inversion method. It will be shown
that the parallel implementation is not only scalable, but
has also brought the execution time of this problem to
feasible levels using contemporary and cost-efficient high-
performance computers including Origin 2000, SGI Onyx,
and PC clusters. By parallelizing this application, we were
able to reduce the running time of the program to seconds
rather than hours. The rest of this paper is organized as
follows: Section 2 describes the maximum-likelihood in-
version and the sequential code implementation, Section 3
describes the computational methodology, where it outlines
the sequential and the parallel algorithms, as well as their
run-time cost, Section 4 shows the experimental results ob-
tained on the different machines used, and Section 5 con-
tains discussion and future work.

2 Maximum-Likelihood Inversion

The method of maximum-likelihood (ML) was first de-
scribed in a 1922 paper by Fisher [4]. It is a method for
estimating parameters for a model given a set of observed
data. The essential feature of ML is to find a set of val-
ues for the model parameters for which the probability of
observing the given data is highest. In this application, we
model the data as the superposition of cosine functions and
the parameters to be estimated by ML are the coefficients of
those cosine functions.



The ML inversion method has been proposed for use
in processing interferograms by Bialkowski [2]. The
expectation-maximization (EM) algorithm used to compute
the maximum likelihood is described by Shepp, Vardi, and
Kaufman [11, 12] and also by Lange and Carson [10]. The
reader is referred to those papers for more details on the de-
velopment of the EM algorithm. The basic algorithm con-
sists of iterating the following two equations:��������	��
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is the estimated interferogram, the
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are estimates of optical power, � �A� � � ��
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are the basis set
functions,

�� �B��� and
�� ����� � � are parameter estimates after the

k and k+1 iterations and the � ��� � � ��
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are normalized on the� �
interval.

�� ��� � ��� � � is the expectation of the interferogram
for iteration k. Initial parameter values,

�� � � � , are typically
set to unity in the computations here. Convergence occurs
when the sums to the right of

�� ��� � approach 1.

3 Computational Methodology

The algorithm was first implemented sequentially to get
an initial baseline of the properties with respect to speed
and to look at the results in terms of the physics. Figure 1
gives an outline of the serial algorithm. There are CEDGF�H in
the interferogram which is denoted

�����I�	�
, where the

���
are

the points. There are C"J	K values of frequency which are
denoted

�� � . LNM and
�PORQ

are constants. The maximum-
likelihood inversion method uses two input files, one con-
tains the frequencies of interest and the other contains the
interferogram points.

In each iteration, we perform a computation based on
all data points

� C DGF�H � for each of the frequencies of in-
terest

� C J	K � leading to a sequential time complexity ofS � C J	K C D F�H C � F�T6K � . Following the sequential implementa-
tion, we created a parallel algorithm. Since the number of
points in the interferogram is much larger than the number
of frequencies of interest, we decided to parallelize across
the interferogram. This turns this problem into a data-
parallel SPMD computation.

Two libraries supporting the data-parallel programming
model, using the Message Passing Interface (MPI), have
been developed at the National Institute of Standards and
Technology. One was written for Fortran 90 programs,
known as “F90-DParLib” [3, 7], and the other is written
for C programs, known as “C-DParLib” [5]. Both of these

UWV�X�Y�Z
(program parameter)U\[ ]^Z

(program parameter)

read _`	a6b U [ ] c
read dWe�fhgjilk<mGn	o;p b UWV�X�Y cqWr	sGtlu mGv;k<nxw%y a b U\[ ] c Z{z	| }~ p b UWV X�Y c Z b9�*� }�| �h�5UWV�X�Y cE��������v��.e s���s aB� p b U�[ ]	�6U V�X�Y c Z�}�| ���W� b z������	� b �G�E� _` a � ~ p c�cqWr	sGt w�y a�b U [G]Gc Z $��l�����p v��.e s���s aB� p
For each iteration
BEGIN ¢¡ ~�qWr£sGt%u m v�k�n�w�y a b U\[G] c Z qWr	sxt%u m v;k<nxw%y a

For all points j
BEGINqWr	s gjilk<mGn	o p b U V�X�Y c Z $��¥¤;¦a v.��e s��As a1� p �  ¢¡ ~�qWr£sGt%u m v�k�n�w�y a
END

For all frequencies i
BEGINqWr	sG§ n rx~ w%v�k a b U\[ ] c Z $ � ���,�p v.��e s��As a1� p �%¨ ©lª6« X,¬ ];[ -�l­ Y ª6« X�¬ ]�[ -qWr	sxt%u m v;k<nxw%y a b U\[ ] c Z¯®�° ± �l­ Y�²�V ¬�³�X ]6´�µ 3�l­ Y<² ´xµ 3 qWr£s § n r�~ w%v;k a
END

END

print
qWr	sGt%u m v�k<nxw%y a b U\[ ] c

print
qWr	s gjilk�m n£o p b U V�X�Y c

Figure 1. Pseudo-code for the sequential
maximum-likelihood inversion algorithm.

libraries use MPI for all inter-process communication. The
use of this industry standard library, MPI, ensures portabil-
ity of these libraries with respect to message passing opera-
tions.

