

Using Visualization Tools to Understand Drug Evidence Handling Processes

Matthew Staymates and Edward Sisco Material Measurement Laboratory National Institute of Standards and Technology

Quick background – flow visualization and scientific imaging Many uses in the Surface and Trace Chemical Analysis Group, NIST

Schlieren imaging, high speed videography, laser-sheet imaging

Two visualization methods

Fluorescent powder handling and visualization

Created fluorescently tagged, mock drug evidence and had examiners handle it as they normally would. Recorded the entire process under a blacklight

Laser-sheet visualization

Lasers and optics help illuminate microparticles during net-weight operations. Provides 2D slice of the transport of particles during these activities.

Take-aways from fluorescent power experiments

- Net weights were quickly identified as one of the most concerning practices
 - Emptying the entire contents of the drug evidence to obtain the weight of the material (powder) without the packaging
 - Required for prosecution based on weight
- Repackaging of evidence also of concern

Laser-sheet visualization ~2 g powder

- Wet swabbing was completed in a grid-pattern to collect residue that settled onto the bench after several minutes
- As expected, the highest background was observed in area immediately surrounding the weigh paper
- Surface concentrations in excess of $10 \ \mu g/in^2$ observed
- Airflow was not controlled in these experiments

Measuring the Distribution

µg in-2 ____10 µg cm⁻² 1.55 – 1.03 -6.7 61 cm 0.51--3.3 0 - 0

61 cm

Laser-sheet visualization ~ 100 g powder

New contamination visualization laboratory

New facility that improves visualization and imaging techniques

Current efforts are focused on:

- Particulate transport in the third dimension?
- Expanding studies to other workplace processes
- Visualize process modifications that minimize exposure risks

- Our goal is to increase the safety of drug chemists due to the increasing presence of extremely toxic substances
- We are developing imaging tools and techniques that help visualize the processes that increase exposure risk, and evaluate the efficacy of process modifications
- Collaborations with other agencies have aided in interpretation of analyst risk and development of best practices
- While the current focus is on seized drugs these processes and approaches could easily be translated to other areas

matthew.staymates@nist.gov

Thanks for listening! Questions or Comments?

Many thanks to Amber Burns (Maryland State Police) and Ed Sisco (NIST)!

A snapshot of drug background levels

A multi-laboratory investigation of drug background levels

Visualizing particle spread

Net weights: Visualizing and quantifying

Cleaning agents removing drugs

Development of Novel Workflows for Seized Drug Analysis

Edward Sisco - NIST Amber Burns – MSP-FSD

National Institute of Standards and Technology U.S. Department of Commerce

National Institute of Standards and Technology U.S. Department of Commerce

Certain commercial products are identified in order to adequately specify the procedure; this does not imply endorsement or recommendation by NIST, nor does it imply that such products are necessarily the best available for the purpose.

Certain commercial products are identified in order to adequately specify the procedure; this does not imply endorsement or recommendation by Maryland State Police, nor does it imply that such products are necessarily the best available for the purpose.

A portion of this work was supported by Award No. 2018-DU-BX-0165, awarded by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this publication/program/exhibition are those of the author(s) and do not necessarily reflect those of the Department of Justice.

Novel Workflows

Sample Handling and Preparation

Data Analysis & Interpretation

Screening Approaches – Expanding DART-MS Capabilities

Confirmatory Analyses – Targeted GC-MS Methods

Workflow Shift

A large part of the development and implementation of this work has been done in collaboration with Maryland State Police, Forensic Sciences Division

Current Approach

Expanding DART-MS Capabilities

National Institute of Standards and Technology U.S. Department of Commerce

With the growing presence of novel drugs and increased complexity in cases, some labs are searching for technologies to aid in rapid screening

- DART-MS has been demonstrated as a powerful tool for this purpose
- Provides presumptive information in seconds with no sample preparation
- More specific than other presumptive tests
- Significant research effort at NIST surrounding DART-MS and its applications in the field

What is DART-MS?

- One of many ambient ionization mass spectrometry sources
- Conventional DART-MS uses a heated helium metastable gas stream for sample desorption and ionization
- Allows for analysis of samples with minimal preparation or pre-treatment
- Analysis time 1 s to 5 s
- Typical LODs ppm to ppb
- Can be coupled to a range of mass spectrometers

www.ionsense.com

DART-MS – Direct Analysis in Real Time Mass Spectrometry

8

DART-MS Use Cases

- We have been working with labs to identify unique use cases for DART-MS
- Utilizing GC-MS & DART-MS data can help identify unknowns
- Allows for determination of fragmentation and molecular ion of the compound
- Used to identify multiple unknown fentanyls and other NPSs

Utilize DART-MS to identify compounds that were completely not resolvable in the GC chromatograph

Validation Package Development

- Ongoing efforts to develop a DART-MS Validation package
- Includes validation plan, data workup document, SOPs, maintenance manuals, search lists, and training questions
- Available to labs who are interested

