Utilizing Next Generation Sequencing to Generate Bacterial Genomic Sequences for Evolutionary Analysis

- Alphaproteobacteria
 - large and metabolically diverse group that includes the genus Caulobacter

- Alphaproteobacteria
 - large and metabolically diverse group that includes the genus Caulobacter
 - found in essentially all habitats

- Alphaproteobacteria
 - large and metabolically diverse group that includes the genus Caulobacter
 - found in essentially all habitats
- Caulobacter thrive in low nutrient conditions and generally share the same phenotypic properties.

- Alphaproteobacteria
 - large and metabolically diverse group that includes the genus Caulobacter
 - found in essentially all habitats
- Caulobacter thrive in low nutrient conditions and generally share the same phenotypic properties.
 - Rod shaped and usually curved

- Alphaproteobacteria
 - large and metabolically diverse group that includes the genus Caulobacter
 - found in essentially all habitats
- Caulobacter thrive in low nutrient conditions and generally share the same phenotypic properties.
 - Rod shaped and usually curved
 - Gram negative

- Alphaproteobacteria
 - large and metabolically diverse group that includes the genus Caulobacter
 - found in essentially all habitats
- Caulobacter thrive in low nutrient conditions and generally share the same phenotypic properties.
 - Rod shaped and usually curved
 - Gram negative
 - Display rare dimorphic phenotype

Wealth of information available to support cell cycle research

Study of evolutionary biology of Caulobacters is minimal

- Despite ground breaking advances in the field of prokaryotic biology, there are many unanswered questions left to be studied that require the assembly of high quality bacterial genome sequences.
 - Extensive Evolutionary Studies

- Despite ground breaking advances in the field of prokaryotic biology, there are many unanswered questions left to be studied that require the assembly of high quality bacterial genome sequences.
 - Extensive Evolutionary Studies
 - Comparison of Genomes

- Despite ground breaking advances in the field of prokaryotic biology, there are many unanswered questions left to be studied that require the assembly of high quality bacterial genome sequences.
 - Extensive Evolutionary Studies
 - Comparison of Genomes
 - Proteomics

- Despite ground breaking advances in the field of prokaryotic biology, there are many unanswered questions left to be studied that require the assembly of high quality bacterial genome sequences.
 - Extensive Evolutionary Studies
 - Comparison of Genomes

Proteomics

 \rightarrow Cannot be done without a high quality genome

- Despite ground breaking advances in the field of prokaryotic biology, there are many unanswered questions left to be studied that require the assembly of high quality bacterial genome sequences.
 - Extensive Evolutionary Studies
 - Comparison of Genomes

Proteomics

 \rightarrow Cannot be done without a high quality genome

- Most genomes are in permanent draft status
- Traditionally has been labor intensive to sequence and finish assembling a genome

Objectives

- PART 1: To find a way to quickly and reliably sequence and assemble a bacterial genome
- PART2: Use our new sequences to do evolutionary studies, genome comparisons, and gain insights into "genome scrambling"
- PART 3: Follow up with additional strains of Caulobacter using data from PART 1 and PART 2

Comparison of Genome Sequencing Technology and Assembly Software For the Analysis of a GC-Rich Bacterial Genome

Derrick C. Scott

- First Publicly Funded Human Genome Project
 - 13 years and \$3,000,000,000 (3 Billion) to complete

- First Publicly Funded Human Genome Project
 - 13 years and \$3,000,000,000 (3 Billion) to complete

- Currently in Development
 - Less than 24 hours and \$1,000 to complete

Advantages and disadvantages associated with each individual technology

No one size fits all approach to a quality genome assembly.

 Researchers with no experience in bioinformatics will be attempting the process of genome assembly.

• ME!

These problems influenced us to compare the efficacy and accuracy of a panel of assembly programs that use input data derived from the GC-rich Caulobacter henricii

10/10/2013 HT: 150 kV TEM Magnification: 10k

0.5 um

ليتينيا

We obtained a sample of the Caulobacter henricii bacterium from the American Type Culture Collection and extracted genomic DNA.

