
 
 
 

 

  

 
 
 

     
 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

  

    
     

    
       

    
        

  
      
    

 

Draft - Taxonomy of AI Risk 

October 15, 2021 

Note: This paper has been developed to address and build on 
responses to the Request for Information (RFI) released by NIST to 

help develop the AI Risk Management Framework (AI RMF). Among 
other things, in that RFI, NIST proposed eight characteristics of 
trustworthy AI. This paper aims to provide context to the eight 

characteristics of trustworthy AI mentioned in the RFI, clarify the 
distinction between characteristics and principles, and advance 

discussions about AI risks and forge agreements across 
organizations and internationally to the benefit AI design, 

development, use, and evaluation. 
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Background and Purpose 

The National Institute of Standards and Technology (NIST) aims to cultivate trust in the design, 
development, use, and governance of Artificial Intelligence (AI) technologies and systems in 
ways that enhance economic security and improve quality of life. NIST focuses on improving 
measurement science, technology, standards, and related tools – including evaluation and data. 

This white paper focuses on the preconditions of trust in AI and aims to further engage the AI 
community in a collaborative process to encourage consensus regarding terminology related to 
risk so that these types of risk may be identified and managed. 

The paper starts by identifying several relevant policy directives that identify sources or types of 
risk across the AI lifecycle. For example, the Organisation for Economic Co-operation and 
Development (OECD) AI principles1 specify that AI needs to have: 

• Traceability to human values such as rule of law, human rights, democratic values, and 
diversity, and ensuring fairness and justice 

• Transparency and responsible disclosure so people can understand and challenge AI-
based outcomes 

• Robustness, security, and safety, through the AI lifecycle to manage risks 
• Accountability in line with these principles 

Similarly, the European Union Digital Strategyʼs Ethics Guidelines for Trustworthy AI2 identifies 
seven key principles of trustworthy AI: 

• Human agency and oversight 
• Technical robustness and safety 
• Privacy and data governance 
• Transparency 
• Diversity, non-discrimination, and fairness 
• Environmental and societal well-being 
• Accountability 

Finally, US Executive Order 13960, Promoting the Use of Trustworthy Artificial Intelligence in the 
Federal Government3 specifies that AI should be: 

• Lawful and respectful of our Nationʼs values. 
• Purposeful and performance-driven… using AI, where the benefits of doing so 

significantly outweigh the risks, and the risks can be assessed and managed 
• Accurate, reliable, and effective 

1 https://www.oecd.org/going-digital/ai/principles/ 
2 https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai 
3 https://www.federalregister.gov/documents/2020/12/08/2020-27065/promoting-the-use-of-trustworthy-
artificial-intelligence-in-the-federal-government 
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• Safe, secure, and resilient 
• Understandable…by subject matter experts, users, and others, as appropriate 
• Responsible and traceable 
• Regularly monitored 
• Transparent 
• Accountable 

Categories of Risk 

Those three documents indicate that AI system stakeholders must account for several different 
sources of risk in the AI lifecycle. This proposed taxonomy seeks to simplify the categorization of 
these risks so that stakeholders may better recognize and manage them. The approach is 
hierarchical. First, it is recognized that there are three broad categories of risk sources related to 
AI systems: 

1) Technical design attributes. This refers to the factors that are under the direct control of 
system designers and developers, and which may be measured using standard evaluation 
criteria that have traditionally been applied to machine learning systems, or that may be 
applied in an automated way in the future. Examples include accuracy and related measures 
(e.g., false positive and false negative rates, precision, recall, F-score) but also sources of 
statistical error that might be measured by applying AI tools to new data (e.g., discrepancies 
between performance on test and holdout sets). Finally, data generated from experiments 
that are designed to evaluate system performance also fall into this category, and might 
include tests of causal hypotheses, assessments of robustness to adversarial attack, etc. 

2) How AI systems are perceived. This refers to mental representations of models, including 
whether the output provided is sufficient to evaluate compliance (transparency), whether 
model operations can be easily understood (explainability), and whether they provide output 
that can be used to make a meaningful decision (interpretability). In general, any judgment 
or assessment of an AI system, or its output, that is made by a human or needs human 
interpretation rather than by an automated process falls into this category. 

