

Automatically aligning crystal lattices to neutron diffraction instruments using reinforcement learning

Dylan Zhang

Mentor - Dr. William Ratcliff

University of Michigan

Crystals

- A type of solid material composed of atoms or groups of atoms that are arranged in a three-dimensional pattern that is very ordered
- Lattice determines the different diffraction patterns

Crystal Lattice and Unit Cell

Bravais Lattice

- Symmetrical three-dimensional structural arrangements
- One of the 14 different types of unit cells that a crystal structure can be made up of
- Determines the different diffraction patterns

Crystallographic Planes

Miller Indices (HKL)

Represent the orientation of crystallographic planes within the crystal lattice

Neutron Diffraction

- Neutron Diffraction is the application of neutron scattering to determine the atomic and magnetic structure of a material
- A sample is placed in a beam of neutrons to obtain a diffraction pattern that provides information about the structure of the sample

Objective

- Automatically align crystal structures to instruments
- Assist in fully automating the crystal diffraction process

https://www.ill.eu/users/instruments/instruments-list/orientexpress/howit-works/principle-of-neutron-laue-diffraction

Alignment

- 1. Choose a particular plane
- 2. Choose two projection vectors corresponding to the plane
- 3. Rotate table
- 4. Take alignment scans
- 5. Analyze scans
- 6. Repeat 3, 4, and 5 until aligned

Dr. Leland Harriger

Reinforcement Learning - Key Elements

Area of machine learning where agents take actions in an environment in order to maximize the notion of cumulative reward

- Agent
- Environment
- State
- Action
- Reward

https://towardsdatascience.com/reinforcement-learning-101-e24b50e1d292

Reinforcement Learning - advantages

- Can be used to solve very complex problems
- Can outperform humans in many tasks
- It is similar to the learning of human beings and can correct errors during the training process
- It doesn't require large labeled datasets

Reinforcement Learning - examples

- DeepMind
- AlphaFold
- AlphaGo

https://venturebeat.com/ai/deepminds-big-lossesand-the-questions-around-running-an-ai-lab/

Q-Learning

- Model-free reinforcement learning algorithm
- Q-table that stores the expected rewards for state-action pairs
- Q-values updated over multiple episodes
- Agent selects the action with the highest Q-value
- Effective for small state spaces
- Different from Value function

Q-learning with tic tac toe

https://towardsdatascience.com/how-to-play-tic-tac-toe-usingreinforcement-learning-9604130e56f6

```
value_max = -999
for p in positions:
    next_board = current_board.copy()
    next_board[p] = symbol
    next_boardHash = self.getHash(next_board)
    value = 0 if self.states_value.get(next_boardHash) is None else
    # print("value", value)
    if value >= value_max:
        value_max = value
        action = p
# print("{} takes action {}".format(self.name, action))
return action
```


Implementation

- Training:
 - o Reward
 - Punished for each rotation
 - Awarded for finding peak
- Decides how much to rotate
- Rotates automatically until finds diffraction peak

Hyperparameters

- Values that control the learning process
- Learning rate, discount factor, episodes

	ТТ	λ	
INSE	CENTER FOR HIGH R	ESOLUTION NEUT	ज

Parameter	Value
Discount factor γ	0.9
Critic net learning rate α_{critic}	0.001
Actor net learning rate α_{actor}	0.001
Batch size N	64
Soft update rate $ au$	0.01
Standard deviation of Gaussian noise	0.3
Maximum number of training episodes e_{max}	1000
Control time step dt	0.01 s
Maximum time step in an episode t_{max}	5 s
Reward function parameter a_1	1.0
Reward function parameter δ_1	0.01
Reward function parameter ρ_1	π
Reward function parameter a_2	0.1
Reward function parameter δ_2	0.1
Reward function parameter ρ_2	2π

4.2.3. CMA-ES Training Detail in the Simulation Environment

https://www.researchgate.net/publication/343594992/figure/tbl2/AS:932830192341025@159941545 7664/Reinforcement-learning-RL-training-hyper-parameters.png

Why/How

Why

- automate some of the crystallography process
- significant because correct alignment is necessary

How

- 1. Build the q learning algorithm
- 2. Train the algorithm using simulated data
- 3. Evaluate/test the algorithm
- 4. Tune hyperparameters if needed
- 5. Evaluate again