Since the serial version of the maximum-likelihood al-
gorithm was implemented in C, C-DParLib was used to
support the parallel implementation. The data-parallel pro-
gramming paradigm supported by C-DParLib allows pro-
grammers to specify operations on arrays rather than oper-
ations on individual array elements, thus producing a sim-
ple SPMD (single program-multiple data) style of program.
The most important functions provided by C-DParLib allow
the programmer to specify the general distribution scheme
for dividing the data arrays among the processors, such as
block and block-cyclic data distribution along one or more
array axes, without requiring the specification of the ma-
chine size. All specific distribution parameters, such as how
many array elements are assigned to each processor are de-



termined at runtime by the library. This frees the program-
mer to concentrate on the algorithm and not the details of ar-
ray distribution. For many parallel algorithms, this data dis-
tribution service alone greatly simplifies the programming
task.

In addition to handling all of the details of data distribu-
tions, other commonly needed data-parallel operations are
also supported by C-DParLib such as array shifting, ele-
mental operations, and array reductions. For operations that
require communications, the library caches information for
later reuse so that some of the overhead cost can be amor-
tized over multiple operations. For operations not directly
supported by the library, the programmer has access to all
of the array distribution details needed to correctly access
the distributed arrays and may use any of the MPI routines
directly as needed.

We used this library to simplify the parallelization of
the maximum-likelihood algorithm across interferogram
points. Each processor receives a copy of all of the frequen-
cies, and one section, of size CED F�H���� , of the interferogram
where � is the number of processors used. This paralleliza-
tion resulted in a single communication step per iteration.
In this step, the interferogram is summed across all frequen-
cies. The sums are performed locally, and then a global re-
duction is performed. Thus the communication cost stays
constant as the size of the interferogram grows, but grows
as the number of frequencies is increased. Figure 2 gives
an outline of the parallel implementation.

Time complexity depicts how the time requirement of the
algorithm grows as a function of the problem size. Parallel
time complexity depends upon the data size and the number
of processors used. In parallel computing the overall time
depends on the time to perform the computation as well as
the time for the processors to communicate. This communi-
cation time is considered a pure overhead and could become
a major problem for scalability if communication require-
ments grow rapidly with either an increase in the problem
size or an increase in the number of processors. Using the
previous definitions, the computational and communication
costs are estimated respectively as:�����
	 D 
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Hence, the total estimated time complexity,
�

, of this
algorithm, which is defined by
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Where
� ����	 D is the time for computing one floating point

UWV�X�Y�Z
(program parameter)U\[ ]^Z

(program parameter)§ Z
(number of processors)

Proc 0: read _`	a6b U�[ ] c
Proc 0: read dWe�fhgjilk<mGn	o p b U V X,Y c
// Communications
Distribute array sections

U*V X�Y�� §
Copy arrays of

U\[G]
// Local operations on each proc.qWr	sGtlu mGv;k<nxw%y a<b U [ ]Gc Z{z	| }~ p b U V X�Y � § c Z b9����� }�| �h�5U V�X�Y cE��������v��.e s���s aB� p�� b U�[ ]��;U V�X�Y � § c Z }�| �	�h� b z5������� b �x�E� _` a � ~ p�� c�c
// CommunicationsqWr	sGt w�y a b U\[G] c Z $ � �����p v��.e s���s aB� p��
For each iteration
BEGIN

// Local operations ¢¡ ~�qWr£sGt%u m v�k�n�w�y a b U\[G] c Z qWr	sxt%u m v;k<nxw%y a
For all local points j
BEGINqWr	s gjilk<mGn	o p b U V�X�Y c Z $ � ¤;¦a v.��e s��As a1� p �  ¢¡ ~�qWr£sGt%u m v�k�n�w�y a
END

For all frequencies i (Local and Communications)
BEGINqWr	sG§ n rx~ w%v�k a b U\[ ] c Z $ � ���,�p v.��e s��As a1� p �%¨ ©lª6« X,¬ ];[ -�l­ Y ª6« X�¬ ]�[ -

// Local operationqWr	sxt%u m v;k<nxw%y a�b U\[ ] c Z¯®�° ± �l­ Y�²�V ¬�³�X ]6´�µ 3�l­ Y<² ´xµ 3 qWr£s § n r�~ w%v;k a
END

END
// CommunicationqWr	s gji�k<m n£o b U u k s � §�� c Z! ejk�"%m n b qWr£s gjilk�m n	o�p b UWV�X�Y�� § c�c
// Local prints to Processor 0
print

qWr	sGt%u m v�k<nxw%y a b U\[ ] c
print

qWr	s gjilk�m n£o b U V�X�Y c
Figure 2. Pseudo-code for the parallel
maximum-likelihood inversion algorithm.

result, and
� ����	�	

is the time for one communication (send-
ing or receiving one floating point data element). This
communication complexity does not take into account the
startup cost for sending and receiving each message. Al-
though for very small problems this startup cost can be sig-
nificant, for production size problems it should be insignif-
icant when compared to the total communications cost.