Accuracy 8	& Precision Studies	3		Yellow	v cells are	e auto-calo	culated																										
-																													_	_			
Positive Mode - Mixt	ture	01		50		-																							4				
Filename:	200619_Accuracy 6/10/2020	Chemisti Calibratio		ES 061020A		-																				Regulto	Eiguro:						
Date of Analysis.	0/13/2020	Galibratio		001320A																						Kesuits	i igure.					-	
Compound	Theoretical m/z	1	2	3	4	Replic 5	cate # 6	7	8	9	10			1	2	3	4	m/z [Deviation	7	, s		10	Average	Average	0.010							
Methamphetamine	150.1277	150,1287	150,127	150.129	150.13	150,128	150,128	150,129	150,128	150,128	150,128	Methamohetamine		0.001	-0.0011	0.0014	0.0019	0.0007	0.0001	0.0013	0	0.0005	0.0003	150,1283	0.00061		1						-
a-PBP	218.1539	218.1577	218.155	218.155	218.155	218.154	218.153	218.154	218.153	218.154	218.153	a-PBP	0	.0038	0.0015	0.001	0.0008	-0.0001	1 -0.0005	0.0003	-0.0011	-0.0001	-0.0005	218.1544	0.00051	0.005						8	
Butylone	222.1124	222.1127	222.11	222.113	222.114	222.112	222.111	222.113	222.112	222.112	222.111	Butylone	0	.0003	-0.0026	0.0006	0.0011	-0.0002	2 -0.0013	0.0003	-0.0004	-0.0006	-0.0012	222.11	-0.0004	Q		:	1 B	8	a 🚺	1	
Ethylone	222.1124	222.1127	222.11	222.113	222.114	222.112	222.111	222.113	222.112	222.112	222.111	Ethylone	0	.0003	-0.0026	0.0006	0.0011	-0.0002	2 -0.0013	0.0003	-0.0004	-0.0006	-0.0012	222.11	2 -0.0004	5 0.000 f	1		• •	•		1 1	
a -PVP	232.1695	232.1719	232.171	232.171	232.171	232.169	232.169	232.17	232.169	232.169	232.172	a -PVP	0	.0024	0.0013	0.0012	0.001	-0.0001	1 -0.0004	0.0001	-0.0002	-0.0001	0.0027	232.1702	0.00079	ō	1	8			•		• _
Phencyclidine	244.2059	244.2089	244.209	244.208	244.208	244.207	244.207	244.208	244.206	244.207	244.205	Phencyclidine		0.003	0.0032	0.0018	0.0019	0.0009	0.0013	0.0018	-0.0002	0.0008	-0.0006	244.2072	0.00139	-0.005							_
Tenocyclidine	250.1624	250.1674	250.166	250.165	250.166	250.164	250.164	250.165	250.164	250.163	250.162	Tenocyclidine		0.005	0.0034	0.0024	0.0034	0.0017	0.0019	0.0028	0.0012	0.0008	-0.0004	250.1646	2 0.00222		1						
Nandrolone decanoate	429.3363	429.3351	429.333		429.336	429.341	429.337	429.337	429.338	429.337	429.335	Nandrolone decanoate	-	0.0012	-0.0036		-0.0004	0.0042	2 0.0005	0.0009	0.0017	0.0002	-0.0012	429.3364	2 0.000122222	+0.010	0 1	2	3 4	5	6 7	8 9	10 11 -
Cocaine	304.1543	304.1541	304.157	304.156	304.155	304.156	304.154	304.156	304.154	304.154	304.153	Cocaine	-	0.0002	0.0026	0.0018	0.0011	0.0015	0 0000	0.0016	-0.0004	-0.0004	-0.0013	304.1549	0.00063					Replic:	ate		
Alprazolam	309.0901	200.009	309.067	309.093	200.091	200.091	309.09	309.092	309.093	200.091	309.000	Alprazolan		0007	-0.0034	0.0032	0.0011	0.0011	0.0003	0.0016	0.0024	0.0012	-0.0022	309.0905	0.00042	• N	lethamphet	amine		:	a-PBP		
Heroin	325.2307	370 1653	328.230	329.203	325.20	370 166	325.20	370 167	325.203	325.20	328.250	Hamin	-	0007	-0.0020	0.0046	0.0011	0.0010	0.0012	0.0023	0.004	0.0017	-0.0011	370 1654	0.00121		-PVP				Phencyclid	he	
Furanyl Fentanyl	375 2067	375 2078	375.21	375.21	375.21	375.21	375.206	375 209	375.21	375 209	375 205	Furanyi Fentanyi	0	0011	0.0013	0.0013	0.0036	0.0012	3 _0.0003	0.0022	0.0020	0.0025	-0.0022	375 2086	0.00198		ocaine	e			Alprazolam	decanoate	
Furanyl Fentanyl 3-	515.2001	373.2010	575.21	373.21	373.21	575.21	373.200	373.203	373.21	373.203	373.203	Furanyi Fentanyi 3-			0.0032	0.0020	0.0000	0.0000	-0.0003	0.0022	0.0004	0.0025	-0.0021	070.2000	0.00130		tanozolol uranyl Feni	tanyi		:	Heroin Furanyl Fer	ntanyi 3-Furan	carboxamide
Furancarboxamide	375.2067	375.2078	375.21	375.21	375.21	375.21	375.206	375.209	375.21	375.209	375.205	Furancarboxamide	0	.0011	0.0032	0.0029	0.0036	0.0033	3 -0.0003	0.0022	0.0034	0.0026	-0.0021	375.2086	0.00199	_ ⁶ _ L	Fluoro AD ow	В			High		
5-Fluoro ADB	378.2187	378.2203	378.219	378.219	378.22	378.22	378.219	378.221	378.22	378.219	378.218	5-Fluoro ADB	0	.0016	0	-0.0001	0.0013	0.0014	0.0005	0.0019	0.0012	1E-04	-0.0005	378.2194	4 0.00074								
PEC Cal Values:	4 20E 12											High	(0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005										
FEO Oar Variaca.	4.200-12											Low	-	0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005										
Negative Mode - Mix	ture		-			-										_													L				
Filename:	200827_Accuracy(-)	Chemist:		ES																													
Date of Analysis:	8/27/2020	Calibratio	PEG_DAR	RT_1000- (I	Drift Comp																					Results	Figure:						
						Poplic	aato #												Destintion					A		0.0	10						
Compound	Theoretical m/z	4	2	2	4	s Kepin		7	0	0	10			4	2	2	,	m/2 L	5 C	7			10	Average	Average		1						-
CHB.	103 039	103 03012	103.039	103.039	103.039	103.039	103.039	103.039	103 030	103.039	103.039	GHB	0	00012	0.00015	0	.8E.05	-0.0001	4 5E.05	.0.00019	0.00019	.4E.05	0.00027	103.0390	3 35.05		1						-
Secolarhital	237 1234	237 12321	237 123	237 123	237 123	237 123	237 123	237 123	237 123	237 123	237 124	Secoharbital	.0	00012	-2E-05	-0.00026	-0.00055	-0.0005	8 _0 00012	-0.00083	-2E-05	-0.00029	0.00041	237 1231	0 000245	0.0	05						
AB-FUBINACA	367,1565	367.15634	367.156	367.156	367.155	367.155	367,156	367.155	367.156	367.156	367.157	AB-FUBINACA	-0	.00016	-0.00046	-0.00071	-0.0015	-0.0011	7 -0.00086	-0.00175	-0.00034	-0.00083	0.00027	367,1557	-0.000751		1						-
								-	-			High	0.01	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.01		â	1						-
PEG Cal Values:	3.90E-12											Low	0.01	0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0		Ĕ 0.0	00						0
																										Drift	1			, 8	•		-
																											1						
						1																				-0.0	05						
																											1						
																											1						_
																										-0.0	10						
																											0	1 2	3 4	. 5 Barr	6 7	8 9	10 11
																			_											Replic	cate		
	-																									•	GHB	 Second 	obarbital	 AB-FI 	UBINACA -	High -	Law

