
Dynamically Generating Conformance Tests for
Messaging Systems

Robert Snelick

Len Gebase
Sydney Henrard

Information Technology Laboratory
National Institute of Standards and Technology

Gaithersburg MD, USA

Abstract - The advent of XML technologies for data
exchange negotiations in B2B applications is proliferating
a new class of messaging standards that are only fully
designed at the implementation level. These specifications
offer unmatched flexibility. However, this presents a
challenge for ensuring correctness, as each
implementation is potentially unique--conformance tests
are needed. We propose a generalized methodology and a
tool that produces self-adapting test messages. The
messages are dynamically created after design-time and
factor in unique characteristics of an implementation. This
contrasts to traditional methodologies, where tests are
developed irrespective of any specific implementation.

We demonstrate the utility of our methodology by
implementing a tool, called Message Maker, which
dynamically produces conformance test messages. Our
target test domain is the HL7 version 2 healthcare
messaging standard. Message Maker is a graphical-based
tool that generates test messages based on any given HL7
XML message template, referred to as a message profile.
The resulting messages can be used to test HL7
applications to ensure that they adhere to the message
profile specification. Employing a comprehensive testing
program at the onset of an implementation leads to more
reliable systems, and ultimately, reduced costs.

Keywords: Automated Methods; Conformance Testing;
Healthcare Information Systems; Messaging Systems;
Novel Software Tool.

1 Introduction
 Today’s industries, including healthcare,
manufacturing, and e-commerce, rely heavily on the
seamless exchange of information to drive their business.
These enterprises define standards for the exchange,
manipulation, and integration of industry-based
information. The underlying infrastructure is based on
standards and realized through XML (extensible markup
language) technologies [7]. This offers highly sophisticated
and dynamic systems. A growing number of such standards
provide a framework for negotiation that allows many

optional features. To achieve interoperability,
implementations must constrain this set of optional features
in a consistent manner. This provides the means to create
well-defined special purpose specifications. However, this
paradigm shift makes testing a difficult proposition since
each specification would need its own set of tests. Software
is notorious for not being adequately tested, for being
rushed to market full of flaws. A primary reason for
inadequate testing is the time and expense of developing
comprehensive test suites. Correct implementation of
software is critical--conformance tests are needed to
promote interoperability among implementations. Old
methods of systematically hand crafting tests over the
course of several years must give way to newer methods of
generating self-adapting tests. We have developed a
methodology and a tool that produces self-adapting tests
that are dynamically created and factor in unique
characteristics for defined subsets of a given specification.
The technique relies on the message profile represented in
XML; it provides the layout of the message and governs
the makeup of each element in the message. A processing
engine follows a predetermined set of rules to combine the
message profile, data, and test options settings
dynamically. This creates a set of test messages. The test
messages are unique and designed to assess different
aspects of an implementation. The methodology has been
applied to the Health Level 7 version 2 (hereafter HL7)
messaging standard [1,2] and is realized in Message
Maker—a tool for dynamically creating test messages [5].

In the section that follows we give an overview of the
relevant concepts of the HL7 messaging standard and
describe the inherent problems the standard has with regard
to conformance. We present the concept of message
profiles as a remedy and illustrate how it can be used to
build test messages. Next we present a general
methodology for dynamically developing test messages. A
detailed description of Message Maker follows. Finally, we
offer some discussion on conformance testing and
development of an adequate set of test messages.

2 Case Study: HL7
 A major challenge for the healthcare industry is
achieving interoperability among information systems.
HL7 is a widely-used standard for moving clinical and
administrative information between healthcare
applications. Systems that support the HL7 standard allow
clinical data to be exchanged with other HL7 systems.
This ability to share relevant information among diverse
healthcare systems and provide consistent data across
applications will help improve the quality of care. It will
also improve patient safety and reduce the cost of
healthcare.