If the number of frequencies is much less than the num-
ber of points in the interferogram, and assuming �$# C DGF�H ,
the parallel time complexity should reduce to the computa-



tion cost only,
S ��� 3 � � ¦ � ¤;¦ � ������

�
. At some point, as we de-

crease the size of the problem on each processor, either by
decreasing CPDGF�H or increasing � , the communications cost
relative to the computation will increase and the program
will no longer scale. As we show in the next section, for the
problem sizes we anticipate and the number of processors
we have available, this has not yet become a problem.

4 Experimental Results

The parallel maximum-likelihood algorithm was exe-
cuted on three different machines: an Intel-based PC clus-
ter, an SGI Onyx, and an SGI Origin 2000. The PC clus-
ter consisted of 16 333 MHz Intel Pentium II processors
running Linux (kernel version 2.0.35). Communication be-
tween the PC nodes was over a 100 MB/s Ethernet. Each
node had a 256 MB RAM and a 4 GB local disk. The SGI
Origin 2000 consisted of 24 250Mhz MIPS R10000 CPUs,
with 24 GB of memory and 96 GB of disk space total. The
SGI Onyx consisted of 12 194-MHz MIPS R10000 CPUs,
3 GB of memory and 18 GB of scratch disk space. Both
SGI systems were running the IRIX 6.5 operating system.

The parallel code was executed on different number of
processors on the three different machines. Following are
graphs of run times and speedup, where each plotted point
is the median of eleven different timing runs on each of the
three different machines.

Figures 3 and 4 show the median time and speedup
for the PC cluster. Figures 5 and 6 show the median time
and the speedup for the SGI Origin 2000. The SGI Onyx
median time and speedup are shown in figures 7 and 8.
For all tests, the interferogram consisted of

�����
	
points and

computations were performed for
	
	

frequencies. In each
case speedup is nearly linear. The speedup was computed
by dividing the speed evaluated for one processor by the
speed evaluated by multi processors. The SGIs exhibited
super linear speedup relative to the 1 and 2 processor per-
formance. We attribute this to the more effective use of the
SGI’s cache memories once the per-processor problem size
has been reduced sufficiently.

5 Discussion and Future Work

We have implemented the maximum-likelihood algo-
rithm on parallel processors and have shown how it can ben-
efit from parallel processing. In addition, we have shown
that the parallel implementation is not only scalable and
portable, but has also brought the execution time of the
maximum-likelihood computations to feasible levels using
contemporary and cost-efficient high-performance comput-
ers including machines such as the SGI Origin 2000, SGI
Onyx, and PC clusters. The implementation was studied on
interferograms with sizes up to 4096.

Cos Interferogram = 4096 freqs. Cos Spectrum = 66 freqs.
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Figure 3. Median Timing for varying numbers
of processors on an Intel-based PC cluster.

Cos Interferogram = 4096 points. Cos Spectrum = 66 freqs.
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Figure 4. Speedup for varying numbers of
processors on an Intel-based PC cluster.



Cos Interferogram = 4096 freqs. Cos Spectrum = 66 freqs.
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Figure 5. Median Timing for varying numbers
of processors on an SGI Origin 2000.

Cos Interferogram = 4096 points, Cos Spectrum = 66 freqs.
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Figure 6. Speedup for varying numbers of
processors on an SGI Origin 2000.

Cos Interferogram = 4096 freqs. Cos Spectrum = 66 freqs.
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Figure 7. Median Timing for varying numbers
of processors on an SGI Onyx.

Cos Interferogram = 4096 points. Cos Spectrum = 66 freqs.
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Figure 8. Speedup for varying numbers of
processors on an SGI Onyx.



Future work will study the properties of the problem
on additional test cases with the goal of improving the
overall performance, with a focus on increasing the rate
of convergence. Initially we intend to pursue two possi-
ble approaches. First, as an alternative to the expectation-
maximization algorithm for calculating the maximum-
likelihood as described here, we will investigate the use of
an Iteratively Reweighted Least Squares (IRLS) algorithm
[8]. The maximum-likelihood technique described here is
effectively non-parametric in that it estimates parameters
for millions of peaks. In this application, it is known that
only around 10,000 peaks are possible. So, in the second
approach we propose to take advantage of knowledge of the
chemistry and physics of the sample being measured to de-
rive a parametric Poisson model.

Since beginning this work we have become aware of
several similar projects that have also parallelized the EM
algorithm, such as Gyulai et al. [6], Jones and Mitra [9],
and Bastiaens and Lemahieu [1], with the later 2 develop-
ing parallel algorithms for the imaging of positron emission
tomography (PET) data. Although this algorithm has been
shown to always converge [12], in most of the reports on
implementations, the speed of convergence has been cited
as an issue.

6 Disclaimer

Certain commercial equipment and software may be
identified in order to adequately specify or describe the sub-
ject matter of this work. In no case does such identification
imply recommendation or endorsement by the National In-
stitute of Standards Technology, nor does it imply that the
equipment or software is necessarily the best available for
the purpose.
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