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 Fractal PMU signal analysis

 Texas & EPFL (Switzerland) normal PMU data

 Why are the PMU signals fractal???

 Fractional dynamics load modeling 

 Hidden feedbacks in power grid

 Strong connectivity of power grid graph, 
aggregating all loads

 Early warning of imminent blackout

 Indian blackout PMU data

 Shift in AR(1) coefficient and Hurst exponent.



Long-Range Dependence or Memory

(in PMU data)

Long-range memory is one of the characteristics of

fractal patterns. It relates to slow decay of the

correlation as the lag between samples increase.
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 Number of incrementation or differentiation steps (d):

 Power Spectral Density exponent (β):

 Hurst exponent (α):

It relates to the autocorrelation of time series and the rate at 

which these decrease as the lag increases. 

Long-Range Dependence or Memory
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 There are several parameters that quantify the severity of 

the fractal behavior in a time series:
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 Steps:

1. Subtract average and integrate the data set:

Detrended Fluctuation Analysis (DFA)
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2. Divide the data into n equal-sized boxes and find the Linear

Least Squares (LLS) line inside each box.

3. Subtract the LLS fitting from the integrated data to generate the

detrended data:

Detrended Fluctuation Analysis (DFA)
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4. Find the Root Mean Square (RMS) fluctuation of the detrended

data:

4. The second and third steps

are repeated

at different box sizes:

Detrended Fluctuation Analysis (DFA)
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Texas Synchrophasor Network

 Several PMUs are installed at 120V and 69KV over

several locations:

 Baylor University (Waco),

 Harris Substation, and

 McDonald Observatory.

 The data we analyzed here are

 voltage magnitude,

 frequency, and

 phase angle.

 The sampling rate of the data is

30 samples/second.



PMU Time Series (Texas)



Hurst Exponent (Texas)

α = 1.11 

α = 1.54 

α = 0.71 

α = 0.92 

α = 1.54 

α = 0.75 


0.5   1: long range with power law

         > 1: long range but no power law



Hurst Exponent (Texas)

 Frequency and angle data are consistent across the 3 stations. 
 Voltage definitely has higher Hurst exponent at McDonald… Why???

 Proximity of wind farm?
 Is the Hurst exponent of voltage a sign of penetration of 

renewables in the larger grid?



PMU-Based Monitoring in EPFL
(Ecole Polytechnique Fédérale de Lausanne)

PMUs installed in EPFL campus perform real time 

monitoring of the EPFL pilot smart grid.

The PMUs were

installed on medium

voltage buses (12KV)

The sampling rate is

50 samples/second



PMU Time Series (EPFL)



Hurst Exponents (EPFL)

Voltage magnitude Frequency Phase angle 



 1.20



 1.55



 1.27

Amazing consistency between the frequency α in Texas (1.54) and Switzerland (1.55)



Hurst Exponent Histograms (EPFL)

Voltage magnitude Frequency Phase angle 

mean(α)=1.23 mean(α)=1.51 mean(α)=1.23
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 Fractal PMU signal analysis

 Texas & EPFL (Switzerland) normal PMU data

 Why are the PMU signals fractal???

 Fractional dynamics load modeling 

 Hidden feedbacks in power grid

 Strong connectivity of power grid graph, 
aggregating all loads

 Early warning of imminent blackout

 Indian blackout PMU data

 Shift in AR(1) coefficient and Hurst exponent.



Static versus Dynamic Load Models

• Static load model:

 Constant Power           

 Constant Current 

 Constant Impedance

• Dynamic load model (Hill):
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Berg Data-Driven Load Modeling Experiment 
in a real microgrid

Electric Reduction Furnace (Berg) Mechanical Plant (Berg)

A
ct

iv
e

 p
o

w
e

r 
in

 a
 lo

ad
 (

H
ill

) 

vo
lt

ag
e

 a
n

d
 r

e
ac

ti
ve

 p
o

w
e

r 
in

 a
 lo

ad
 (

H
ill

) 
P

Q 

V

Q
 m

e
as

u
re

m
e

n
t

P
 m

e
as

u
re

m
e

n
t

!

! 



Load Type pv pω qv qω

Filament lamp

Fluorescent lamp

Heater

Induction motor (HL)

Induction motor (FL)

Reduction furnace

Aluminum plant

Regulated aluminum plant
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LLL jQPS 




PL KPVL
pv p



QL  KQVL
qv q

Berg load model involves frequency to a 
noninteger exponent



Load Type Describing Function

Filament lamp

Fluorescent lamp

Heater

Induction motor (HL)

Induction motor (FL)

Reduction furnace

Aluminum plant

Regulated aluminum plant
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Analytic Extension of Describing Function

Crude way: 
Leaves some coefficients complex, not completely in line with formal circuit theory

Better way:
Coefficients are kept real, in line with formal circuit theory;
However, positive realness does not hold unless the load is a heater
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Can we replace s by 
𝑑

𝑑𝑡
???