1

Non-Traditional TD-DART-MS

- Many recent research projects have used a TD-DART-MS configuration
- Glass T-junction mounted coupled with Vapur interface
 - Used to pull analyte towards mass spectrometer
- Thermal desorber attached to Tjunction
 - Allows for wipe-based sample insertion
- Entire set-up can be removed and switched to traditional DART-MS in under 1 minute
- Increase sensitivity, reproducibility, safety
- Use nitrogen as the source gas

Evidence Screening Study

- To date >200 items sampled
- Inner packaging found to be the most representative (92 % accuracy)
- 100 % so far in determining the presence of synthetic opioids
- Typically enough material to saturate the MS or IMS
- False identifications attributed to plant material in foil bags or cases with large amounts of cocaine

Inner Packaging	Extract	Percent Occurrence	Result Type
Drug Detected	Same Drug Detected	79 % (n = 151)	True Positive
Drug Detected	No Drug Detected	1.5 % (n =3)	False Positive
Drug Detected	Different Drug Detected	2.5 % (n = 5)	False Positive
No Drug Detected	Drug Detected	4 % (n = 7)	False Negative
No Drug Detected	No Drug Detected	13 % (n = 25)	True Negative
Overall Accuracy:	92 %		

Recent Application: Rodenticides in Drugs

- Investigated if DART-MS could detect rodenticides (anti-coagulants) in illicit drug mixtures
- Six common compounds were easily detected by TD-DART-MS
 - Form both positive and negative ions
 - LODs in the 10's ng range
- In binary mixtures, competitive ionization with less volatile drugs was observed
 - Analysis in negative ionization mode eliminates competitive ionization concerns

Recent Application: Seed-based Toxins

- Investigated the detection of seed-based toxins such as scopolamine, oleandrin, hyoscyamine, and digitoxin
- Several toxins (oleandrin, digoxin, digitoxin) performed better in negative ionization mode
- Compared different platforms (DART, TD-DART, IRTD-DART) to identify the most useful approach for this application

NIST

Targeted GC-MS Methods

National Institute of Standards and Technology U.S. Department of Commerce

Targeted GC-MS Methods

Working with MSP-FSD to develop targeted GC-MS methods for different compound classes.

