New Smart Grid Interfaces Categories Assessment (Discussion DRAFT)

November 9, 2018

Information cybersecurity is primarily associated with information exchange interactions¹ between entities² and is a critical aspect of power system operations and security. The impacts of cybersecurity breaches—whether deliberate or inadvertent—may affect both physical and cyber operations of the grid.

Figure 1- Logical Interface Reference Model "Spaghetti Diagram" from NISTIR 7628³

Identifying the entities² involved with information exchanges in power system operations is the first step towards understanding cybersecurity issues for the grid. To facilitate this understanding, the 2014 NIST publication *Guidelines for Smart Grid Cybersecurity*³ included a composite diagram of grid entities that exchange information within and across each of the seven

¹ Although information cybersecurity also addresses stored data, NIST's focus is on interoperability and the security of associated information exchanges.

² Entities could be users, systems, devices, network or communications nodes, etcetera.

³ NISTIR 7628 Rev 1, available here: https://nvlpubs.nist.gov/nistpubs/ir/2014/NIST.IR.7628r1.pdf

smart grid conceptual model domains.⁴ By mapping these information exchanges—called logical interfaces—to the composite diagram of grid entities, the NIST Guidelines publication described where, at a high level, the smart grid would need to provide security (see **Figure 1**).

Yet knowing *where* security is needed is of limited value, as locational information alone does not provide details on the requirements of *what* needs to be done to enhance security. To understand the latter, the NIST *Guidelines* document (NISTIR 7628) defined a set of logical interface categories (LICs) based on attributes that could affect grid cybersecurity requirements. Because many of the individual logical interfaces are similar in their security-related characteristics, grouping interfaces into LICs with similar characteristics is a means to simplify the identification of appropriate security requirements. In that way, the hundreds of individual interfaces drawn in **Figure 1** can be grouped into 22 representative categories, or LICs, from which broadly applicable cybersecurity requirements can be derived (see **Table 1** at the end of this document).

New System Interfaces

The modern grid will be more heavily dependent on information exchange than the legacy grid. As distributed energy resources (DERs) and other innovations are used more extensively across the grid, the set of entities involved with information exchanges in power system operations will expand and new communications interfaces will evolve. It is useful, therefore, to explore how portions of the **Figure 1** logical interface diagram—which contains high-level representations of current power system operations domains—can be expanded to provide more detailed cybersecurity requirements for emerging interfaces.

To explore the cybersecurity implications introducing new technologies and architectures to the grid, we updated the NISTIR 7628 logical interface diagram (**Figure 1**) to include examples of the new equipment and information exchanges that could be expected for future high-DER penetration grids. A representation of the new power system entities and logical interfaces for a high-DER architecture is shown in **Figure 2**, where Uxx labeled blue interface arrows are the same as those originally shown in NISTIR 7628 (**Figure 1**), and Dxx labeled red interface arrows are new to the high-DER example.

From this example (**Figure 2**), we understand that a modernized grid would likely have to accommodate at least three new types of communications interfaces, including:

New interfaces for new entities: As new systems are introduced to the grid the number of communications interfaces and pathways will increase dramatically. In this example, extensive penetration of distributed resources requires introduction of a Distributed Energy Resources Management System (DERMS) into the grid operations domain. This DERMS would likely have different data and communications requirements than legacy systems, and new communications linkages are required throughout the rest of the system.

⁴ See companion pre-read document, *Update of the NIST Smart Grid Conceptual Model: Discussion DRAFT*, available here: <u>https://www.nist.gov/document/draftsmartgridconceptualmodelupdatev2pdf</u>

New interfaces between subsystems: As the physical capabilities of grid-connected systems advance, logical interface requirements between equipment subsystems will evolve. In this example, the customer sited DER asset, electric vehicle asset, and the utility-scale DER or cogeneration asset have been split to reflect the different logical interface requirements between asset controllers and the equipment that is connected to the grid and physically consuming or supplying electrons.

New interfaces for legacy systems: As new capabilities are introduced to conventional grid assets, information will have to be exchanged with and between legacy systems. In this example, both the utility-scale DER or cogeneration asset and the facility energy management system interface directly with the utility supervisory control and data acquisition (SCADA) system via a new logical interface.

Example Logical Interfaces in a High-DER Architecture

Figure 2 - Example Logical Interfaces in a High-DER Architecture. Note that to ease examination, this figure includes only those entities requiring new logical interfaces for this high-DER example.

Assessing Security Requirements of New Interfaces

New or changed logical interfaces may require new cybersecurity precautions. The high-DER example in **Figure 2** identifies nearly a dozen new interfaces, and the changing characteristics of the system itself may alter the communications and cybersecurity requirements for previously established interfaces.

