Dynamic Reliability Assessment of the NIST NBSR Thermal Shield Cooling System

Emily Herrmann Miami University SURF Colloquium August 5, 2015

Outline

- Overview
- Thermal Shield Cooling System Description
- Failure Modes
- Markov Methodology
- Cell-to-Cell Mapping Technique
- Dynamic Event Trees
- Future Goals

Overview

• Reliability assessments are used to quantify the likelihood of system failure.

• Why conduct a reliability assessment?

• Why conduct a *dynamic* reliability assessment?

The Thermal Shield Cooling System

• As the NBSR runs, waste heat is generated, then absorbed by the thermal shield.

• The thermal shield cooling system (TSCS) is a series of copper cooling lines embedded in the layer of lead.

Major Components

Digital:

- PLCs (Programmable Logic Controllers)
- HMI (Human Machine Interface) and OIT (Operator Interface Terminal) Outputs

Mechanical:

- Cooling Water Storage Tank
- Flow Tubes
- Headers
- Pumps and Eductors

Monitored Quantities

- Pressure
- Flow
- Temperature
- •pH
- Water Level

Definition of Failure

- Overall success is continued operation of reactor
- Malfunctions of the TSCS cause controlled rundown of reactor, which interrupts the reactor cycle

 Define failure as any event that compromises the TSCS and as a result will cause reactor rundown

• FAILURE AS DEFINED HERE DOES NOT BRING ABOUT DANGEROUS FAILURE OF THE REACTOR IN AN UNSAFE WAY

Failure Modes

- Built-in alarms at set point
 - Use these events to define main failure modes
 - Examples: High pressure in supply headers, low flow in cooling lines
- PLC failure

Structural components (wires, pipes etc) fail much less

Failure Modes and Effects Analysis (FMEA)

B3 Process Area

• An FMEA lists effects and potential resolution of each failure mode

Failure	Detection	Effects
FT-1002: Low flow in upper ring supply header	Trip	Reactor rundown initiated.
FT-1003: Low flow in lower ring supply header	Trip	Reactor rundown initiated.

<u>PLCs</u>

Failure	Detection	Effects
One of C100 PLCs Fails	Alarm	None; PLCs are redundant
Both of C100 PLCs Fail	Rundown line to Control Room	Rundown

Portion of B3 Process Area and PLC FMEAs

Markov Diagrams

- A Markov diagram is made for each system component
- Nodes are possible states for the component
- Connections are transitions between states and have associated probabilities

Markov diagram for a pressure valve

Markov diagram for C100 PLCs

Markov Diagrams (cont.)

- Time is divided into discrete steps of size Δt .
 - ∆t = 1 day
 - Transitions can only occur at integer values of Δt
- The total number of component states is related to computation cost.
 - TSCS contains M = 19 components and N = 2¹⁷*3*4 = 1,572,864 states
- The mean time between failures (MTBF) must be known for each component that is modeled

Transition Probabilities

• Sum of the probabilities leaving each node must be 1

Markov diagram for a pressure valve

The probability that a component operates for time t is:

$$R(t) = e^{-\frac{t}{MTBF}}$$

• Therefore, the probability of a component failing within t is:

$$P(t) = 1 - R(t)$$
$$= 1 - e^{-\frac{t}{MTBF}}$$

Component Transition Probability Matrix

 Let n and n' be combinations of the states of all 19 components. For element h(n,n'):The transition probability is:

$$h(n, n') = \prod_{i=1}^{i=19} c_i(n_i \to n'_i)$$

which is the product of the probabilities of component i making the transition from n_i to n'_i

Cell-to-Cell Mapping Technique (CCMT)

- Model evolution of the system's controlled variables
- System evolves in a controlled variable state space (CVSS) which is partitioned into cells. Each cell, V_j, is a unique combination of control variables
- Alarmed variables that are main failure modes are sink cells; when the system reaches a sink cell, it can no longer evolve
- Cell-to-cell transition probability matrix is made; this matrix is similar to the component transition probability matrix

The Controlled Variable State Space

Each of alarmed variables is included in the CVSS
 18 controlled variables

Flow at LD SU	Value (gpm)	nH at T-100 Outlet	Value
FIOW ALLIN SH	value (gpill)	pirat i 100 Oddet	Value
0	P _{LR SH} < 45	0	рН _{т100} < 7.0
1	45 ≤ P _{LR SH} < 50	1	7.0 ≤ pH _{T100} < 7.3
2	50 ≤ P _{LR SH} < 64	2	7.3 ≤ pH _{T100} < 7.5
3	P _{LR SH} ≥ 64	3	рН _{т100} ≥ 7.5

Partitions of CVSS for lower supply header flow and T-100 pH

Cell-to-Cell Transition Probabilities

- Transition probabilities between cells V_j and V_j, will be made into a cell-to-cell transition matrix with elements g(j,j')
- Program will be written to implement a quadrature scheme
 - Stochastic evolution occurs in accordance to the control laws of the system which can be taken from the reactor's control algorithm

Overall Transition Matrix

Each element represents a transition between both component states and controlled variable states (n, n', j, and j')
q(n,n',j,j') = h(n,n')g(j,j')

 Matrix can be time dependent if any of the control laws introduce time dependence

Dynamic Event Trees (DETs)

- Choose to start in a state where all components are operational and controlled variables are in an acceptable range
- Tree steps through time and at each time step all possible states are considered using overall transition matrix probabilities
- Use DET generation software (ADAPT, RAVEN) and the transition matrix

Future Goals

- Generate DETs
- Determine the CDF and PDF functions for the top events from the DET software
- OVERALL GOAL: have a working reliability model of the whole system so that individual parts can be switched out to examine the effects of potential system upgrades on reliability

Acknowledgements

- NIST and the SURF program
- CHRNS and the NSF
- Dr. Dagistan Sahin
- Dr. Julie Borchers

National Institute of Standards and Technology U.S. Department of Commerce