The goal is to develop methods that:

- 1) Enhance separation of isomers
- 2) Increase sensitivity
- 3) If possible, shorten runtimes
- 4) Standardize reporting / methods across labs

Methods also build in retention time locking and retention indices to improve rigor

Test Mixtures

- Worked with Cayman Chemical to develop custom text mixtures for each class
- Span range of elution times within class
- Include isomers to be able to measure resolution

Opioids	Cathinones	Cannabinoids
m-FIBF	Phentermine	FUB-AMB
p-FIBF	Methamphetamine	MDMB-FUBINACA
Cyclopropyl Fentanyl	Dimethylone	EMB-FUBINACA
Crotonyl Fentanyl	Butylone	MMB2201
Carfentanil	Ethylone	ADB-FUBINACA
Methoxyacetyl Fentanyl	Dibutylone	AB-FUBINACA
Furanyl Fentanyl	Pentylone	5F-ADBICA
Etizolam	Dimethylpentylone	5F-ABICA
Noscapine	Ethylpentylone	
Benzodioxole Fentanyl		

Column Comparison

- First portion of study looked to identify the effect of different columns on test mixture response
- Evaluated six different columns
 - DB1UI, DB5, DB5UI, DB35, DB200, and VF1701ms
- Utilized a uniform method across all columns to keep other parameters fixed

Uniform method

Temperature Program	 1) 100 °C for 0 min 2) Ramp at 30 °C/min to 300 °C 3) Hold for 24 min 					
Flow Rate	1.8 mL/min (Constant Flow)					
Injection Volume	1 μL					
Inlet Temperature	275 °C					
Split Ratio	30:1					
Transfer Line	300 °C					
Quad Temperature	150 °C					
Source Temperature	230 °C					
Tune Mode	stune					
Solvent Delay	1.30 min					
Mass Scan Range	$m/z \ 40 - m/z \ 550$					
Threshold	150					
Scan Speed	N = 2					
Total Run Time	30.667 min					

Column Comparison

19

 Δ Retention Time (%)

Once a column was chosen, studies were completed to optimize temperature and flow programs.

Other Settings – Design of Experiments

NIST

Final Optimization

- Results of relevant parameters from the DOE were furthered refined
- Final optimization looked at tune type
- After optimization, ran expanded panel of drugs to ensure method parameters worked

Opioids	LOD (µg/mL)	Cathinones	LOD (µg/mL)	Cannabinoids	LOD (µg/mL)
m-FIBF	1	Phentermine	0.5	FUB-AMB	1
p-FIBF	1	Methamphetamine	0.5	MDMB-FUBINACA	1
Fentanyl	1	Dimethylone	0.5	EMB-FUBINACA	5
Cyclopropyl Fent.	1	Butylone	0.5	MMB2201	1
Carfentanil	10	Ethylone	0.5	ADB-FUBINACA	10
Crotonyl Fentanyl	10	Dibutylone	0.5	AB-FUBINACA	10
Methoxyacetyl Fent.	10	Pentylone	0.5	5F-ADBICA	10
Furanyl Fentanyl	1	Dimethylpentylone	0.5	5F-ABICA	10
Etizolam	25	Ethylpentylone	0.5		
Noscapine	25				
Benzodioxole Fent.	10				

Comparison to Current Method

% Change (Average)	Area	Height	Delta RT	% RSD (RT)
Opioids	327 %	37 %	135 %	93 %
Cathinones	66 %	-19 %	262 %	0 %
Cannabinoids	6518 %	4045 %	220 %	537 %

 $\begin{array}{c}
15 \\
10 \\
10 \\
5 \\
0 \\
3-4 \\
4-5 \\
5 \\
6 \\
6-7 \\
7-8 \\
8-9 \\
\end{array}$

□Current □Target

□Current □Target

□Current □Target

Comparison to Current Methods

24

Compound Expansion

- Once developed, additional compounds were analyzed
 - Made adjustments to methods as needed
- Replicate analyses to evaluate locked RT and RI
 - Build library with RT and RI information
- All compounds had >1% RT difference or differentiable MS
Compound Expansion

- Utilized Fentanyl Analog Screening kit for expansion of opioid method
- Method has 8 pairs of compounds that have similar MS with <1 % RT difference
 - Six sets were ortho / meta isomer pairs
- Currently building out automated data analysis and reporting features

The next step of this work is looking to quantify a comparison between the current workflow and a novel workflow.