Results

D

Episode	1:1	Number o	of∶	Rotat	ions	114
Episode	2:1	Number o	of∶	Rotat	ions	138
Episode	3: 1	Number o	of I	Rotat	ions	87
Episode	4:1	Number o	of I	Rotat	ions	61
Episode	5:1	Number o	of 1	Rotat	ions	12
Episode	6:1	Number o	of I	Rotat	ions	39
Episode	7:1	Number o	of∶	Rotat	ions	28
Episode	8:1	Number o	of∶	Rotat	ions	31
Episode	9:1	Number o	of∶	Rotat	ions	39
Episode	10:	Number	of	Rota	tions	14
Episode	11:	Number	of	Rota	itions	83
Episode	12:	Number	of	Rota	itions	
Episode	13:	Number	of	Rota	itions	8
Episode	14:	Number	of	Rota	itions	38
Episode	15:	Number	of	Rota	itions	54
Episode	16:	Number	of	Rota	itions	29
Episode	17:	Number	of	Rota	itions	6
Episode	18:	Number	of	Rota	itions	4
Episode	19:	Number	of	Rota	itions	69
Episode	20:	Number	of	Rota	itions	10
Episode	21:	Number	of	Rota	itions	2
Episode	22:	Number	of	Rota	itions	13
Episode	23:	Number	of	Rota	itions	35
Episode	24:	Number	of	Rota	tions	3
Episode	25:	Number	of	Rota	tions	36
Episode	26:	Number	of	Rota	itions	16
Episode	27:	Number	of	Rota	tions	4
Episode	28:	Number	of	Rota	itions	33
Episode	29:	Number	of	Rota	itions	145
Episode	30:	Number	of	Rota	itions	24
Episode	31:	Number	of	Rota	tions	
Episode	32:	Number	of	Rota	itions	3
Episode	33:	Number	of	Rota	tions	
Episode	34:	Number	of	Rota	tions	
Episode	35:	Number	of	Rota	tions	
Episode	36:	Number	of	Rota	tions	17
Episode	37:	Number	of	Rota	tions	18
Episode	38:	Number	of	Rota	tions	12

Episode	964:	Number	of	Rotations	=	9
Episode	965:	Number	of	Rotations	=	3
Episode	966:	Number	of	Rotations		1
Episode	967:	Number	of	Rotations	=	5
Episode	968:	Number	of	Rotations	=	5
Episode	969:	Number	of	Rotations	=	6
Episode	970:	Number	of	Rotations	=	2
Episode	971:	Number	of	Rotations		4
Episode	972:	Number	of	Rotations	=	4
Episode	973:	Number	of	Rotations		2
Episode	974:	Number	of	Rotations	=	1
Episode	975:	Number	of	Rotations	=	4
Episode	976:	Number	of	Rotations	=	2
Episode	977:	Number	of	Rotations	=	4
Episode	978:	Number	of	Rotations	=	6
Episode	979:	Number	of	Rotations	=	1
Episode	980:	Number	of	Rotations	=	3
Episode	981:	Number	of	Rotations	=	1
Episode	982:	Number	of	Rotations		2
Episode	983:	Number	of	Rotations		7
Episode	984:	Number	of	Rotations	=	6
Episode	985 :	Number	of	Rotations	=	6
Episode	986 :	Number	of	Rotations	=	6
Episode	987 :	Number	of	Rotations	=	3
Episode	988:	Number	of	Rotations	=	4
Episode	989:	Number	of	Rotations		8
Episode	990:	Number	of	Rotations	=	2
Episode	991:	Number	of	Rotations		1
Episode	992:	Number	of	Rotations	=	6
Episode	993:	Number	of	Rotations	=	2
Episode	994:	Number	of	Rotations	=	4
Episode	995 :	Number	of	Rotations	=	1
Episode	996:	Number	of	Rotations		4
Episode	997 :	Number	of	Rotations	=	3
Episode	998:	Number	of	Rotations	=	3
Episode	999:	Number	of	Rotations		1
Episode	1000:	: Numbei	: o1	E Rotations	5 =	=

What's Next

- Mcstas needs to be implemented
- Implement into different types of instruments such as triple-axis spectrometer

Acknowledgements

- Dr. Ratcliff
- CHRNS
- Dr. Borchers
- Dr. Harriger
- Mr. Kienzle
- Mr. Krzywon
- Dr. Liu