To assess the cybersecurity requirements for the high-DER example, the new and updated interfaces shown in **Figure 2** were evaluated against the LICs of the earlier NIST *Guidelines* document. Each of the high-DER example interfaces could be mapped to an existing LIC, meaning the cybersecurity requirements for protecting communications interfaces within this new architecture are not substantially different than those described in the original NISTIR 7628 *Guidelines*. This mapping is shown graphically in **Figure 3**. The complete evaluation of each information exchange is provided in **Table 2** at the end of this document.

Figure 3 - Logical Interface Categories (LICs) for the High-DER Example

Conclusion

The smart grid brings new information technology capabilities to electric infrastructure, and as this occurs the number of communications interfaces will grow substantially. Even so, the fundamental cybersecurity requirements for each interface are likely to be consistent with known requirements, as described by existing LICs. Mapping new interfaces to existing LICs should facilitate the effective application of category-driven protection schemes to the evolving grid.

Appendix A – Table 1: Logical Interface Categories from NISTIR 7628

 Table 1 - Logical Interface Categories from NISTIR 7628

Logical Interface CategoryLogical Interfaces1. Interface between control systems and equipment with high availability, and with compute and/or bandwidth constraints, for example:U67, U79, U81, U82, U U102, U117, U137	
with compute and/or bandwidth constraints, for example: U102, U117, U137	85,
Between transmission SCADA and substation equipment	
Between distribution SCADA and high priority substation and pole-top	
equipment	
Between SCADA and DCS within a power plant	
• (NOTE: LICs 1-4 are separate due to the architecturally significant	r
differences between the availability and constraints, which impact	
mitigations such as encryption.)	
2. Interface between control systems and equipment without high availability, U67, U79, U81, U82, U	85.
but with compute and/or bandwidth constraints, for example: U102, U117, U137	,
Between distribution SCADA and lower priority pole-top equipment	
Between pole-top IEDs and other pole-top IEDs	
3. Interface between control systems and equipment with high availability, U67, U79, U81, U82, U	85,
without compute nor bandwidth constraints, for example: U102, U117, U137	
Between transmission SCADA and substation automation systems	
4. Interface between control systems and equipment without high availability, U67, U79, U81, U82, U	195
without compute nor bandwidth constraints, for example: U102, U117, U137	05,
Between distribution SCADA and backbone network-connected collector	
nodes for distribution pole-top IEDs	
5. Interface between control systems within the same organization, for example: U7, U9, U11, U13, U27	
• Multiple DMS systems belonging to the same utility U67, U83, U87, U115,	Ux2
• Between subsystems within DCS and ancillary control systems within a	
power plant	
6. Interface between control systems in different organizations, for example: U10, U56, U66, U70, U	74
• Between an RTO/ISO EMS and a utility energy management system U115, U116, Ux3	- 2
7. Interface between back office systems under common management authority, U2, U4, U21, U22, U26	. U31.
for example: U53, U96, U98, U110,	
Between a Customer Information System and a Meter Data Management	
System	
	1150
8. Interface between back office systems not under common managementU1, U4, U6, U15, U52,authority, for example:Ux4, Ux6	053,
 Between a third party billing system and a utility meter data management system 	

Logical Interface Category	Logical Interfaces
9. Interface with B2B connections between systems usually involving financial	U4, U9, U17, U20, U51, U52,
or market transactions, for example:	U53, U55, U57, U58, U72,
Between a Retail aggregator and an Energy Clearinghouse	U90, U93, U97
10. Interface between control systems and non-control/corporate systems, for	U12, U30, U33, U36, U52,
example:	U59, U75, U91, U106, U113,
Between a Work Management System and a Geographic Information	U114, U131
System	
11. Interface between sensors and sensor networks for measuring environmental	U111
parameters, usually simple sensor devices with possibly analog measurements,	
for example:	
• Between a temperature sensor on a transformer and its receiver	
12. Interface between sensor networks and control systems, for example:	U108, U112
• Between a sensor receiver and the substation master	
13. Interface between systems that use the AMI network, for example:	U2, U6, U7, U8, U21, U24,
Between MDMS and meters	U25, U32, U95, U119, U130
Between LMS/DRMS and Customer EMS	
14. Interface between systems that use the AMI network with high availability,	U2, U6, U7, U8, U21, U24,
for example:	U25, U32, U95, U119, U130
Between MDMS and meters	
Between LMS/DRMS and Customer EMS	
Between DMS Applications and Customer DER	
Between DMS Applications and DA Field Equipment	
15. Interface between systems that use customer (residential, commercial, and	U42, U43, U44, U45, U49,
industrial) site networks which include:	U62, U120, U124, U126, U127
Between Customer EMS and Customer Appliances	
Between Customer EMS and Customer DER	
Between Energy Service Interface and PEV	
16. Interface between external systems and the customer site, for example:	U18, U37, U38, U39, U40,
Between Third Party and HAN Gateway	U42, U88, U92, U125
Between ESP and DER	
Between Customer and CIS Web site	
17. Interface between systems and mobile field crew laptops/equipment, for	U14, U29, U34, U35, U99,
example:	U101, U104, U105
• Between field crews and GIS	
Between field crews and substation equipment	
18. Interface between metering equipment, for example:	U24, U25, U41, U46, U47,
• Between sub-meter to meter	U48, U50, U54, U60, U95,
Between PEV meter and Energy Service Provider	U128, U129, Ux5