The Sequencers

Three genome sequencers were used in this study:

- Roche 454 GS FLX
- Illumina Miseq
- Pacific Biosciences RSII

The Assemblers

Eight genome assemblers were used in this study:

- Celera Assembler 8.0
- CLC Genomics Workbench 6
- HGAP 2.0
- MaSuRCA v2.1.0
- Newbler v2.6
- PANDAseq
- DNAStar SeqMan NGen 11.2.1
- SPAdes v2.5.1

Whole genome shotgun sequencing

Adapted from Commins et al.

Whole genome shotgun sequencing

Adapted from Commins et al.

Assembler Builds

Comparison of assembler builds

Statistics without reference	Celera	CLCGenomics	DNAStar	HGAP2	MaSuRCA	Newbler	PANDAseq	PBcR	SPAdes
# contigs	210	119	78	1	60	69	27	1	28
Largest contig	96335	228 321	512281	3868732	501 495	414950	683 332	3870958	1717 074
Total length	3885 508	3872940	3954246	3868732	3931679	3950 077	3954266	3870958	3875493
N50	31035	68799	311910	3868732	283078	128030	349 035	3870958	849 521
Misassemblies									
# misassemblies	0	2	1	0	3	1	1	2	1
Misassembled contigs length	0	148706	428 086	0	632 172	211829	523614	3870958	1717074
Mismatches									
# mismatches per 100 kbp	0.65	3.81	0.93	0	25.08	0.41	0.23	0.36	0.91
# indels per 100 kbp	0.52	1.27	0.91	0	1.65	1.74	0.91	0.85	0.91
# N's per 100 kbp	0.03	0	0.13	0	0	0.99	0	0	0
Genome statistics									
Genome fraction (%)	99.393	99.704	99.836	100	99.981	99.721	99.729	100	99.834
Duplication ratio	1.01	1.002	1.003	1	1.017	1.006	1	1.002	1
NGA50	31035	66 099	262 235	3868732	217 552	127 991	349 035	2754062	720050
Predicted genes									
# predicted genes (unique)	3843	3743	3750	3643	3720	3745	3764	3639	3696
<pre># predicted genes (>= 0 bp)</pre>	3843	3743	3783	3644	3744	3745	3764	3643	3697
# predicted genes (>= 300 bp)	3427	3370	3411	3313	3380	3389	3405	3314	3342
# predicted genes (>= 1500 bp)	536	552	558	557	561	574	575	558	562
# predicted genes (>= 3000 bp)	40	43	46	46	44	45	48	47	46

	200000	400000	600'000	800,000	1000000	1200000	1400000	1600000	1800000	2000000	2200000	2400000	2600000	2800000	3000000	3200000	3400000	3600000	3800000
																		ш	
asm.fa	IS																		
	200000	400000	600000	800,000	1000000	1200000	1400000	1600000	1800000	2000000	2200000	2400000	2600000	2800000	3000000	3200000	3400000	3600000	3800000
												· · · · ·							
hgap2	fas																		

Independently reached the same consensus build using two separate assembly algorithms.

Enzyme	No.	Positions	Recognition
name	cuts	of sites	sequence
PmeI	4	1506426 2579389 2730581 3161448	gttt/aaac
SnaBI	15	750053 1221895 1312727 1536306	tac/gta
		1607656 1830807 2102422 2339210	
		2344120 2858345 2935897 2964776	
		3369596 3621757 3804953	
SwaI	4	740929 2230691 2449696 3296931	attt/aaat

