

Locating Peaks in Neutron Diffraction Patterns Using Machine Learning

Dylan Zhang

Mentor - Dr. William Ratcliff

Wootton High School

Objective

 Build and train a U-net machine learning model to be able to identify peaks on a neutron diffraction graph

Scientific Diagram (researchgate.net)

10

1.0

0.5

0.0

Relative Intensity

Crystals

- a type of solid material composed of atoms or groups of atoms that are arranged in a three-dimensional pattern that is very ordered
- Lattice determines the different diffraction patterns

3

Neutron Diffraction

- Neutron Diffraction is the application of elastic neutron scattering to determine the atomic and magnetic structure of a material
- A sample is placed in a beam of neutrons to obtain a diffraction pattern that provides information about the structure of the sample

Neutron source

<u>PPT - Neutron Diffraction and Scattering in Biology PowerPoint Presentation - ID:2313326 (slideserve.com)</u>

The Problem

• The Neutron diffraction process is largely manual and is extremely time consuming

Why/How

Why

- automate some of the crystallography process
- significant because the position of peaks gives us valuable information on the sample

How

- 1. Build the U-net model
- 2. Train the model with graph data and their labels
- 3. Evaluate/test the model
- 4. Tune hyperparameters if needed
- 5. Evaluate again

Supervised Learning

- a subcategory of machine learning
- takes both training data and its associated output
- possible for you to be very specific about the definition of the classes
- supervised learning is a simple process for the supervisor to understand

Neural Networks

- a computer system modeled on the human brain and nervous system
- comprised of a node layers, containing an input layer, one or more hidden layers, and an output layer
- Each node has an associated weight and threshold

Convolutional Neural Network

- Distinguished from other neural networks by their superior performance with image, speech, or audio signal inputs
- Convolutional layers
 - Main building block
 - Layer where the majority of computation occurs
- pooling layers
 - conducts dimensionality reduction
- fully-connected layers
 - connect every input neuron to every output neuron

Semantic Segmentation

• an image segmentation method that assigns every single pixel in an image belonging to an object

Example of 2D semantic segmentation: (Top) input image (Bottom) prediction. | Download Scientific Diagram (researchgate.net)

U-net

Architecture for semantic segmentation ۲

128x128

- Computationally efficient •
- Trainable with a small data-set ۲
- Trained end-to-end •
- great for biomedical image segmentation \bullet

Conclusion

- U-net consistently works well with both simulated data and real data
- Predicts simulated data more accurately

Whats Next

- Use this model to determine which peaks have changed with temperature changes
- Output used to determine where an existing AI program will focus on for temperature measurements

Acknowledgements

- Dr. Ratcliff
- CHRNS
- Dr. Dura
- Dr. Borchers