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Background, Methodology, & Past Work 
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Crystallography & Powder Diffraction

IN: Neutron/X-Ray beams

Unknown Powder 
of Crystals  

Out: Particle intensities @ each angle

Space Group(230 
Possible Groups)
How do we Classify???
Powder Diffraction!!!

Atoms in Crystal
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Classification and Analysis: The Hard Part

3 examples of  
Crystals from 
the same SPG

3 examples of
Crystals from 
a diff SPG
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The Goal

?
Diffraction Experiments

Unknown Crystal 
Structure Indexing/Classification Space Group

Neural Network

Why Deep Learning??!
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Training Neural Networks 101 (Without the Math)

OR ?
Training Stage
Test Stage

1 epoch = 1 pass through dataset
Training = Homework, 
Testing = Exam
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What do we get?

[0.88,0.12] 

෍%𝑛 = 1[        %,       %] 

Top 1 Accuracy: If label is highest model prediction 

Top 3 Accuracy: If Label among top 3 model predictions
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Methodology
Architecture: ResNet CNN

(Lolla et al.,2022) Crystal Structure 
Information 
Databases

(ICSD, CSD, COD, etc)

PyXtal Data 
Augmentation

(Random 
structures)

PyCrysFML/

Database of 1D diffraction 
patterns(used for training)

Synthetic Data
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This is not a “unique” problem.



Addressing Previous and Current Limitations
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Issue 1: Labeling in previous studies

Extinction 
Group,

(99 Possible) Ext Group to 
SG 

(w more 
experiments)

Pattern to 
Ext Group

Space Groups(230 Possible)Diffraction Pattern

Space Groups that are apart of the same extinction group have identical patterns 
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Example of why this is a problem
Extinction 
Group 5

Space Group 
A

Space Group 
B

*Space Group A and B have 
identical diffraction patterns

Space Group A!

NO. Its Space Group B

When testing, top 3 accuracy might catch this issue, 
yet model is still being confused during training

What???

?
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Results: Space Groups vs Extinction Groups

Predicting Ext GroupPredicting SPG Group

• Both models have 10k per class
•  Using Balanced Synthetic 

Data(We will get there later)
• SPG Model achieved top 1 85% 

accuracy when outputs/labels 
were mapped to EXT
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Issue 2: Duplicates & De-Duplicating

SAME CHEMICAL + 
SPACE GROUP 

REALLY SIMILAR 
CRYSTAL 

STRUCTURES 

REALLY SIMILAR 
XRD PATTERNS
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Solution: De-Duping

ICSD Lost ~33% of data (~180k -> ~120k)!!!

Whole
Dataset

Chemical 
name

Space Group

De-Duplicated
Dataset

Ag1
SG: 17

Size = 1

Most Recent Entry

Closest to 
Median 
Volume

Size > 1

Si
ze

 =
 1

Size > 1

C3IN
SG: 67

C6H6OS
SG: 24
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Result: Duplicated vs De-Duplicated

Two Potential Explanations 

- Less Data (180k -> 120k), data scaling tests 
show this is worse

- Removing the “Cheating” in bias datasets
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Issue 3: Label Biases in Databases

****Majority of the 
dataset is covered by 
~10 Space Groups

Extinction Groups #

Fr
e

q
u

e
n

cy
 

Extinction Group Distribution in ICSD 
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Solution: Random Crystal Structure  Database
Overarching Question: Can Neural Networks find mapping from diffraction pattern to Crystal Structure? 

*Both methods create crystals that might be unnatural, yet still have “valid” patterns

We don’t ONLY Need real, physical crystals to do this

Two Methods to generate 
patterns:

Reflection(Less Realistic)
 PyCrysFML(more Realistic)

RANDOM 
CRYSTAL 

GENERATOR 
MAGIC

Request:
Dataset with 

{x} Entries

For each Ext 
Group, 

generate x/99 
crystal 

structures 

BALANCED DATASET
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Results: Biased vs Balanced Dataset

Bias on Unbiased Performance < Unbiased on Bias Performance 

Biased Set -> ICSD 
(120k Entries)
Balanced Set -> 
1.23 million “Fake” 
Crystals, 
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Duplicates vs Bias, and why they’re both bad

Duplicates
- Very (VERY VERY) Similar Entries

- Leads to cheating, model is 
“memorizing” certain patterns on test

Bias

- Some classes/groups are represented 
more then others

- Possible Origins:
◦ Man-Made:

◦ Errors in Classification(Misclassifying complex 
groups as similar ones)

◦ Certain types of materials are of more 
interest(Semiconductors, Magnetic Materials, etc)

◦ Nature Made: 
◦ More Materials fall under certain groups than others

- More Bias = Model learning 
distribution rather than mapping
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Issue 4: ResNet CNN Itself

“AI Moore's Law”: More data +  
compute = increase performance, 
unless there's a bottle neck

Architecture itself might be limited 

Potential  Issue 2: CNN Localization Potential Issue 1: Not Scaling
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Scaling Data – Unbiased Data

Conclusion:
Since more Data + Compute isn’t leading to 

better results, ResNet architecture may have 
limit to performance 
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Conclusions and Next Steps 
•De-duping matters, Past Studies Results have slight skew

•Bias Datasets don’t generalize well, like at all

•Testing on extinction groups not only leads to better performance, but our model just gets 
less confused

•ResNet is reaching a bottleneck, meaning its time to shift to a new architecture

•We do better then majority of previous studies 

Next Steps

•Get CNN to Reproduce high results on PyCrysFML data and real data

•(MAYBE) Train  a transformer 

•Publish! 
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Why our Balanced Models Underperform?

120k Amount 1.23m Amount 2m Amount 
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Why are are against bias: Model doesn’t learn
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Why we are against bias: Its not Natural
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Interpretability  – Ext Group
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Interpretably – Space Group
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Resolution

Increasing Resolution
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