ADT^A04^ADT_A01
MSH
EVN
PID
[PD1]
[{ ROL }]
[{ NK1 }]
PV1
[PV2]
.
.
.
[{ GT1 }]
[{
IN1
[IN2]
[{ IN3 }]
[{ ROL }]
}]
[ACC]
[UB1]
[UB2]
[PDA]

Figure 1. Abstract Message Definition

 An HL7 message is an atomic unit of data transferred
between systems [2]. Typical HL7 messages include
admitting a patient or requesting a lab order for a blood
test. HL7 describes an abstract message definition (Figure
1) for each real world event (e.g., admitting a patient). The
abstract message definition is comprised of a collection of
segments in a defined sequence. Rules for building an
abstract message definition are given by the HL7 message
framework. The message framework (Figure 2) is
hierarchical in nature and consists of building blocks
generically called elements. These elements are segments,
segment groups, fields, components, and sub-components.
Each element has associated attributes that constrain it.
These include optionality, repeatability, value set, length,
and data type attributes. Segments and segment groups can
contain additional elements, fields and components can
contain additional elements or be primitive elements; sub-
components are strictly primitive elements. Primitive
elements are those that can hold a data value and have no
structure.

2.1 HL7 not the Solution Anticipated
 When originally developed, HL7 was designed to
accommodate the many diverse business processes that
exist in the healthcare industry. This universal design was
necessary to gain broad industry support. However, such
broad accommodations resulted in a standard with many
optional components for which there was no single,
consistent interpretation. As a consequence, systems were
difficult to implement and debug; a further result was
undue cost. Implementers have described HL7 interfacing
as total chaos. Fortunately, HL7 recognized this as a
limiting factor for effectively managing healthcare
communication. To help alleviate shortcomings, the
concept of message profiles was introduced. Message
profiles define processing rules and, by defining exactly
which optional components in the standard a message
might include, provide an unambiguous description of HL7
messages.

Segment (e.g., PID)

Segment

Components

HL7 Message

Fields

Sub-Components

SegmentGroups

Groups

Figure 2. HL7 Message Framework.

Tools, such as the Messaging Workbench [4], have been
developed to help in the construction of message profiles.
Message profiles in one form are XML documents
constrained by an XML schema. The schema, defined by
HL7, describes explicitly the message layout and constraint
attributes and their values allowed in the message profile.
Profile builder tools enforce the rules of message profiles
and have utilities that export profiles in XML. The message
profile provides the template that enables the construction
of HL7 messages. Figure 3 shows a snippet of a message
profile represented in XML. Each element in the message
profile is listed along with its associated attributes. Details
on the message profile structure and constraints follow.
The constraint attributes are important since they provide
the opportunity for varying the test message instances.

Message Structure: The overriding rules for constructing a
message are described by the message framework (Figure
2) [2]. In addition, for each message event, for example

[] Segment is optional
{} Segment can repeat

Segment
Group

“Admitting a Patient (ADT A04)”, a specific abstract
message definition is given (See Figure 1) that further
defines the message. Messages that are created of a certain
type must follow the template given in the abstract message
definition and the rules given by the message framework.
We refer to this as the message structure; it defines
explicitly the elements and the order the elements must
appear in a message instance. For example, in Figure 3, the
“PID” segment contains the field “Set ID – PID”, and so
on.

Usage: Usage refers to the circumstances in which an
element appears in a message [3]. Some elements must
always be present, others may never be present, and others
may only be present in certain circumstances. The set of
usage rules that is considered are Required (R), Required
but may be empty (RE), and Not Supported (X). For
example, the Driver’s License Number component in the
profile snippet is required (Usage=”R”) and must be
present in a valid message instance.

