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CrystaHography & Powder Diffraction
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Classification and Analysis: The Hard Part
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The Goal

Unknown Crystal

Structure Diffraction Experiments Indexing/Classification Space Group

Why Deep Learning??!

Neural Network




Training Neural Networks 101 (Without the Math)
f-é o '@'? Training Stage

Test Stage

TA 1 epoch =1 pass through dataset
Training = Homework, > P g

Testing = Exam
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Top 1 Accuracy: If label is highest model prediction

Top 3 Accuracy: If Label among top 3 model predictions
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Methodology

Architecture: ResNet CNN Synthetic Data

(Lolla et al.,2022) Crystal Structure /, PyXtal Data
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A semi-supervised deep-learning approach for automatic crystal structure
classification
S Lolla, H Liang, AG Kusne, | Takeuchi... - Applied ..., 2022 - journals.iucr.org
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Insightful classification of crystal structures using deep learning
AZiletti, D Kumar, M Scheffler, LM Ghiringhelli

Mature communications, 2018 - nature.com

Abstract

Computational methods that automatically extract knowledge from data are cntical for
enabling data-driven materials science. A reliable identification of lattice symmetry is a
crucial first step for materials characterization and analytics. Current methods require a
user-specified threshold, and are unable to detect average symmetries for defective
structures. Here, we propose a machine learning-based approach to automatically classify

structures by crvstal symmetry. First we represent crystals by

SHOW MORE ~
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Automated classification of big X-ray diffraction data using deep learning models
JE Salgado, S Lerman, Z Du, C Xu... 2023 - nature.com

In current in situ X-ray diffraction (XRD) techniques. data generation surpasses human

analytical capabilities, potentially leading to the loss of insights. Automated techniques

require human intervention, and lack the performance and adaptability required for material

exploration. Given the critical need for high-throughput automated XRD pattern analysis, we

present a generalized deep leaming model to classify a diverse set of materials’ crystal

systems and space groups. In our approach, we generate training data with a holistic ...
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Meural networks trained on synthetically generated crystals can exiract structural
information from ICSD powder X-ray diffractograms

H Schopmans, P Reiser, P Friederich

Digital Discovery, 2023 - pubs.rsc.org

Machine learning technigues have successfully been used to extract structural information
such as the crystal space group from powder X-ray diffractograms. However, training
directly on simulated diffractograms from databases such as the ICSD is challenging due
to its limited size, class-inhomogeneity, and bias toward certain structure types. We
propose an alternative approach of generating synthetic crystals with random coordinates

Crystal structure prediction via deep learning
K Ryan, J Lengyel, M Shatruk
Journal of the American Chemical Society, 2018 - ACS Publications

We demonstrate the application of deep neural networks as a machine-learning tool for
the analysis of a large collection of crystallographic data contained in the crystal structure
repositories. Using input data in the form of multiperspective atomic fingerprints, which
describe coordination topology around unique crystallographic sites, we show that the
neural-network model can be trained to effectively distinguish chemical elements based

A the tnnnlaay of their rrvetallnaranhic envirenmeant The madel alen idantifiae atrietiraly
by using the symmetry onerations of each space aroun Based on this anproach we
SHOW MORE ~ SHOW MORE ~
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A semi-supervised deep-leaming approach for automatic crystal structure
classiﬁcation

. - Applied ..,

The structural solution problem can be a daunting and time-consuming task. Especially in

2022 - journals.iucr.org

EA Riesel, T Mackey, H Nilforosl
Joumnal of the American Chemic!
Powder X-ray diffraction (
ct

learning (ML) approaches to PXRD analysis predll:1 only a subset of the total information

that comprises a crystal structure. We developed a pioneering generative ML model

desinned to 2olve crvatal structures from real-world exne

SHOW MORE v
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Crystal structure assignment for unknown compounds from x-ray diffraction
patterns with deep learning

L Chen, B Wang, W Zhang, S Zheng, Z Chen, M Zhang, C Dong, E Pan, S Li
Journal of the American Chemical Society, 2024 - ACS Publications

Determining the structures of previously unseen compounds from experimental
characterizations is a crucial part of materials science. |t requires a step of searching for
the structure type that conforms to the lattice of the unknown compound, which enables
the pattern matching process for characterization data, such as X-ray diffraction (XRD)
patterns. However, this procedure typically places a high demand on domain expertise,

thus creating an ohstacle for computer-driven automation Here we address this

SHOW MORE ~
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rimental PXRD data In addition

Powder X-ray diffraction pattern is all you need for machine-learning-based
symmetry identification and property prediction