- Take a subset of cases and have drug chemists analyze using one of the workflows
- Evaluate the level of detail gained at each step
- Quantify the time taken for each step
- Identify strengths and weaknesses in the novel workflow

Thank you.

edward.sisco@nist.gov DARTdata@nist.gov

National Institute of Standards and Technology U.S. Department of Commerce

NIST Mass Spectral Libraries and Search Tools for Seized Drug Analysis

Arun S. Moorthy National Institute of Standards and Technology Gaithersburg, MD, USA 20899

November 6th, 2020.

NIST20 EI MS Library

NIST20 Tandem MS Library MS Software

NIST/EPA/NIH GC-MS

+40K Coverage

Why Upgrade to NIST20

- 350,704 spectra (44,082 new)
- 306,643 compounds (39,729 new)

Library Growth Concentrated in

- Human & plant metabolites
- Legal & illicit drugs

3000

• General analytical interest

Gas Chromatography Retention Index and Methods Library

- 447,289 RI values
- 139,382 compounds

NIST LC-MS

Comprehensive

- 30,999 compounds (17,191 new)
- 185,602 precursor ions (67,520 new)
- 1,320,464 spectra (745,638 new)
- Instruments Used: Ion Trap, Collision Cell

Wide Coverage

- Metabolites
- Pharmaceuticals
- Industrial Surfactants
- Glycans-Lipids-Sugars
- Pesticides
- Amino Acids, Di- & Tryptic Tri-Peptides

Quality Assurance

- Every new spectrum reviewed by two analysts.
- New compounds chosen for wide analytical interest.
- MS Search v. 2.4 with hybrid search
- AMDIS (GC-MS)
- MS Interpreter Major Revision

Email massspec@nist.gov

Web chemdata.nist.gov

National Institute of Standards and Technology U.S. Department of Commerce

2X Coverage

DART-MS Forensics Database

- A new database available now
 - focus on NPS's, synthetic opioids, cutting agents
 - spectra measured at multiple orifice energies
- Developed new manual and **automated** evaluation workflow
- Implemented workflow to facilitate rapid updating of database
 - open-source software
- Database and workflow available from DARTdata@nist.gov

NEW DART-MS Forensic database: 663 compounds, 1989 spectra

Mass spectral library searching

Mass spectral library searching

Mass spectral similarity mapping

Mass spectral similarity mapping

Software Availability:

1. NIST Fentanyl Classifier (2020): http://github.com/asm3-nist/FentanylClassifier

Relevant Publications:

1. Moorthy et. al. "Combining fragment-ion and neutral-loss matching during mass spectral library searching: A new general purpose algorithm applicable to illicit drug identification." *Analytical chemistry* 89, no. 24 (2017): 13261-13268.

2. Moorthy et. al. "Mass spectral similarity mapping applied to fentanyl analogs." *Forensic Chemistry* 19 (2020): 100237.

3. Moorthy & Kearsley. "Pattern similarity measures applied to mass spectra". To appear in "Progress in Industrial Mathematics" (2021)

4. Kearsley & Moorthy. "Mathematics and Mass Spectra: Model problems to study the Fentanyl epidemic". Submitted July 2021.

Examples of fentanyl and fentanyl analogs, with colored shapes demonstrating the sites at which the analogs differ from the fentanyl

Example of 2D mass spectral similarity map created by the NIST Fentanyl Classifier. Each circle represents a mass spectrum. Based on where a query spectrum lands in this space, an analyst can determine whether it is a fentanyl analog (with up to two modifications) or not.

Fentanyl Classifier

The Fentanyl Classifier is a prototype implementation of "augmented mass spectral library searching". The software was designed for demonstration purposes. The authors cannot guarantee the accuracy of results generated using the Fentanyl Classifier, and cannot validate claims of others using this software.

Choose Query Spectrum (MSP File)

Potential structure based on library search results. Disclaimer: The authors do not guarantee the accuracy of this result or claims of others based on results generated using this tool.

-0.6 -0.4 -0.2 0.0 0.2 0.4

Fentanyl Classifier

The Fentanyl Classifier is a prototype implementation of "augmented mass spectral library searching". The software was designed for demonstration purposes. The authors cannot guarantee the accuracy of results generated using the Fentanyl Classifier, and cannot validate claims of others using this software.

Choose Query Spectrum (MSP File)

Potential structure based on library search results. Disclaimer: The authors do not guarantee the accuracy of this result or claims of others based on results generated using this tool.

127.0.0.1:7777/#tab-3309-2

DART-MS: Inverted Search Procedure

Assumption 1: The component molecules contained in a mixture will each present an $[M + H]^+$ peak in the low energy spectrum and the relative intensity of these peaks will be greater than a threshold intensity.

DART-MS: Inverted Search Procedure

Assumption 2a:

Reference mass spectra of the component molecules contained in the analyte are available in a searchable database.

Assumption 2b:

The difference between protonated molecule m/zvalues of database entries and those observed in the query is accurate to a known resolution $\pm \epsilon_0$.

