# Effects of peptides on lipid phase behavior

Annie Bao, Poolesville High School Elizabeth Kelley, NIST Center for Neutron Research









# Background

- Fluid-mosaic model
  - Dynamic membrane
  - Amphipathic phospholipids
  - Proteins and sterols
- Amphipathic nanoassemblies



Micell

• Bilaye





#### **■**

## Background

- Gel or liquid phase
  - Temperature
  - Peptide concentration
- Hydrophobic matching
  - Tail length
  - Peptide properties



gel

http://biowiki.ucdavis.edu/Biochemistry/Lipids/Dynamics\_of\_Membrane\_Lipids/Lipid\_Conformational\_Transitions





fluid



# Background

- Antimicrobial peptides
  - Kill pathogenic microorganisms by interacting with membrane
  - Key component of natural immune defense system



http://journal.frontiersin.org/article/10.3389/fimmu.2013.00143/full



## Purpose

- Gain clearer understanding of interactions between lipids and peptides
- Future purposes of designing peptides for antibiotics
  - Tackling antibiotic resistance



## Methods

#### **DMPC**

- 14 C tail
- Transition temp: 24°C





emp: 55 °C

DOI: 10.1098/rsif.2009.0443 Lundbaek et al. J. R. Soc. Interface, 2010

#### Gramicidin A from Bacillus brevis

- Antimicrobial peptide that forms dimeric pores and leaks ions
- Extremely hydrophobic, helical structure
- Around 2.2 nm long



## Methods

- Control vesicle size through extrusions
- Measure vesicle size using dynamic light scattering (DLS)







### Methods

 Characterize phase transitions by measuring density at different temperatures



http://www.antonpaar.com/fileadmin/images/products/benchtop/density\_and\_sound\_velocity\_meter\_dsa\_5000\_m/dsa\_5000\_m.jpg



Characteristic frequency of air



Characteristic frequency of water



### Determining Melting Temperature





http://biowiki.ucdavis.edu/Biochemistry/Lipids/Dynamics\_of\_Membrane\_Lipids/Lipid\_Conformational\_Transitions

- Identify melting transition temperature with 1<sup>st</sup> derivative
- Measure width of melting transition with full width half max













### **Density of DMPC+DSPC Mixture**



#### Derivative of DMPC + DSPC



#### Density of DMPC + DSPC + 1% Gramicidin



## Conclusion

- The DMPC and DSPC solutions have one phase transition, from gel to fluid phase, that becomes broader as peptide concentration increases
- Mixtures of DMPC and DSPC exhibit two phase transitions: one from the gel to gel+fluid phase, where DSPC is still in gel phase, and from gel+fluid phase to fluid phase, where all components of the solution have melted
- The period of the gel+fluid phase is shorter for the solution with gramicidin, indicating the effect of peptide in solution

### Future Work

- Observing the location of the peptides using small angle neutron scattering
- Studying different combinations of lipids and peptides and increasing the concentration of the peptide even more

Outside of Cell

nside of Cel

Phospholipid

## Acknowledgments

- Elizabeth Kelley, NCNR
- NIST, NCNR, CHRNS
- Dr. Miller, Mr. Lee, Poolesville HS

## Questions?