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Objective . B
e Build and train a U-net : < J ﬂ !
machine learning model L-—-L-J\-»J\-J\—A-

to be able to identify
peaks on a neutron
diffraction graph
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Crystals

e atype of solid material composed of
atoms or groups of atoms that are
arranged in a three-dimensional pattern
that is very ordered

e Lattice determines the different
diffraction patterns
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Crystal lattice of NaCl - Crystal lattice models - Structure of crystals -
Solid-state physics - Physics Equipment - Physics (leybold-shop.com)
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Neutron Diffraction

e Neutron Diffraction is the application of elastic neutron scattering to
determine the atomic and magnetic structure of a material
e A sampleis placed in a beam of neutrons to obtain a diffraction pattern that

provides information about the structure of the sample

Neutron source

Continuous source
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PPT - Neutron Diffraction and Scattering in Biology PowerPoint Presentation -

1D:2313326 (slideserve.com) 4




The Problem

e The Neutron diffraction process is largely manual and is extremely time
consuming



Why/How

Why

e automate some of the
crystallography process

e significant because the position of
peaks gives us valuable
information on the sample
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How

Build the U-net model

Train the model with graph data and their labels
Evaluate/test the model

Tune hyperparameters if needed

Evaluate again



Supervised Learning

a subcategory of machine learning

takes both training data and its associated
output

possible for you to be very specific about the
definition of the classes

supervised learning is a simple process for the
supervisor to understand
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Supervised Learning

SUPERVISED MODELS | Data Vedas



Neural Networks

Deep neural network
Input layer Multiple hidden layers Output layer

a computer system modeled on the
human brain and nervous system
comprised of a node layers, containing
an input layer, one or more hidden
layers, and an output layer

Each node has an associated weight
and threshold
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Convolutional Neural Network

e Distinguished from other neural networks by their superior
performance with image, speech, or audio signal inputs
e Convolutional layers

o Main building block
o Layer where the majority of computation occurs

e poolinglayers
o conducts dimensionality reduction

e fully-connected layers
o connect every input neuron to every output neuron



Semantic Segmentation @H‘%

e an |mage segmentation method that aSS|gns every single pixel in an image belonging to an object

Road Sidewalk Building - Fence
B role P vegetation B vehicle H Uniabel

Example of 2D semantic segmentation: (Top) input image (Bottom) prediction. 10
Download Scientific Diagram (researchgate.net)
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U-net i q
g 8
Architecture for semantic segmentation
Computationally efficient l . e 64
Trainable with a small data-set
Trained end-to-end H
great for biomedical image segmentation
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Conclusion

e U-net consistently works well
with both simulated data and
real data

e Predicts simulated data more
accurately
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