BD Lee, JW Lee, WB Park, J Park, MY Cho, S Pal Singh, M Pyo, KS Sohn

Advanced Intelligent Systems, 2022 - Wiley Online Library

[PDF] acs.org

Full View Herein, data-driven symmetry identification, property prediction, and low-dimensional

embedding from powder X-Ray diffraction (XRD) patterns of inorganic crystal structure

database (ICSD) and matenals project (MP) entries are reported. For this purpose, a fully

convolutional neural network (FCN), transformer encoder (T-encoder), and variational
autoencoder (VAE) are used. The results are compared to those obtained from a well-

ectahliched rruetal aoranh convolitional nenral network (CErhIsY

SHOW MORE ~

vy Save U9 Cite Cited by 46 Related articles All 4 versions 9

tunirally invah

A tack-enerified emall

lowards end-to-end structure determination from x-ray dittraction data using
deep learning
G Guo, J Goldfeder, L Lan, A Ray, AH Yang, B Chen, SJL Billinge, H Lipson

| science of determining the structure of

orm, by analyzing their x-ray diffraction (XRD)
available as crystalline powder, powder
many fields. However, powder crystallography
~<.-.on, and therefore the structural inference

res alaborious nroceze of itera

s e

1 =tructural refinement and domain
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Classification of crystal structure using a convolutional neural network
WB Park, J Chung, J Jung, K Sohn, SP Singh, M Pye, N Shin, KS Sohn
IUCrJ, 2017 - journals.iucr.org

A deep machine-learning technique based on a convolutional neural network (CNN) is
introduced. It has been used for the classification of powder X-ray diffraction (XRD)
patterns in terms of crystal system, extinction group and space group. About 150 000
powder XRD patterns were collected and used as input for the CNN with no handcrafted
engineering involved, and thereby an appropriate CNN architecture was obtained that
allowed detern aroun 2nd space aroun In =sham

mination of the cryetal svstem extinction
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Intensity (a.u)

Issue 1: Labeling in previous studies

Diffraction Pattern
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Space Groups that are apart of the same extinction group have identical patterns




Example of why this is a problem

Extinction 2 m’l
Group 5 .
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NO. Its Space Group B

What???

U

s

e Py When testing, top 3 accuracy might catch this issue,

identical diffraction patterns yet model is still being confused during training
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Results: Space Groups vs Extinction Groups

Predicting SPG Group

Predicting Ext Group

Bl Top 5 Accuracy
mam Top 3 Accuracy
Bl Top 1 Accuracy

Both models have 10k per class
Using Balanced Synthetic
Data(We will get there later)
SPG Model achieved top 1 85%
accuracy when outputs/labels
were mapped to EXT



Issue 2: Duplicates & De-Duplicating

CCIC

( I CS D C J @ The Cambridge Crystallographic
— Data Centre

Ag0.02Cul.98535i1 155130 2006 4/1/2007 monoclinic 9 6.3405 11.257 6.2812 90 107.464 90 427.66
Ag0.02L10.98 53311 1969 4/1/2004 cubic 229 3.4913 3.4913 3.4913 90 90 90 42.56
Ag0.034In0.0375b0.764Te0.165 94288 2001 #HHHHE hexagonal 166 4.347 4.347 11.2415 90 90 120 183.96
Ag0.034In0.0375b0.764Te0.165 94289 2001 #u#H#EHE hexagonal 1660 4.3553 4.3552 11.276 90 90 120 185.23
Ag0.034In0.0375b0.764Te0.165 94230 2001 #u#H#EHE hexagonal 1660 4.3690 4,3696 11.5759 90 90 120 191.41
Ag0.034In0.0375b0.764Te0.165 94291 2001 #u#E#EHE hexagonal 166 4.3747 4.3747 5.8087 90 90 120 96.27
Ag0.034In0.0375b0.764Te0.165 426574 2013 2/1/2014 hexagonal 166 4.338 4.338 11.004 90 90 120 179.33
Ag0.034In0.0375b0.764Te0.165 426575 2013 2/1/2014 hexagonal 166 4.3032 4.3032 11.2623 90 90 120 180.61
A_gﬂ.GBCdﬂ.EESGI 29297 1960 1/1/1930 cubic- 225 4.69335 4.69385 4.69385 90 90 90 103.42
Ag0.02Mg0.97 58325 1950 4/1/2004 hexagonal 154 3.1936 3.1936 5.1769 90 90 120 45.73
Ag0.04Cu3.%06 604103 1993 8/1/2008 cubic 225 3.62 3.62 3.62 90 90 90 47.44
4 ) 4 ) 4 )




Solution: De-Duping

Whole
Dataset

Agl
SG: 17

C3IN
SG: 67

C6H60S
SG: 24

Chemical
name
Space Group

Size > 1
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Space Group Distribtuon: Duplicated ICSD vs DeDuplicated ICSD
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ICSD Lost ~33% of data (~180k -> ~120k)!!!