Logical Interface Category	Logical Interfaces
19. Interface between operations decision support systems, for example:	U77, U78
Between WAMS and ISO/RTO	
20. Interface between engineering/maintenance systems and control equipment,	U109, U114, U135, U136,
for example:	U137
• Between engineering and substation relaying equipment for relay settings	
• Between engineering and pole-top equipment for maintenance	
• Within power plants	
21. Interface between control systems and their vendors for standard maintenance and service, for example:	U5
Between SCADA system and its vendor	
22. Interface between security/network/system management consoles and all networks and systems, for example:	U133 (includes interfaces to actors 17-Geographic
• Between a security console and network routers, firewalls, computer systems, and network nodes	Information System, 12 – Distribution Data Collector, 38 – Customer Portal, 24 –
	Customer Service
	Representative, 23 – Customer
	Information System, 21 – AMI
	Headend, 42 – Billing, 44 – Third Party, 43 – Energy
	Service Provider, 41 –
	Aggregator / Retail Energy
	Provider, 19 – Energy Market
	Clearinghouse, 34 – Metering / Billing / Utility Back Office)
	· · · · · · · · · · · · · · · · · · ·
C P	
7	

Appendix B – **Table 2: Types of Information Exchange Between Entities in the High-DER Example**

Interface	Entity #1	Entity #2	Logical Interface Security	Protection against Attacks	Notification of Possible Attacks	Responding to and Coping with Attacks	Recovery from Attacks
Level 1: Au	utonomous Cy	yber-Physical	Systems				
D08	4a: DER Controller of DER Devices (single or in aggregate)	4b: DER Device or Unit (e.g. PV, Storage, Diesel, Turbine)	LIC #3: Interface between control systems and equipment with high availability, without compute nor bandwidth constraints	Communications between DER components and their DER controller typically uses ModBus. Cybersecurity protection of this protocol is not feasible, so physical security, such as locked rooms or cabinets should be used. If necessary, a VPN can be used to secure the transport of ModBus messages.	External means, such as Intrusion Detection Systems (IDS) and SNMP MIBs (IEC 62351-7) would be used to notify of possible attacks	Responses to attacks may depend on the type and criticality of the DER, but most likely will require aborting communications. The DER may or may not continue to operate.	The controller and any communication modules would be tested for malware and additional measures for preventing attacks would be added.
D08	4a: Utility- Scale DER System or Plant (e.g. large storage system)	4b: DER Device or Unit (e.g. PV, Storage, Diesel, Turbine)	LIC #3: Interface between control systems and equipment with high availability, without compute nor bandwidth constraints	Communications between DER components and their DER controller typically uses ModBus. Cybersecurity of this protocol is not feasible, so physical security, such as locked rooms or cabinets should be used. If necessary, a VPN can be used to secure the transport of ModBus messages.	External means, such as Intrusion Detection Systems (IDS) and SNMP MIBs (IEC 62351-7) would be used to notify of possible attacks	Responses to attacks may depend on the type and criticality of the DER, but most likely will require aborting communications. The DER may or may not continue to operate.	The controller and any communication modules would be tested for malware and additional measures for preventing attacks would be added.
D09	6a: EVSE Charging Stations	6b: Electric Vehicles	LIC #4: Interface between control systems and equipment without high availability, without compute nor bandwidth constraints	Most communications between EV Service Elements (charging stations) and EVs use the ISO/IEC 15118 standard, while the actual charging standards vary among different countries and for different levels (Levels 1-3, fast charging) and types of charging (AC vs. DC charging). Cybersecurity for these standards are partially developed.	External means, such as Intrusion Detection Systems (IDS) and SNMP MIBs (IEC 62351-7) would be used to notify of possible attacks	Responses to attacks would most likely require aborting communications. The EVSE may or may not continue to charge EVs, using local default charging functions.	The EVSE and any communication modules would be tested for malware and additional measures for preventing attacks would be added.