 Positions reported of HGAP2 cut sites after Webcutter 2.0 analysis

	PmeI	SnaBI	SwaI	А.			В.	с.	
				PmeI	SnaBI Swa	al Sizes in Kb	SnaBI Sizes in Kb	SnaBI	Sizes in Kb
	2,213,704	813,832	1,489,762			2231		-	
	1,072,969	514,225	1,312,723			1455	the second s		339.5
	430,867	471,842	847,235			1261	533.5		291
	151,192	404,820	219,012	and the second		1067	485	1000	
		271,615				970	388	100	242.5
		252,161				776	339 5	100	
		236,788		1000		110	201	100	
		223,579				679	291		194
		223,151				582	242.5	1000	
		183,196		Sec. Sec.		495	194		
		90,832		S. 36		485			145.5
		77,552		1000		388	145.5		
		71,350		Second States		291		1000	(a=
		28,879					97		97
		4910		1 Store		194	4	5.5	
T (1 D	2 0/0 722	2 0 00 500	2 0 0 7 2 2	ALC: NO.		97	48.5	Sec. 1	18.5
Total Bases	3,868,732	3,868,732	3,868,732	and the second	1		40.0		40.0

	PmeI	SnaBI	SwaI	А.		В.	C.	
				Pmel SnaBI	Swal Sizes in Kb	SnaBI Sizes in Kb	SnaBI	Sizes in Kb
	2,213,704	813,832	1,489,762		2231		1000	
	1,072,969	514,225	1,312,723		1455	the second s		339.5
	430,867	471,842	847,235		1261	533.5		291
	151,192	404,820	219,012		1067	485	diam'r	
		271,615			970	388		242 5
		252,161			776	339.5	100	
		236,788		te - Distant Mark		201	1000	
		223,579			679	231		194
		223,151			582	242.5		
		183,196			105	194		
		90,832		C. 309 - 30	485			145.5
		77,552			388	145.5		
		71,350			291		10.0	
		28,879				97		97
		4910		a Control and an	194		1000	
Total Bases	3.868.732	3.868.732	3.868.732		97	48.5		48.5
Lotal Dubeb	<i>c,</i>	c,ccc,.c _	2,223,702	and the second sec	State of the state of the			

	PmeI	SnaBI	SwaI	А.		В.	C.	
				PmeI Snal	3I Swal Sizes in Kb	SnaBI Sizes in Kb	SnaBI	Sizes in Kb
	2,213,704	813,832	1,489,762		2231		-	
	1,072,969	514,225	1,312,723		1455			339.5
	430,867	471,842	847,235		1261	533.5		291
	151,192	404,820	219,012		1067	485	diam'r.	
		271,615		Quer Villerer	970	388	100	242 5
		252,161			776	339.5	1005	212.0
		236,788		the state of the	//0	201	1000	
		223,579			679	291		194
		223,151			582	242.5		424
		183,196				194		
		90,832		2	485			145.5
		77,552			388	145.5		
		71,350			201		1000	
		28,879			231	97		97 —
		4910			194	And I wanted	1000	
				and the second	97	40 E		40 5
Total Bases	3,868,732	3,868,732	3,868,732		97	40.0		48.3

	PmeI	SnaBI	SwaI	А.		В.	C.	
				PmeI Sn	aBI Swal Sizes in Kb	SnaBI Sizes in Kb	SnaBI	Sizes in Kb
	2,213,704	813,832	1,489,762		2231		100	
	1,072,969	514,225	1,312,723		1455			339.5
	430,867	471,842	847,235		1261	533.5		291
	151,192	404,820	219,012		1067	485	diam'r	
		271,615		0.20 10 100	970	388	100	242.5
		252,161			776	339.5	1005	212.0
		236,788		The Statement	//0	201		
		223,579			679	291		194
		223,151			582	242.5		
		183,196				194		
		90,832			485			145.5
		77,552		1000	388	145.5		
		71,350			201		100	
		28,879			201	97		97 —
		4910			194	Sec. 1	1000	
	a aca zaa	a aca zaa		and the second	97	48.5	Sec. 1	48.5
Total Bases	3,868,732	3,868,732	3,868,732	14 min 14		40.5		40.0