DART-MS: Inverted Search Procedure

Target: m_1

$$\phi_{m_1,L_4} = g(f_1(q, L_4, q, L_4, q, L_4, P), f_2(q, L_4, q, L_4, q, L_4, P), f_3(q, L_4))$$
weighted fraction of abundance explained weighted mass bias mass difference

The NIST DART-MS Database Search Tool (DST) is an open-source research tool for analyzing DART-MS spectra of seized drugs. The authors cannot guarantee the accuracy nor validate the claims of others using results generated by this software.

For help or more information: dartdata@nist.gov

Search Mode:

O Pure Compound O Mixture Analysis

Summary of Tools

AMDIS: Automates extraction of GC-MS data files to generate consistent/reproducible mass spectra.

- Built-in "standard" library search procedure

MS SEARCH/Interpreter: A comprehensive tool for interacting with mass spectral libraries, including a variety of useful search algorithms and data interpretation tools.

Fentanyl Classifier: A tool specifically for interacting with mass spectra of potential fentanyl analogs, attempting to localize the site of modification.

Available: https://github.com/asm3-nist/FentanylClassifier

Inverted Search Algorithm: A new method currently in preparation for identifying components in DART-MS.

For status updates: DARTdata@nist.gov

Questions?

arun.moorthy@nist.gov

Benchtop NMR for Forensic Drug Analysis

Aaron Urbas

Chemical Sciences Division, Material Measurement Laboratory National Institute of Standards & Technology Gaithersburg, Maryland USA

MATERIAL MEASUREMENT LABORATORY

Outline

- NMR at a Glance
- Benchtop NMR
- Fentanyl Analog Differentiation with ¹H low-field/benchtop NMR Spectra
- Fluorine (¹⁹F) low-field/benchtop NMR
- Quantum Mechanic Spectral Analysis (QMSA) of ¹H NMR Spectra and Translation of ¹H Spectra Across Magnet Field Strengths
- Recent Sample Investigations
- Conclusion & Acknowledgements

NMR at a Glance

Powerful Structure Elucidation Tool

- NMR Active Nuclei (Spin ½)
 - ¹H, ¹³C, ¹⁵N ¹⁹F, ³¹P mainly
- 2D experiments offer a wealth of connectivity information
 - COSY : ¹H-¹H single bond correlations
 - TOCSY : ¹H-¹H multi-bond correlations
 - HSQC : ¹H-X single-bond single bond connectivity
 - HMBC, HMQC : ¹H-X multi-bond single bond connectivity

There are **MANY** more methods including variants of these and others.

Analytical Tool

- Quantification
 - Absolute purity determinations against a reference material
 - Quantification of multiple compounds from a single internal (or external) standard
- Powerful screening method for unknowns
 - In most cases, if it's soluble and has a proton you can see it

Benchtop NMR

- 40 90 MHz Permanent Magnet Systems
- Range from ~ \$40K \$100K
- No cryogens, little maintenance
- Easy to Use
- Portable to varying extents
- Some 2D spectral capabilities
- Drawbacks
 - Sensitivity & Resolution

Fentanyl Analog Benchtop NMR Evaluation

General fentanyl structure labeling functional groups and opportunity for modification

In the case of fentanyl:

R1) N-propionyl groupR2) phenethyl groupR3) aniline ringR4) piperidine ring

<u>Duffy J, Urbas A, Niemitz M, Lippa</u> <u>K, Marginean I,</u> "Differentiation of fentanyl analogues by low-field NMR spectroscopy." *Anal Chim Acta,* **2019**, 1049:161-169 65 fentanyl analogs and related compounds were examined

All samples were prepared in $CDCl_3$ (~5 mg in 0.6-0.7 mL)