 Table 2 - Types of Information Exchange Between Entities in the High-DER Example

Interface	Entity #1	Entity #2	Logical Interface Security	Protection against Attacks	Notification of Possible Attacks	Responding to and Coping with Attacks	Recovery from Attacks
Level 2: Fa	cilities DER	Energy Man	agement Systems (F	DEMS)			
U45	#5: Facility EMS (DER and Load) or Plant EMS	4a: DER Controller of DER Devices (single or in aggregate)	LIC #3: Interface between control systems and equipment with high availability, without compute nor bandwidth constraints	Communications between DERs and the Energy Management System within their facility could use many different protocols, including IEC 61850, IEEE 2030.5, and Modbus. Cybersecurity would be the responsibility of the facility, and could range from none to very sophisticated, depending upon the facility requirements.	External means, such as Intrusion Detection Systems (IDS) and SNMP MIBs (IEC 62351-7) would be used to notify of possible attacks IEC 62351 security for IEC 61850 could also detect possible attacks.	Responses to attacks would most likely require aborting communications, then attempting to reestablish communications with new keys.	The systems and any communication modules would be tested for malware and additional measures for preventing attacks would be added.
U62	#5: EV Fleet EMS	6a: EVSE Charging Stations	LIC #4: Interface between control systems and equipment without high availability, without compute nor bandwidth constraints	Communications between EVSEs and the EV fleet Energy Management System could use many different protocols including IEC 61850, IEEE 2030.5, and OCPP. Cybersecurity would be the responsibility of the facility, and could range from none to very sophisticated, depending upon the facility requirements.	External means, such as Intrusion Detection Systems (IDS) and SNMP MIBs (IEC 62351-7) would be used to notify of possible attacks IEC 62351 security for IEC 61850 could also detect possible attacks.	Responses to attacks would most likely require aborting communications, then attempting to reestablish communications with new keys.	The systems and any communication modules would be tested for malware and additional measures for preventing attacks would be added.
Level 3: Th	nird Party, Ag	gregators					
U92	#5: FDEMS	#41a: Retail Energy Provider (REP)	LIC#16: Interface between external systems and the customer site	Communications would most likely use the Internet with proprietary protocols established by the Retail Energy Provider. Cybersecurity would most likely be minimal or use traditional IT techniques typically used over the Internet.	Internet-based techniques would be used to detect and notify users about malware or other attacks	Responses to attacks would most likely require aborting communications, then attempting to reestablish communications with new keys. If malware was detected, systems would require their removal.	The systems and any communication modules would be tested for malware and additional measures for preventing attacks would be added.

Interface	Entity #1	Entity #2	Logical Interface Security	Protection against Attacks	Notification of Possible Attacks	Responding to and Coping with Attacks	Recovery from Attacks
U92	#5: FDEMS	#41b: Aggregator	LIC#16: Interface between external systems and the customer site	Communications would most likely use the Internet with proprietary protocols established by the Retail Energy Provider. Cybersecurity would most likely be minimal or use traditional IT techniques typically used over the Internet.	Internet-based techniques would be used to detect and notify users about malware or other attacks	Responses to attacks would most likely require aborting communications, then attempting to reestablish communications with new keys. If malware was detected, systems would require their removal.	The systems and any communication modules would be tested for malware and additional measures for preventing attacks would be added.
U69	#41a: Retail Energy Provider (REP)	#20: Wholesale Market	LIC#9. Interface with B2B connections between systems usually involving financial or market transactions	Communications would most likely use the Internet with proprietary protocols established by the Retail Energy Provider. Cybersecurity would most likely use traditional IT confidentiality techniques typically used over the Internet.	Internet-based techniques would be used to detect and notify users about malware or other attacks	Responses to attacks would most likely require aborting communications, then attempting to reestablish communications with new keys. If malware was detected, systems would require their removal.	The systems and any communication modules would be tested for malware and additional measures for preventing attacks would be added.
U20	#41a: Retail Energy Provider (REP)	#19: Energy Market Clearing- house	LIC#9: Interface with B2B connections between systems usually involving financial or market transactions	Communications would most likely use the Internet with proprietary protocols. Cybersecurity would most likely use traditional IT confidentiality techniques typically used over the Internet.	Internet-based techniques would be used to detect and notify users about malware or other attacks	Responses to attacks would most likely require aborting communications, then attempting to reestablish communications with new keys. If malware was detected, systems would require their removal.	The systems and any communication modules would be tested for malware and additional measures for preventing attacks would be added.
	<u> </u>			<u></u>	I	<u> </u>	<u> </u>