…
<Segment Name="PID" LongName="Patient identification"
Usage="R" Min="1" Max="1">
 <Field Name="Set ID - PID" Usage="R" Min="1" Max="1"
Datatype="SI" Length="4" ItemNo="00104">
 <Reference>3.4.2.1</Reference>
 </Field>
…
 <Field Name="SSN Number - Patient" Usage="X" Min="0"
Max="*" Datatype="ST" Length="16" ItemNo="00122">
 <Reference>3.4.2.19</Reference>
 </Field>
 <Field Name="Driver's License Number - Patient" Usage="R"
Min="1" Max="1" Datatype="DLN" Length="250"
ItemNo="00123">
 <Reference>3.4.2.20</Reference>
 <Component Name="Driver's License Number" Usage="R"
Datatype="ST" Length="100">
 </Component>
 <Component Name="Issuing State, province, country"
Usage="R" Datatype="IS" Length="10" Table="0333">
 </Component>
 <Component Name="expiration date" Usage="R"
Datatype="DT" Length="30">
 </Component>
 </Field>
…

Figure 3. Snippet from a Message Profile.

Cardinality: Cardinality refers to the minimum and

number of times.

certain element. For example, see the
“Issuing State, province, country” component in the profile

t.

numeric (NM) interpretation is straightforward and

s
inte op ntroduction of message
profile re not well defined. It

e constraints defined in the message profile provide
ar to construct test message

traints, we describe some

tra
egment can be inserted randomly into the message

int. For example, a test message can be

maximum number of repetitions an element may have [3].
The implication of cardinality has the same connotations at
the segment, segment group and field levels. Cardinality
does not apply to components and sub-components.
Examples of an element cardinality include [0..1]; the
element is optional, but can only have one occurrence and
[1..*]; the element is required and may repeat an unlimited

Value Sets: A table of allowable values can be defined and
associated with a

snippet (Figure 3); this element must be populated with a
data value that is defined in table 0333. HL7 has
mechanisms to define such tables; some tables are
predefined by HL7 while others can be defined locally.

Length: The length attribute defines the maximum
allowable length a value can have for a particular elemen

Data Type: The data type defines the allowable data values
an element can contain. For primitive data types, such a

requirements for each data type are specified in the
standard [2]. Complex data types, such as the Extended
Person Name (XPN), may be composed of primitive types
or other complex data types. For example, an XPN
contains a family name (FN), which itself is a complex data
type that is composed of five primitive elements, all of type
string. All complex data types are ultimately composed of
primitive data types.

2.2 Message Profiles Provide a Path to
Conformance Testing

 Me sage profiles provide a path to conformance and
r erability testing. Prior to the i

s, interface specifications we
was not possible to predict the number of message
instances that could be derived from an interface. It was
also difficult to ascertain what constituted a valid and
invalid message instance. Message profiles solve this
problem by providing the clarity that is essential to conduct
testing.

2.3 Test Message Types
 Th
the p ameters that can be varied
instances. For each of these cons
test type examples that can be constructed. The examples
given below are not comprehensive, but provide a flavor of
the test messages that can be generated. Test messages can
be valid or invalid. Message variation with regards to
Usage and Cardinality is relative to a base message in
which the minimum values for these constraints are set.

Message Structure: The structure of a message can be
manipulated to create test messages. For example, an ex
s
structure definition. A message generated using this
message structure will be erroneous with regard to the
message profile.

Usage: Various message instances can be generated given
the usage constra

constructed such that an element with an R (required)
usage is not populated with data. The implanted error
results in an invalid message instance.

Ca
im

river’s License Number – Patient element is
not present

• s License Number – Patient element
appears twice

Value S ssage that can be constructed for an
element linked to a value set is one in which the element

data type can be constructed such that invalid data values
are populated for that element with regard to the data type.

rdinality: Depending on the cardinality constraints
posed on a particular element a number of test messages

can be constructed to test valid and invalid instances. For
example, in the profile snippet in Figure 3, the “Driver’s
License Number – Patient” field supports exactly one
instance of this element (indicated by the cardinality of
1..1). Test messages can be constructed for invalid
instances by creating messages where the element will fall
outside of the valid cardinality range; the two messages
instances are:

• The D

The Driver’

ets: The test me

will be populated with a data value that is not contained in
the value set.

Length: Test messages can be constructed such that the
data values will have lengths that exceed the limit defined
in the message profile for an element.

Data Type: Test messages for elements with a primitive

For complex data types, additional components can be
inserted to render the element invalid with respect to the
structure of the data type.

