Dynamic Temperature Markov Chain Monte Carlo Sampling Without Posterior Distribution Distortion

JAMES VINSON – MONTGOMERY BLAIR HIGH SCHOOL MENTOR – PAUL KIENZLE – NIST CENTER FOR NEUTRON RESEARCH

Fitting a Model

- Given data and some set of parameters P with a function f(P) meant to fit the data, Markov Chain Monte Carlo Sampling attempts to do importance sampling of the parameter space to
 - 1) Find particular set **P**_i to fit data
 - 2) Find confidence intervals for all parameter values

Introduction to MCMC Sampling Using Dream Algorithm

- Choose n different starting points in the parameter space
- For each point, through the DREAM algorithm a new possible point is picked
- The news points are either accepted and become the new current value for their chains. Or are rejected and then the chain value stays the same.

Problem

Current DREAM Algorithm sometimes gets "stuck" exploring parameter space

► No new points are accepted

Idea of Temperature: Possible Solution

When exploring parameter space accepts new points with probability:

Likelihood New Point

Likelihood Old Point

Can multiply this by value T. High values of T will lead to more expansive exploration of the parameter space.

Note this is not the canonical definition of temperature for MCMC methods

Dynamic Temperature Methods (Finding the Ideal Temperature for a Model)

- Ideal acceptance rate is around 20%
- Have stuckness multiplier to alter temperature based on the previous acceptance rate
 - Solve $M = Ae^{-B \operatorname{accept}^2}$ given M(.2) = 1 and M''(.2) = -1
 - Current function: $M = 1.6e^{-12.5 \operatorname{accept}^{2}}$

Innate Problems With High Temperature Sampling

By its very nature sampling at high temperature will distort the posterior

Solution: Create a Transform

First create function f(x) which is a pdf of the likelihoods of all selected points

Transform (Weighting Function): W(X) =
$$\frac{\int_0^x f(t)dt + x \int_x^1 \frac{f(t)}{t} dt}{\int_0^{Tx} f(t)dt + Tx \int_{Tx}^1 \frac{f(t)}{t} dt}$$

Every sampled point is given a weight based on its likelihood

 $W(x) = \frac{\int_{0}^{x} f(t)dt + x \int_{x}^{1} \frac{f(t)}{t} dt}{\int_{0}^{Tx} f(t)dt + Tx \int_{Tx}^{1} \frac{f(t)}{t} dt}$

Recursion of Process

- In weighting function theoretically need likelihood distribution at low temperature
 - Approximate it with the high temperature distribution
 - Apply weighting function to create a more accurate likelihood pdf
 - Recursively create more and more accurate distributions until an equilibrium is reached

Findings on a Gaussian

Recursion 1

Recursion 3

Findings On a Laplace Distribution

Analysis On Gaussians with 100,000 Samples

Temperatures: 100 10000 1000000 10000000

5 Dimensions 8 Dimensions 10 Dimensions 15 Dimensions

Applications

Neutron Reflectometry

MCMC Sampling used to solve for parameters in transfer-matrix

Use method to resolve stuck problems

Such as the orientation of the HIV Gag protein in the lipid bilayer based on 3 angles of axial revolution

Future Work

- Solve loss of accuracy and reliability at high temperatures and dimensionalities
 - Problem of quantization of proposed posterior
- Give mathematical proof that method should theoretically converge onto the true posterior

Acknowledgements

- Dr. Julie Borchers
- Dr. Yamali Hernandez
- Mr. Paul Kienzle
- Dr. Frank Heinrich
- SURF Student Aaron Schankler