Interface	Entity #1	Entity #2	Logical Interface Security	Protection against Attacks	Notification of Possible Attacks	Responding to and Coping with Attacks	Recovery from Attacks
D52	41b: Aggregator	#31: ISO/RTO Operations	LIC#6: Interface between control systems in different organizations	Communications would most likely use ISO/RTO protocols such as IEEE 1815 (DNP3), IEC 61850, or IEEE 2030.5 (SEP2). Cybersecurity authentication and authorization would use the security provided by those protocols and/or by establishing gateways to isolate interactions.	External means, such as Intrusion Detection Systems (IDS) and SNMP MIBs (IEC 62351-7) would be used to notify of possible attacks IEC 62351 security for IEC 61850 could also detect possible attacks.	Responses to attacks would most likely require aborting communications, then attempting to reestablish communications with new keys. If malware was detected, systems would require their removal.	The systems and any communication modules would be tested for malware and additional measures for preventing attacks would be added.
D04	41b: Aggregator	#25: DERMS	LIC#6: Interface between control systems in different organizations	Communications would most likely use ISO/RTO protocols such as IEEE 1815 (DNP3), IEC 61850, or IEEE 2030.5 (SEP2). Cybersecurity authentication and authorization would use the security provided by those protocols and/or by establishing gateways to isolate interactions.	External means, such as Intrusion Detection Systems (IDS) and SNMP MIBs (IEC 62351-7) would be used to notify of possible attacks IEC 62351 security for IEC 61850 could also detect possible attacks.	Responses to attacks would most likely require aborting communications, then attempting to reestablish communications with new keys. If malware was detected, systems would require their removal.	The systems and any communication modules would be tested for malware and additional measures for preventing attacks would be added.
Level 4: Ut	ility Operatio	ns					
D03	#5: FDEMS	#29a: DER SCADA	LIC#6: Interface between control systems in different organizations	Communications would most likely use ISO/RTO protocols such as IEEE 1815 (DNP3), IEC 61850, or IEEE 2030.5 (SEP2). Cybersecurity authentication and authorization would use the security provided by those protocols and/or by establishing gateways to isolate interactions.	External means, such as Intrusion Detection Systems (IDS) and SNMP MIBs (IEC 62351-7) would be used to notify of possible attacks IEC 62351 security for IEC 61850 could also detect possible attacks.	Responses to attacks would most likely require aborting communications, then attempting to reestablish communications with new keys. If malware was detected, systems would require their removal.	The systems and any communication modules would be tested for malware and additional measures for preventing attacks would be added.
	<u> </u>						

Interface	Entity #1	Entity #2	Logical Interface Security	Protection against Attacks	Notification of Possible Attacks	Responding to and Coping with Attacks	Recovery from Attacks
D03	#4a: Utility Scale DER or Plant	#29a: DER SCADA	LIC#6: Interface between control systems in different organizations	Communications would most likely use ISO/RTO protocols such as IEEE 1815 (DNP3), IEC 61850, or IEEE 2030.5 (SEP2). Cybersecurity authentication and authorization would use the security provided by those protocols and/or by establishing gateways to isolate interactions.	External means, such as Intrusion Detection Systems (IDS) and SNMP MIBs (IEC 62351-7) would be used to notify of possible attacks IEC 62351 security for IEC 61850 could also detect possible attacks.	Responses to attacks would most likely require aborting communications, then attempting to reestablish communications with new keys. If malware was detected, systems would require their removal.	The systems and any communication modules would be tested for malware and additional measures for preventing attacks would be added.
D05	#5: FDEMS	#25: DERMS	LIC#6: Interface between control systems in different organizations	Communications would most likely use ISO/RTO protocols such as IEEE 1815 (DNP3), IEC 61850, or IEEE 2030.5 (SEP2). Cybersecurity authentication and authorization would use the security provided by those protocols and/or by establishing gateways to isolate interactions.	External means, such as Intrusion Detection Systems (IDS) and SNMP MIBs (IEC 62351-7) would be used to notify of possible attacks IEC 62351 security for IEC 61850 could also detect possible attacks.	Responses to attacks would most likely require aborting communications, then attempting to reestablish communications with new keys. If malware was detected, systems would require their removal.	The systems and any communication modules would be tested for malware and additional measures for preventing attacks would be added.
U106	#5: FDEMS	#32: Load Manageme nt System	LIC#6: Interface between control systems in different organizations	Communications would most likely use ISO/RTO protocols such as IEEE 1815 (DNP3), IEC 61850, or IEEE 2030.5 (SEP2). Cybersecurity authentication and authorization would use the security provided by those protocols and/or by establishing gateways to isolate interactions.	External means, such as Intrusion Detection Systems (IDS) and SNMP MIBs (IEC 62351-7) would be used to notify of possible attacks IEC 62351 security for IEC 61850 could also detect possible attacks.	Responses to attacks would most likely require aborting communications, then attempting to reestablish communications with new keys. If malware was detected, systems would require their removal.	The systems and any communication modules would be tested for malware and additional measures for preventing attacks would be added.