Profile Builder
Tool (e.g., MWB) Data Sources

At any given HL7 installation, many interfaces (specified
by message profiles) will be defined and need to be tested.
As described, numerous test messages can be constructed
for each element in a given message profile. Hand-crafting
an adequate set of test messages becomes a daunting task;
in many cases is cost prohibitive. We next describe our
automated and self-adapting approach that we have
developed to address this challenge.

3 Message Maker Design
 Figure 4 illustrates the conceptual design process for
constructing test messages. The message profile provides a
guide for which messages instances can be generated. The
Message Generation Engine (MGE) reads the XML profile
and will generate a message instance based on the map
provided by the message profile and the instructions given
by the test options settings. The test options can specify that

HL7 V2
Profile (XML)

NIST HL7
Reference
Database

HL7
Standard

DB

Data
Repository

(XML)

Message
Maker

Testing Options

• Usage

• Cardinality

• Volume

• Data Content

• Length

• etc.

Message
Generation

Engine
(XSLT)

HL7 Test
Messages

Testing
Framework

Example
Values
from

Profile

Default
Values

Table
Values

Figure 4. Message Maker Design.

random or specific test messages are to be generated. For
random requests, the MGE will select the test message type
and the location of the test within the test message. For
specific requests, the MGE can be instructed to create a test
message of a specific type and at a specific location.

Message Maker dynamically constructs message instances
while parsing a message profile. Data values for the
primitive elements (i.e., fields, components, and sub-
components) defined in the profile are obtained from a
number of data sources. These include a database of HL7
primitive data items, HL7 tables, local tables, example
values from the profile, and default values. These sources
make up the data repository which is drawn upon by the
MGE during the construction of a message. Utilities
provided by Message Maker allow data items in the
repository to be added, deleted, or modified. Each data item
has associated attributes that can be used by the MGE in its
processing. For example, data items can be declared as
configuration data items which indicates that only one
value exists and it must be used in every message that is
created. This is an important feature since some information
in the message header segment is site-specific.

Message Maker can create messages that can be valid or
invalid and contain variation from message to message. An
example of an invalid message is a missing data item for a
required field. A number of test options settings control the
variation in the construction of a message. These may
include segment and field cardinality, the usage of certain
primitive fields, value sets, data content, and more. Data
content variation is achieved by randomly selecting items
from the HL7 items database.

For each element the MGE reads the name, constraints, and
test options settings and then performs a predetermined set
of actions. For example, if we look at the “Driver’s License
Number” component, the profile instructs the MGE to
populate (it has usage R, for required) this element with a
Driver’s License Number value randomly selected from the
data repository. The MGE will ensure that the value is of
ST (String) data type and does not exceed 100 characters.
This example assumes that validity indicator in the test
options setting for this element is set to “valid”.

<Component Name="Driver's License Number" Usage="R"
Datatype="ST" Length="100">

If the test options setting had indicated that a usage error
was requested for this element, then the MGE would not
populate this element with a data value. In this case the rule
for an R usage error is to change the usage to Not
Supported (X). Similarly, test type rules are defined for
each of the constraints given in the message profile
specification.

An important feature in this design is that for each message
instance that is generated, associated metadata is given that

describes the purpose of the test message and the element
location in the message that is of interest. This information
is very useful during the testing phase.

The core engine of Message Maker generates messages in
XML. These messages can be subsequently transformed
into the native HL7 ER7 format. In addition Message
Maker can display messages in a convenient tree structure
for browsing and editing. See the Message Maker User’s
Guide for a complete description on all the features and
how to use the tool [6].

4 Conformance Testing
 We have described a methodology and tool for
automatically constructing test messages for any given
message profile. The test messages provide an integral part
of a conformance testing system. The test messages can be
used to construct test cases and ultimately test suites. A test
case is a sequence of operations needed to perform a single
conformance test. These operations may include initial
setup, sending the message to the implementation under
test, evaluation of the response, etc. A set of test cases
defines a test suite that can be used to assess the overall
conformance of an implementation. Future work will
include building tools to automatically create the test cases
and the development of a test framework to execute the
conformance tests.