Name	MW	R1	R2	R3
Fentanyl HCl	372.9	-CH ₂ CH ₃	-CH ₂ CH ₂ Ph	
Fentanyl	336.5	$-CH_2CH_3$	$-CH_2CH_2Ph$	
Norfentanyl	232.3	$-CH_2CH_3$	-H	
α-Methyl Fentanyl HCl	387.0	$-CH_2CH_3$	-CH(CH ₃)CH ₂ Ph	
β-Methyl Fentanyl HCl	387.0	$-CH_2CH_3$	-CH ₂ CH(CH ₃)Ph	
ortho-Methylfentanyl HCl	387.0	$-CH_2CH_3$	-CH ₂ CH ₂ Ph	-2-CH ₃
meta-Methylfentanyl HCl	387.0	$-CH_2CH_3$	-CH ₂ CH ₂ Ph	-3-CH ₃
para-Methylfentanyl HCl	387.0	$-CH_2CH_3$	-CH ₂ CH ₂ Ph	-4-CH ₃
β-hydroxy Fentanyl HCl	388.9	$-CH_2CH_3$	-CH ₂ CH(OH)Ph	
3-Fluorofentanyl HCl ^{* a}	390.9	_	_	_
ortho-Fluorofentanyl HCl	390.9	$-CH_2CH_3$	-CH ₂ CH ₂ Ph	-2-F
meta-Fluorofentanyl HCl	390.9	$-CH_2CH_3$	-CH ₂ CH ₂ Ph	-3-F
para-Fluorofentanyl HCl	390.9	$-CH_2CH_3$	-CH ₂ CH ₂ Ph	-4-F
para-Chlorofentanyl HCl	407.4	$-CH_2CH_3$	-CH ₂ CH ₂ Ph	-4-Cl
Despropionyl ortho-Fluorofentanyl	298.4	—H	-CH ₂ CH ₂ Ph	-2-F
Despropionyl meta-Fluorofentanyl	298.4	-H	-CH ₂ CH ₂ Ph	-3-F
Despropionyl para-Fluorofentanyl	298.4	—Н	-CH ₂ CH ₂ Ph	-4-F
Butyryl Fentanyl HCl	387.0	$-CH_2CH_2CH_3$	-CH ₂ CH ₂ Ph	
α-Methyl Butyryl Fentanyl HCl	401.0	$-CH_2CH_2CH_3$	$-CH(CH_3)CH_2Ph$	
ortho-Fluorobutyryl Fentanyl HCl	405.0	$-CH_2CH_2CH_3$	-CH ₂ CH ₂ Ph	-2-F
meta-Fluorobutyryl Fentanyl HCl	405.0	$-CH_2CH_2CH_3$	-CH ₂ CH ₂ Ph	-3-F
para-Fluorobutyryl Fentanyl HCl	405.0	$-CH_2CH_2CH_3$	-CH ₂ CH ₂ Ph	-4-F
para-Chlorobutyryl Fentanyl HCl	421.4	$-CH_2CH_2CH_3$	-CH ₂ CH ₂ Ph	-4-Cl
para-methoxy Butyryl Fentanyl HCl	417.0	$-CH_2CH_2CH_3$	-CH ₂ CH ₂ Ph	-4-0CH ₃
Isobutyryl Fentanyl HCl	387.0	$-CH(CH_3)CH_3$	-CH ₂ CH ₂ Ph	

the list goes on....

Furanyl Fentanyl Analogs (1H NMR, 62 MHz)

Butyrl Fentanyl Analogs (1H NMR, 62 MHz)

Fluorofentanyl Analogs (1H NMR, 62 MHz)

NIST

Fluoromethcathinone Isomers (¹H, 62 MHz, MeOD)

¹⁹F NMR of Fluorinated Fentanyl Analogs (1H Decoupled)

Outline

- NMR at a Glance
- Benchtop NMR
- Fentanyl Analog Differentiation with ¹H low-field/benchtop NMR Spectra
- Fluorine (¹⁹F) low-field/benchtop NMR
- Quantum Mechanic Spectral Analysis (QMSA) of ¹H NMR Spectra and translation of ¹H Spectra Across Magnet Field Strengths
- Recent Sample Investigations
- Conclusion & Acknowledgements

Can We Better Utilize ¹H Spectra?

- Wealth of structural information available
- Proton counts
- Chemical shift structure correlations
- Connectivity via couplings and coupling constants
- Indirect heteronuclear information through coupling, e.g. ¹⁹F

Predicted Chemical Shifts & Coupling Constants for para-fluorofentanyl

	Atom	Shift (ppm)) (Hz)
		4.27	J(3-13')	5.78
	2.01		J(3-13")	5.78
	3 CH		J(3-17')	5.78
			J(3-17")	5.78
	6 CH2	2.082	J(6)	14.56
			J(6-7)	7.89
	7 (112	0.04	J(7-6)	7.89
	7 CH3	0.94	J(7)	6.99
			J(8-9)	8.43
	8 CH	7.019	J(8-12)	1.5
			J(8-26)	5
		7.156	J(9-8)	8.43
	9 CH		J(9-11)	1.5
			J(9-26)	8
		7.156	J(11-9)	1.5
	11 CH		J(11-12)	8.43
			J(11-26)	8
		7.019	J(12-8)	1.5
	12 CH		J(12-11)	8.43
			J(12-26)	5
		1.645	J(13'-3)	5.78
	13' CH2		J(13'-13")	12.29
			J(13'-14')	8.01
			J(13'-14'')	5.65
	13" CH2	2.031	J(13"-3)	5.78
			J(13"-13')	12.29
			J(13''-14')	5.65
			J(13"-14")	8.01

Predicting ¹H NMR Spectra

Measured vs Predicted Para-Fluorofentanyl ¹H NMR Spectra (600 MHz)

While predicted ¹H spectra can be useful for spectral interpretation they often differ quite considerably from observed spectra in both chemical shifts and coupling constants.