CADA	#31: ISO/RTO Operations	LIC#6: Interface between control systems in different	Communications would most likely use ISO/RTO protocols such as IEEE 1815 (DNP3), IEC	External means, such as Intrusion Detection	Responses to attacks	The systems and any
		organizations	61850, or IEEE 2030.5 (SEP2). Cybersecurity authentication and authorization would use the security provided by those protocols and/or by establishing gateways to isolate interactions.	Systems (IDS) and SNMP MIBs (IEC 62351-7) would be used to notify of possible attacks IEC 62351 security for IEC 61850 could also detect possible attacks.	would most likely require aborting communications, then attempting to reestablish communications with new keys. If malware was detected, systems would require their removal.	communication modules would be tested for malware and additional measures for preventing attacks would be added.
	#25: DERMS	LIC#5: Interface between control systems within the same organization	Communications would most likely use proprietary protocols or IEC 61968/70 (CIM) and be protected within an electronic security perimeter (ESP). Cybersecurity authentication and authorization would reflect the organization's policies.	ESP techniques would be used to detect intrusions, while RBAC techniques would be used to notify users of unauthorized interactions.	Responses to attacks would most likely require aborting communications, assess the ESP, then attempting to reestablish communications with new keys. If malware was detected, systems would require their removal.	The systems and any communication modules, including any ESP routers, gateways, etc., would be tested for malware and additional measures for preventing attacks would be added.
29a: DER CADA	#27: DMS	LIC#5: Interface between control systems within the same organization	Communications would most likely use proprietary protocols or IEC 61968/70 (CIM) and be protected within an electronic security perimeter (ESP). Cybersecurity authentication and authorization would reflect the organization's policies.	ESP techniques would be used to detect intrusions, while RBAC techniques would be used to notify users of unauthorized interactions.	Responses to attacks would most likely require aborting communications, assess the ESP, then attempting to reestablish communications with new keys. If malware was detected, systems would require their removal.	The systems and any communication modules, including any ESP routers, gateways, etc., would be tested for malware and additional measures for preventing attacks would be added.

Interface	Entity #1	Entity #2	Logical Interface Security	Protection against Attacks	Notification of Possible Attacks	Responding to and Coping with Attacks	Recovery from Attacks
D07	#31: ISO/RTO Operations	#25: DERMS	LIC#6: Interface between control systems in different organizations	Communications would most likely use ISO/RTO protocols such as IEEE 1815 (DNP3), IEC 61850, or IEEE 2030.5 (SEP2). Cybersecurity authentication and authorization would use the security provided by those protocols and/or by establishing gateways to isolate interactions.	External means, such as Intrusion Detection Systems (IDS) and SNMP MIBs (IEC 62351-7) would be used to notify of possible attacks IEC 62351 security for IEC 61850 could also detect possible attacks.	Responses to attacks would most likely require aborting communications, then attempting to reestablish communications with new keys. If malware was detected, systems would require their removal.	The systems and any communication modules would be tested for malware and additional measures for preventing attacks would be added.
U27	#27: DMS	#36: OMS	LIC#10: Interface between control systems and non- control/corporate systems	Communications would most likely use the Internet with proprietary or CIM-based protocols. Cybersecurity would most likely use traditional IT confidentiality techniques typically used over the Internet.	Internet-based techniques would be used to detect and notify users about malware or other attacks	Responses to attacks would most likely require aborting communications, then attempting to reestablish communications with new keys. If malware was detected, systems would require their removal.	The systems and any communication modules would be tested for malware and additional measures for preventing attacks would be added.
U11	#32: Load Manageme nt	#27: DMS	LIC#5: Interface between control systems within the same organization	Communications would most likely use proprietary protocols or IEC 61968/70 (CIM) and be protected within an electronic security perimeter (ESP). Cybersecurity authentication and authorization would reflect the organization's policies.	ESP techniques would be used to detect intrusions, while RBAC techniques would be used to notify users of unauthorized interactions.	Responses to attacks would most likely require aborting communications, assess the ESP, then attempting to reestablish communications with new keys. If malware was detected, systems would require their removal.	The systems and any communication modules, including any ESP routers, gateways, etc., would be tested for malware and additional measures for preventing attacks would be added.