For a realistic message profile the number of derivable
message instances that can be generated is extremely
large—it is not practical to create them all. An issue for
conformance testing is what constitutes a reasonable and
adequate set of test messages to sufficiently assess an
implementation. We are currently working on automated
methods to extract a subset of test messages that strike a
balance between reasonable coverage and the number of
message instances that are generated.

5 Summary
 Today’s standards are often large and complex, and they
have gained widespread industry support through universal
and all-inclusive designs with many optional features.
However, this approach often results in standards that are
difficult to sufficiently constrain to provide a single and
consistent interpretation. The overall effect inhibits plug-
and-play installations, which both industry and user desire.
Systems become hard to implement and debug, resulting in
undue costs and narrowed utility. The market is smaller
than one might expect with full interoperability. One
solution has been to adopt profiles that specify a proper
subset of the standard that specifically states the optional
constructs and processing rules. Profiles are the key to
standardization at the implementation level and the
promotion of plug and play (interoperable) systems. To
ensure interoperability among systems, installations must
be implemented correctly—conformance testing is

essential. However, since profile creation is essentially
unbounded, developing conformance tests is problematic.
Automated tools are necessary.

The HL7 messaging standard typifies issues described
above. HL7 defines the interfaces that allow centrally
located and distributed information systems to
communicate. The standard establishes rules for building
interfaces and provides many optional features to
accommodate the disparate needs of the healthcare
industry. However, for interfaces to be reliably
implemented, a precise and unambiguous specification
must be defined. HL7 introduced the concept of message
profiles that state precisely the structure and constraints of a
message. Message profiles provide the mechanisms that
allow for implementations to be tested for conformance.
However, it doesn’t eliminate the complexity or the
enormous possible interpretations of the standard. Each
site-specific implementation must be tested. Automatic and
dynamic testing tools are essential. We have developed a
methodology to generate conformance tests and have
demonstrated its utility through the implementation of
Message Maker. In practice Message Maker has been used
to create test messages for real world message profiles. The
tool significantly reduces the time and effort in conducting
conformance tests that lowers costs and improves the
reliability of healthcare systems.

6 References
[1] Health Level 7 (HL7); http://www.hl7.org

[2] HL7 Standard Version 2.4, ANSI/HL7 V2.4-2000.
October 6, 2000.

[3] HL7 Standard Version 2.5, ANSI/HL7 V2.5-2003.
June 26, 2003. Chapter 2 Section 12 “Conformance
Using Message Profiles”, pg 43-62.

[4] Message Workbench (MWB). Developed by P.
Rontey at the U.S. Veterans Administration;
http://www.hl7.org. Conformance Special Interest Group.

[5] Message Maker; Developed by the National Institute
of Standards and Technology (NIST).
http://www.nist.gov/messagemaker.

[6] Message Maker User’s Guide. Version 1.4 January
2006, R. Snelick, L. Gebase, S. Henrard.
http://www.itl.nist.gov/div897/ctg/messagemaker/docs/Use
rsGuide1.4.pdf.

[7] Extensible Markup Language (XML) 1.0 (Third
Edition). W3C Recommendation 04 February 2004.
http://www.w3.org/TR/2004/REC-xml-20040204.

http://www.hl7.org/
http://www.hl7.org/
http://www.nist.gov/messagemaker
http://www.itl.nist.gov/div897/ctg/messagemaker/docs/UsersGuide1.4.pdf
http://www.itl.nist.gov/div897/ctg/messagemaker/docs/UsersGuide1.4.pdf
http://www.w3.org/TR/2004/REC-xml-20040204

	1 Introduction
	2 Case Study: HL7
	2.1 HL7 not the Solution Anticipated
	2.2 Message Profiles Provide a Path to Conformance Testing
	2.3 Test Message Types

	3 Message Maker Design
	4 Conformance Testing
	5 Summary
	6 References