P	meI	SnaBI	SwaI	А.			В.	с.	
				PmeI	SnaBI SwaI	Sizes in Kb	SnaBI Sizes in Kb	SnaBI	Sizes in Kb
2,	,213,704	813,832	1,489,762			2231			
1,	,072,969	514,225	1,312,723			1455			339.5
43	30,867	471,842	847,235			1261	533.5		291
	51,192	404,820	219,012			1067	485	diam'r	
		271,615		0.1331 (1.1.9		970	388		242.5
		252,161				776	330.5	100	212.0
		236,788				110	201		
		223,579				679	291		194
		223,151				582	242.5		4.2.4
		183,196				405	194		
		90,832			and the set of the	485			145.5
		77,552		1800		388	145.5		
		71,350				291		1000	1000
		28,879					97		97 —
		4910			1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	194	4	1000	
						97	48.5	Sec. 1	19.5
Total Bases 3,	,868,732	3,868,732	3,868,732	the rate of			40.0		40.0

Conclusions

- We found that software programs using only the MiSiq/454 data provided accurate yet numerous contigs that did not result in a complete assembly.
- The HGAP 2.0 assembler generated an accurate and complete *de novo* genome assembly of *Caulobacter henricii* using Pacific Biosciences RS II data.
- So did the Celera 8.0 assembler by error correcting the PacBio RS II long reads with Illumina short reads (PBcR).

Genome Rearrangement in *Caulobacters* Do Not Affect the Essential Genome

Derrick C. Scott and Bert Ely

Department of Biological Sciences,

University of South Carolina, Columbia, SC, USA

- Caulobacter sp. K31
 - Novel Caulobacter which was isolated from a research station in Finland.
- C. crescentus NA1000
 - Laboratory strain derived from *C. crescentus* CB15 *C. crescentus* NA1000
- C. segnis strain TK0059
 - Genome published in 2011
- C. henricii CB4
 - Newly Sequenced for this Study
- Brevundimonas subvibrioides strain CB81
 - Genome published in 2010

Brevundimonas DS20
Newly Sequenced for this Study

A comparison of the *Escherichia coli* and *Salmonella typhi* genomes. Ash and Ely, unpublished. Each line represents a rearrangement event.

na1000.fas

MAUVE comparison of C. segnis TK0059 (top) with NA1000 (bottom).

A comparison of 16S rRNA nucleotide sequences among the species included in this study (percent identity).

	NA1000	C. segnis	CB4	K31	B. sub	B. DS20
NA1000	100%					
C. segnis	99%	100%				
CB4	98%	98%	100%			
K31	97%	97%	99%	100%		
B. sub	93%	94%	93%	93%	100%	
B. DS20	94%	95%	94%	93%	97%	100%

Disadvantages of 16s

- 16s region is relatively short
- Bacterial species often have multiple copies
- Most 16s in databanks are truncated
- 16s tree sometimes not congruent with actual gene-gene homology

A comparison of dcw cluster nucleotide sequences among the species included in this study (percent identity). 26 gene operon.

	NA1000	C. segnis	CB4	K31	B. sub	B. DS20
NA1000	100%					
C. segnis	88%	100%				
CB4	82%	82%	100%			
K31	83%	81%	84%	100%		
B. sub	73%	75%	76%	73%	100%	
B. DS20	75%	73%	76%	75%	79%	100%

A comparison of ribosomal protein operon nucleotide sequences among the species included in this study (percent identity). 28 gene operon.

	NA1000	C. segnis	CB4	K31	B. sub	B. DS20
NA1000	100%					
C. segnis	96%	100%				
CB4	90%	91%	100%			
K31	90%	90%	93%	100%		
B. sub	79%	79%	79%	80%	100%	
B. DS20	80%	80%	80%	80%	86%	100%

0.02

A comparison of conserved phage region nucleotide sequences among the species included in this study (percent identity). 20 gene operon.

	NA1000	C. segnis	CB4	K31	B. sub	B. DS20
NA1000	100%				N/A	N/A
C. segnis	83%	100%			N/A	N/A
CB4	90%	84%	100%		N/A	N/A
K31	87%	87%	75%	100%	N/A	N/A
B. sub	N/A	N/A	N/A	N/A	N/A	N/A
B. DS20	N/A	N/A	N/A	N/A	N/A	N/A

- The nucleotide sequence differs by as much 17% in pairwise
- No significant identity in Brevundimonads
- Upon closer inspection, we found that there was significant amino acid identity among the genes in this region in all six genomes.