Result: Duplicated vs De-Duplicated

B Top 5 Accuracy
. Top 3 Accuracy
B Top 1 Accuracy

801

60

Two Potential Explanations

40

- Less Data (180k -> 120k), data scaling tests
show this is worse 20-

- Removing the “Cheating” in bias datasets

0-

De-Duplicated ICSD ICSD with Duplicates



Issue 3: Label Biases in Databases

Extinction G Distribution in ICSE
CICSD

Extinction Groups #



Solution: Random Crystal Structure Database

Overarching Question: Can Neural Networks find mapping from diffraction pattern to Crystal Structure?
We don’t ONLY Need real, physical crystals to do this

For each Ext
Request: Group, RANDOM
Dataset with generate x/99 CRYSTAL
{x} Entries crystal GENERATOR
MAGIC
structures
Two Methods to generate

patterns:

Reflection(Less Realistic) BA LAN CE D DATAS ET

PyCrysFML(more Realistic)

*Both methods create crystals that might be unnatural, yet still have “valid” patterns



Results: Biased vs Balanced Dataset

Trained Model

Biased
Test Sat

Balanced
Test Set

Top-1 Accuracy

Bissed Trained Model
Larper Unbeased Trained Model

Top-3 Accuracy

Bissed Trained Model
Larper Unbeased Trained Model

Top-5 Accuracy

Bissed Tramned Model

Larper Unbiased Tramned Model

Biased Set -> ICSD
(120k Entries)
Balanced Set ->
1.23 million “Fake”
Crystals,

Bias on Unbiased Performance < Unbiased on Bias Performance



Duplicates vs Bias, and why they’re both bad

. Bias
Duplicates
- Some classes/groups are represented
- Very (VERY VERY) Similar Entries more then others
- Leads to cheating, model is i P&S:rl]l?ll\iagg',gmsz
”memorizing" certain patterns on test Errors in ClassificationgMisclassifying complex
groups as similar ones

Certain types of materials are of more
interest(Semiconductors, Magnetic Materials, etc)

Nature Made:
More Materials fall under certain groups than others

- More Bias = Model learning
distribution rather than mapping




Issue 4: ResNet CNN Itself

Potential Issue 2: CNN Localization

Object detector

Potential Issue 1: Not Scaling

“Al Moore's Law”: More data +
compute = increase performance,
unless there's a bottle neck

After mult
non linear

Architecture itself might be limited

apply CNN in all the windows

ResNet 18
SoftMax, two
mm 33 Conv 3 Conv 33 Comv 313 Comv Cles: ““”"
ride 2 64 Filter 128 Filter 236 Filter 512 Filter Poollng
Input 33 Conv 33 Conv 33 Conv 33 Conv
Image "“' ‘“'* 64 Filier 128 Filer 256 Filir 512 Filler FCa)

Data Flow

Sliding windows 2
Window size bigger than 1




Scalmg Data — Unbiased Data

Accuracy (%)

80

60

40

20

Test Accuracy vs. Data Size

T = & = &
o — * °

%

/ Conclusion:

Since more Data + Compute isn’t leadingto
better results, ResNet architecture may have

—&— Top-1 Accuracy
—— Top-3 Accuracy
—&— Top-5 Accuracy

limit to performance

Data Size




Conclusions and Next Steps

De-duping matters, Past Studies Results have slight skew
Bias Datasets don’t generalize well, like at all

Testing on extinction groups not only leads to better performance, but our model just gets
less confused

ResNet is reaching a bottleneck, meaning its time to shift to a new architecture
We do better then majority of previous studies
Next Steps

Get CNN to Reproduce high results on PyCrysFML data and real data
(MAYBE) Train a transformer
Publish!
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Why our Balanced Models Underperform?

Unbiased Trained Model on ICSD's Top Ex in Unbiased Set

——- Overall Top 1
——- Overall Top 3
B Top 1 Accuracy
mm Top 3 Accuracy

120k Amount
—

Unbiased Trained Model on ICSD's Top Ex in Unbiased Set

——- Overall Top 1
=== Overall Top 3
BN Top 1 Accuracy
mmm Top 3 Accuracy

1.23m Amount

——- Overall Top 1
——- Overall Top 3
I Top 1 Accuracy

99 4

2m Amount
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Why are are against bias: Model doesn’t learn




Why we are against bias: Its not Natural




Interpretablhty = Ext Group
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Interpretably — Space Group

1200 Feature Level Attributions of Model Trained to Predict Extinction Group

1000 4
800
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Resolution

100

mmm Top 1 Accuracy
e Top 3 Accuracy 507
B Top 5 Accuracy

0.5 0.25 0.05 0.025 0.0265 0.0125

-0.5 -0.25 -0.05 -0.025 -0.027 -0.0125

Increa5|ng ReS()l ut|on 0.5 0.25 0.05 0.025 0.0166 0.0125

—
—
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