Entity #1	Entity #2	Logical Interface Security	Protection against Attacks	Notification of Possible Attacks	Responding to and Coping with Attacks	Recovery from Attacks
#27: DMS	#17: GIS	LIC#5: Interface between control systems within the same organization	Communications would most likely use proprietary protocols or IEC 61968/70 (CIM) and be protected within an electronic security perimeter (ESP). Cybersecurity authentication and authorization would reflect the organization's policies.	ESP techniques would be used to detect intrusions, while RBAC techniques would be used to notify users of unauthorized interactions.	Responses to attacks would most likely require aborting communications, assess the ESP, then attempting to reestablish communications with new keys. If malware was detected, systems would require their removal.	The systems and any communication modules, including any ESP routers, gateways, etc., would be tested for malware and additional measures for preventing attacks would be added.
#27: DMS	#25: DERMS	LIC#5: Interface between control systems within the same organization	Communications would most likely use proprietary protocols or IEC 61968/70 (CIM) and be protected within an electronic security perimeter (ESP). Cybersecurity authentication and authorization would reflect the organization's policies.	ESP techniques would be used to detect intrusions, while RBAC techniques would be used to notify users of unauthorized interactions.	Responses to attacks would most likely require aborting communications, assess the ESP, then attempting to reestablish communications with new keys. If malware was detected, systems would require their removal.	The systems and any communication modules, including any ESP routers, gateways, etc., would be tested for malware and additional measures for preventing attacks would be added.
#25: DERMS	#17: GIS	LIC#5: Interface between control systems within the same organization	Communications would most likely use proprietary protocols or IEC 61968/70 (CIM) and be protected within an electronic security perimeter (ESP). Cybersecurity authentication and authorization would reflect the organization's policies.	ESP techniques would be used to detect intrusions, while RBAC techniques would be used to notify users of unauthorized interactions.	Responses to attacks would most likely require aborting communications, assess the ESP, then attempting to reestablish communications with new keys. If malware was detected, systems would require their removal.	The systems and any communication modules, including any ESP routers, gateways, etc., would be tested for malware and additional measures for preventing attacks would be added.
	#27: DMS #27: DMS #27: DMS	#27: DMS #17: GIS #27: DMS #25: DERMS #25: #17: GIS	#27: DMS#17: GISLIC#5: Interface between control systems within the same organization#27: DMS#25: DERMSLIC#5: Interface between control systems within the same organization#25: DERMS#17: GISLIC#5: Interface between control systems within the same organization	#27: DMS#17: GISLIC#5: Interface between control systems within the same organizationCommunications would most likely use proprietary protocols or IEC 61968/70 (CIM) and be protected within an electronic security perimeter (ESP). Cybersecurity authentication and authorization would reflect the organization's policies.#27: DMS#25: DERMSLIC#5: Interface between control systems within the same organizationCommunications would most likely use proprietary protocols or IEC 61968/70 (CIM) and be protected within an electronic security perimeter (ESP). Cybersecurity authentication and authorization would reflect the organization#27: DMS#25: DERMSLIC#5: Interface between control systems within the same organizationCommunications would most likely use proprietary protocols or IEC 61968/70 (CIM) and be protected within an electronic security perimeter (ESP). Cybersecurity authentication and authorization would reflect the organization's policies.#25: DERMS#17: GISLIC#5: Interface between control systems within the same organizationCommunications would most likely use proprietary protocols or IEC 61968/70 (CIM) and be protected within an electronic security perimeter (ESP). Cybersecurity authentication and authorization would reflect the organization	SecurityPossible Attacks#27: DMS#17: GISLIC#5: Interface between control systems within the same organizationCommunications would most likely use proprietary protocols or IEC 61968/70 (CIM) and be protected within an electronic security parimeter (ESP). Cybersecurity authentication and authorization would reflect the organization's policies.ESP techniques would be used to detect intrusions, while RBAC techniques would be used to notify users of unauthorized interactions.#27: DMS#25: DERMSLIC#5: Interface between control systems within the same organizationCommunications would most likely use proprietary protocols or IEC 61968/70 (CIM) and be protected within an electronic security perimeter (ESP). Cybersecurity authentication and authorization would reflect the organizationESP techniques would be used to detect intrusions, while RBAC techniques would be used to notify users of unauthorized intrusions, while RBAC techniques would be used to notify users of unauthorized intrusions, while RBAC techniques would be used to notify users of unauthorized interactions.#25: DERMS#17: GISLIC#5: Interface between control systems within the same organizationCommunications would most likely use proprietary protocols or IEC 61968/70 (CIM) and be protected within an electronic security perimeter (ESP). Cybersecurity authentication and authorized interactions.ESP techniques would be used to detect intrusions, while RBAC techniques would be used to notify users of unauthorized interactions.#25: DERMS#17: GISLIC#5: Interface between control systems within 	SecuritySecurityPossible AttacksCoping with Attacks#27: DMS#17: GISLIC#5: Interface between control systems within the same organizationCommunications would most likely use proprietary protocols or IEC 6196870 (CIM) and be protected within an electronic security perimeter (ESP). Cybersecurity authentication and authorizedESP techniques would be used to notify users of unauthorizedResponses to attacks would most likely require aborting communications, assess the ESP, then attempting to restablish communications, assess to establish communications, assess the used to notify users of unauthorizedResponses to attacks would most likely use proprietary protocols or IEC 6196870 (CIM) and be protected within an electronic security perimeter (ESP). Cybersecurity authentication and authorization would reflect the organizationESP techniques would be used to notify users of unauthorizedResponses to attacks would most likely use proprietary protocols or IEC 6196870 (CIM) and be protected within an electronic security perimeter (ESP). Cybersecurity authentication and authorization would reflect the organization's policies.ESP techniques would be used to notify users of unauthorizedResponses to attacks would most likely require aborting communications, assess techniques would be used to notify users of unauthorizedResponses to attacks would most likely require aborting communications, assess techniques would be used to notify users of unauthorizedResponses to attacks would most likely require aborting communications, while RBAC techniques would be used to notify users of unauthorized#25: DERMS#