- Caulobacter phage regions
 - Codon usage bias for CTG (Leucine), GGG (Glycine), GCG (Alanine), and CGG (Arginine)
- Brevundimonas phage region
 - Bias towards CTC(Leucine), CGC (Glycine), GCC (Alanine), and CGC(Arginine)
- We were also able to locate an inversion event in the *Brevundimonads* that was absent in the *Caulobacters*.

Only found codon bias in phage region

CCNA_number	start_of_ORF	end_of ORF	annotation	essential in NA1000	Found in C. segnis TK0059	Found in CB4	Found in K31	Found in Brev. DS20	Found in B. subvibrioides CB81
CCNA_00465	477921	479033	UDP-galactopyranose mutase	essential	NO	NO	NO	NO	NO
CCNA_00466	479191	480435	glycosyltransferase	essential	NO	NO	NO	NO	NO
CCNA_00467	480439	481710	oligosaccharide translocase/flippase	essential	NO	NO	NO	NO	NO
CCNA_00469	483454	482231	glycosyltransferase	essential	NO	NO	NO	NO	NO
CCNA_00761	820864	820655	hypothetical protein	essential	NO	NO	NO	NO	NO
CCNA_01304	1431129	1431329	hypothetical protein	essential	NO	NO	NO	NO	NO
CCNA_02841	2995269	2995508	hypothetical protein	essential	NO	NO	NO	NO	NO
CCNA_02844	2997483	2997265	antitoxin protein parD-3	essential	NO	NO	YES	NO	NO
CCNA_03307	3484065	3484331	hypothetical protein	essential	NO	NO	NO	NO	NO
CCNA_03630	3786790	3786224	socA antitoxin protein	essential	NO	NO	NO	NO	NO
CCNA_03474	3639765	3639538	SpoVT-AbrB family transcription factor, phd antitox	essential	NO	YES	YES	NO	NO
CCNA_00364	381273	380179	deoxyhypusine synthase	essential	YES	YES	YES	NO	YES
CCNA_01211	1338662	1337787	hypothetical protein	essential	YES	YES	YES	NO	NO
CCNA_01380	1494812	1495345	pole-organizing protein popZ	essential	YES	YES	YES	NO	NO
CCNA_02294	2441149	2442567	argininosuccinate lyase	essential	YES	YES	YES	NO	YES
CCNA_02644	2798562	2798119	putative cell division protein	essential	YES	YES	YES	NO	NO
CCNA_03213	3375439	3375747	putative polyhydroxyalkanoic acid system protein	essential	YES	YES	YES	NO	NO
CCNA_03277	3445041	3443992	glycosyltransferase	essential	YES	YES	YES	NO	NO
CCNA_03339	3521543	3520731	TolA protein	essential	YES	YES	YES	NO	NO
CCNA_03274	3442755	3442639	hypothetical protein	essential	NO	NO	NO	YES	NO
CCNA_00684	741111	740473	transcriptional activator chrR	essential	YES	NO	YES	YES	NO
CCNA_01864	1998726	1999349	transcriptional regulator, TetR family	essential	YES	NO	NO	YES	YES
CCNA_00041	45698	42585	bacterial protein translation initiation factor 2 IF-2	essential	NO	YES	YES	YES	YES

MAUVE alignment of CB4 (top) and K31 (bottom).

MAUVE alignment of *C. segnis* TK0059 (top) and CB4 (bottom)

- Previous studies have shown that Caulobacters exhibit an extremely high rate of genome rearrangement when compared to similarly related bacteria.
- We found no correlation between relatedness and genome scrambling
- Scrambling did not disrupt the conservation of the essential genome
- More studies are needed to determine exactly what is responsible for the organized chaos that is genome scrambling in *Caulobacters*.