Yes, but subject to correct interpretation:

 Caputo, D* (initial conditions in terms of integer derivatives)
 Riemann-Liouville, D (initial conditions in terms of fractional derivatives)
 Grunwald-Leitnikov, d (close to ARFIMA model)
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Hidden Feedback in Power Systems









Deliberately simplified 
model of the generator… 

to put the load
in the spotlight.



Feedback Model of Power System
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Simplification: 
No back-action of the load to the generator



Towards more Complicated 
Feedback Models of Power System



Time to Conceptualize

Nominal impedance, line  Zi, Yii

Connecting lines 1, 2, …, i, …, m

Are we sure that

   iii GFIGFI  detdet
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:.

:.

:.



D(U1)

D(U2)

D(U3) D(U4)

 ZLoads

Ylines

IL VL

Vl
Il

-

Egenerators

Iother D(U)

Decomposition of Digraph into 
Strongly Connected Components D(Ui)

Feedback connections, if any, are lumped 
into strongly connected subsets

No large scale feedback connections 
at the large scale of the structure graph



Bus model

Circuit model

Graph model



Bus model

Circuit model

Graph model



Bus model

Circuit model

Graph model





No loss of strong connectivity! 

Effect of Single Contingency 

Single transmission line 5-6 tripping:



Effect of Single Contingency 

Three-phase fault at Load 1:

Loss of strong connectivity: two strongly connected components! 



Loss of connectivity: two connected components! 

Effect of Double Contingency 

Double transmission line 5-6, 2-3 tripping:



Effect of Double Contingency 

Two three-phase faults at Loads 1 and 4:

Loss of strong connectivity:  four strongly connected components! 



Main Theorem
Theorem: Under the conditions that 

 the bus system is connected,  
 all generators have nonvanishing internal impedance, 

and the contingencies are restricted to

 single transmission line tripping,

the graph model is strongly connected.
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Critical Transition in

Harvested Population



blackout!

2012 Indian Blackout

 The blackout occurred on July 30, 2012 and affected

more than 300 million people living in Northern India.
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 Concordant pair          xi > xj & yi > yj or xi < xj & yi < yj

 Discordant pair           xi > xj & yi < yj or xi < xj & yi > yj

t =
# of concordant pairs - # of discordant pairs

n(n-1) / 2

Kendall’s tau

 Kendall’s tau is a rank correlation coefficient that is

used to measure—in a statistically meaningful sense—

the ordinal association between two datasets, {(ti,αi)}.

 Assuming that we have n pairs of x and y data

 ((x1,y1); (x2,y2); …; (xn,yn)),

 Kendall’s tau is defined as
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τ = 0.92 τ = 0.86

Kendall’s Tau of

AR(1) Coefficient versus Hurst Exponent



AR(1) versus Hurst Exponent

Sample Distributions

Normal frequency data Frequency data before blackout



Conclusions
 The frequency appears to be the most relevant data to

anticipate blackout.
 The fundamental observation is that the τ(AR(1)) and the τ(α) of

the frequency blackout data point are shifted to the right of the
empirical distributions of the Kendall tau of AR(1) and Hurst
exponent of normal frequency data.
 The shift is more pronounced for the Hurst data.
 The Hurst exponent of the frequency data appears the best

bet to anticipate blackout.
 $1,000,000 question: Could it anticipate malware?

There is hope to achieve this as it was shown that
during Distributed Denial of Service (DDoS) and UDP
flooding attacks the Akaike/Kolmogorov informational
statistics of the link utilization signals changed!



Future Work
 With more blackout data points, we hope to demonstrate—with

enough confidence—that the empirical distributions of the
normal and blackout Hurst frequency data are random draws
from different distributions.

Kendall tau of Hurst exponent of frequency

normal blackout



Thank you!

Questions?
jonckhee@usc.edu

Kendall tau of Hurst exponent of frequency

normal blackout



Conclusions
 The fractal behavior of the PMU signals is puzzling…

 Its potential for anticipating black-out and/or cyber attacks 
has been demonstrated.

 So, it is of paramount importance to understand why the PMU 
signals are fractal.

The Berg load models provide a clue with their fractional 
exponents of .

 In the Berg experiment, the load is modeled in its 
microgrid environment.

The aggregation of the loads combines a great many 
lumped parameter circuit elements to make distributed 
parameter elements.