Quantum Mechanic Spectral Analysis (QMSA)

Coupling Constants					
	Coupling Constants				
Atom	Shift (ppm)	J (Hz)			
3 CH	4.27	J(3-13')	5.78		
		J(3-13")	5.78		
		J(3-17')	5.78		
		J(3-17")	5.78		
6 CH2	2.082	J(6)	14.56		
		J(6-7)	7.89		
		J(7-6)	7.89		
7 CH3	0.94	J(7)	6.99		
8 CH	7.019	J(8-9)	8.43		
		J(8-12)	1.5		
		J(8-26)	5		
9 CH	7.156	J(9-8)	8.43		
		J(9-11)	1.5		
		J(9-26)	8		
	7.156	J(11-9)	1.5		
11 CH		J(11-12)	8.43		
		J(11-26)	8		
12 CH	7.019	J(12-8)	1.5		
		J(12-11)	8.43		
		J(12-26)	5		
13' CH2	1.645	J(13'-3)	5.78		
		J(13'-13")	12.29		
		J(13'-14')	8.01		
		J(13'-14'')	5.65		
13'' CH2	2.031	J(13"-3)	5.78		
		J(13"-13')	12.29		
		J(13''-14')	5.65		
		J(13"-14")	8.01		

Dradiated Chamical Shifts 9

Para-fluorofentanyl

There are a total of 117 chemical shifts and couplings in the spin system utilized for this molecule, the tables only represent a subset.

Fit Chemical Shifts & Coupling Constants

Atom	Shift (ppm)	1) (I	Hz)
3 CH		J(3-13')	12.3336
	4 770	J(3-13")	3.6189
	4.778	J(3-17')	12.3336
		J(3-17")	3.6189
6 CH2	1 0 4 0 5	J(6)	14.56
	1.9495	J(6-7)	7.4367
7 (112	1 0157	J(7-6)	7.4367
7 CH3	1.0157	J(7)	6.99
		J(8-9)	8.663
8 CH	7.0817	J(8-12)	3.1175
		J(8-26)	4.7923
		J(9-8)	8.663
9 CH	7.1451	J(9-11)	2.6866
		J(9-26)	8.0205
		J(11-9)	2.6866
11 CH	7.1451	J(11-12)	8.663
		J(11-26)	8.0205
		J(12-8)	3.1175
12 CH	7.0817	J(12-11)	8.663
		J(12-26)	4.7923
		J(13'-3)	12.3336
13' CH2	2 1027	J(13'-13")	-13.6442
	2.1927	J(13'-14')	13.0136
		J(13'-14'')	4.2744
13" CH2		J(13"-3)	3.6189
	1 0720	J(13"-13')	-13.6442
	1.9758	J(13"-14')	3.1651
		J(13"-14")	3.1276

Quantum Mechanic Spectral Analysis (QMSA)

NIST
Field Translation of ¹H NMR Spectra using Spin-System Models

- QMSA models are field independent and thus portable to different magnetic fields for reproducing spectral information.
- QMSA models are free of solvent and impurity signals as well as instrumental artifacts
- QMSA models are adaptive and enable handling of small perturbations in chemical shifts and coupling constants between samples.

NIST

Spin-System Evaluated at Various Field Strengths

NIST

Outline

- NMR at a Glance
- Benchtop NMR
- Fentanyl Analog Differentiation with ¹H low-field/benchtop NMR Spectra
- Fluorine (¹⁹F) low-field/benchtop NMR
- Quantum Mechanic Spectral Analysis (QMSA) of ¹H NMR Spectra and translation of ¹H Spectra Across Magnet Field Strengths
- Recent Sample Investigations
- Conclusion & Acknowledgements

Synthetic Tryptamine Analog Example 1

Sample Spectrum Compared to 62 MHz QMSA Simulations

Synthetic Tryptamine Analog Example 1

62 MHz QMSA Model of Sample Spectrum

Synthetic Tryptamine Analog Example 2

NIST

Conclusions & Future Efforts

- Demonstrated that analogs and isomers of fentanyl and some other classes of compounds were readily differentiated using low-field NMR spectroscopy
- Showed how ¹⁹F NMR might be useful in the analysis of fluorinated compounds
- Demonstrated the potential utility of quantum mechanic spectral analysis (QMSA) to enable exchange of ¹H spectra between NMR instruments of different field strengths.

Going Forward....

- Broaden effort to develop QMSA libraries by enlisting collaborators.
- Resolution and sensitivity are significantly reduced at lower magnetic fields. Mixtures are anticipated to be challenging.

Going Forward....

- Explore whether the use of Quantum Mechanic Spectral Analysis (QMSA) will permit effective mixture analysis with low-field NMR. Low-level components (< 5%-10%) would likely be difficult in many situations, though.
- Continue work with forensic lab partners to evaluate "real-world" samples.

Acknowledgements

- Support from the NIST Special Programs Office
- George Washington University (collaboration on the fentanyl analog project)
 - Ioan Marginean and Jonathan Duffy
- Samples, reference materials or data in the past and present from
 - Maryland State Police Forensic Science Division (Amber Burns)
 - DEA Special Testing and Research Laboratory (Charlotte Corbett)
 - US Postal Inspection Service (Mike Hitchcock)
- QMSA Assistance
 - Matthias Niemitz (NMR Solutions)
 - Pekka and Reino Laatikainen (Spin Discoveries) for assistance with QMSA

Disclaimer

Commercial equipment identified in this presentation is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

Thank You!