b s d o	LIC#6: Interface between control systems in different organizations	61850, or IEEE 2030.5 (SEP2).	External means, such as Intrusion Detection Systems (IDS) and SNMP MIBs (IEC 62351-7) would be used to notify of possible	Responses to attacks would most likely require aborting communications, then attempting to reestablish	The systems and any communication modules would be tested for malware and
		gateways to isolate interactions.	attacks IEC 62351 security for IEC 61850 could also detect possible attacks.	communications with new keys. If malware was detected, systems would require their removal.	additional measures for preventing attacks would be added.
ns					
Energy v Market c Clearingho b use u fi n	with B2B connections between systems	Communications would most likely use the Internet with proprietary or CIM-based protocols. Cybersecurity would most likely use traditional IT confidentiality techniques typically used over the Internet.	Internet-based techniques would be used to detect and notify users about malware or other attacks	Responses to attacks would most likely require aborting communications, then attempting to reestablish communications with new keys. If malware was detected, systems would require their removal.	The systems and any communication modules would be tested for malware and additional measures for preventing attacks would be added.
Energy w Market c Clearingho b use u fi n	with B2B connections between systems usually involving financial or market	Communications would most likely use the Internet with proprietary or CIM-based protocols. Cybersecurity would most likely use traditional IT confidentiality techniques typically used over the Internet.	Internet-based techniques would be used to detect and notify users about malware or other attacks	Responses to attacks would most likely require aborting communications, then attempting to reestablish communications with new keys. If malware was detected, systems would require their removal.	The systems and any communication modules would be tested for malware and additional measures for preventing attacks would be added.
Ene Ma Cle	ergy rket o aringho 1 1	ergy with B2B rket connections aringho between systems	ergy rketwith B2B connectionslikely use the Internet with proprietary or CIM-basedaringhobetween systems usually involving financial or marketlikely use the Internet with proprietary or CIM-basedaringhobetween systems usually involving financial or marketconfidentiality techniques typically used over the Internet.	ergy rketwith B2B connectionslikely use the Internet with proprietary or CIM-basedtechniques would be used to detect and notify users about malware or other attacksaringhobetween systems usually involving financial or marketlikely use the Internet with proprietary or CIM-based most likely use traditional IT confidentiality techniques typically used over the Internet.techniques would be used to detect and notify users about malware or other attacks	ergy rket aringhowith B2B connections between systems usually involving financial or market transactionslikely use the Internet with proprietary or CIM-based protocols. Cybersecurity would most likely use traditional IT confidentiality techniques typically used over the Internet.techniques would be used to detect and notify users about malware or other attackswould most likely require aborting communications, then attempting to reestablish communications with new keys. If malware was detected, systems would require their

Interface	Entity #1	Entity #2	Logical Interface Security	Protection against Attacks	Notification of Possible Attacks	Responding to and Coping with Attacks	Recovery from Attacks
D06	#19: Energy Market Clearingho use	#25: DERMS	LIC#9: Interface with B2B connections between systems usually involving financial or market transactions	Communications would most likely use the Internet with proprietary or CIM-based protocols. Cybersecurity would most likely use traditional IT confidentiality techniques typically used over the Internet.	Internet-based techniques would be used to detect and notify users about malware or other attacks	Responses to attacks would most likely require aborting communications, then attempting to reestablish communications with new keys. If malware was detected, systems would require their removal.	The systems and any communication modules would be tested for malware and additional measures for preventing attacks would be added.