3) Guiding policies and principles. This refers to broader societal determinations of value, 
such as privacy, accountability, fairness, justice, equity, etc., which cannot be measured 
consistently across domains because of their dependence on context. 

Within each of these categories, several sources of potential risk have been identified. 

Characteristics of Trustworthy Systems 

1) Technical Attributes 
The proposition put forward is that technical risks can be best managed by techniques to ensure 
the validity of machine learning methods. These risks can be explicitly measured using variations 
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of standard statistical or machine-learning metrics with specific thresholds specified in 
requirements. Specifically: 

• Accuracy. This trustworthiness attribute captures the broad notion of whether the 
machine learning model is correctly capturing a relationship that exists within training 
data. It is analogous to statistical conclusion validity. Traditionally, accuracy may be 
measured and mitigated using standard metrics including, false positive and false 
negative rates, F1-score, precision, recall, etc.  Beyond these traditional measures, the 
quality of a machine learning model must be assessed for whether it is underfit or 
overfit. One way to do so is to compare performance on training data to test and 
holdout data. More generally, it is widely acknowledged that current machine learning 
methods cannot provide a guarantee that the underlying model is capturing a causal 
relationship that generates the observed data (although see [3]-[5] for progress in this 
area). Establishment of internal (that is, causal) validity is an active area of research. (See 
also [6].) 

• Reliability. A model is reliable if its output is insensitive to small changes in its input, 
and if it is free from measurement bias. Techniques designed to mitigate overfitting (e.g., 
regularization) and to adequately conduct model selection in the face of the 
bias/variance tradeoff can increase model reliability. The definition of reliability that is 
used here is analogous to construct validity in the social sciences, albeit without explicit 
reference to a theoretical construct. Specifically, this definition captures convergent-
discriminant validity (whether the data reflects what the user intends to measure and not 
other things) and statistical reliability (whether the data may be subject to high levels of 
statistical noise and measurement bias). Measures of reliability might include Fleissʼ 
Kappa scores, or goodness-of-fit tests from a factor analysis. 

• Robustness. A model is robust if it applies to multiple settings beyond which it was 
trained. Threats to model robustness can be mitigated by explicitly recognizing 
limitations of the sampling strategy by which training, test, and holdout data were 
selected and ensuring that models are not applied “off label” (i.e., in domains that are 
not representative of these training data). Application of a “gradient of similarity” [7] may 
be helpful in mitigating this risk as well. Thus, robustness is analogous to “external 
validity” in the social sciences. Measures of robustness might include error 
measurements on novel datasets. 

• Resilience or Security. A model that is insensitive to adversarial attacks, or more 
generally, to unexpected changes in its environment or use, may be said to be resilient 
and secure. This concept has some relationship to robustness except that it goes beyond 
the provenance of the data to encompass unexpected or explicitly hostile uses of the 
model or data. Mitigating these risks is an open area of research but may benefit from 
insights into flexible system design (e.g., [8]). Specific measures are still under 
development by the research community. 

What these attributes have in common is that the extent of the corresponding risks may be 
directly measured using some kind of automatable process that does not require extensive 
human input. As a consequence, one may, at least in principle, develop domain-agnostic 
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measures of performance for each source of risk. Furthermore, these measures of 
performance may be expressed in requirements documents created by systems designers. 
Accordingly, attempts to manage these risks may follow standard systems engineering risk 
management practices. 

2) Socio-Technical Attributes 
How is one to know which technical measures are appropriate to a given task? Human 
judgment must be employed when deciding on the specific metrics, and the precise values 
of these metrics. Additionally, human users will also make judgments regarding what these 
metrics, and the associated models, mean when applied to daily life. Thus, a second broad 
category of risk pertains to how these human judgments are made. These include: 

• Explainability. Attempts to increase explainability seek to provide a programmatic 
description of how model predictions are generated [9]. The underlying assumption is 
that perceptions of risk stem from a lack of technical background knowledge on the part 
of the user. Even given all the information required to make a model fully transparent, a 
human must apply what technical expertise they have to understand how the model 
works. Explainability refers to the userʼs perception of how the model works – such as 
what output may be expected for a given input. Risks due to explainability may arise if 
humans incorrectly infer a modelʼs operation and it does not operate as expected. This 
risk may be managed by descriptions of how models work to usersʼ skill levels. 

Explainability is related to transparency – a “white box” model is typically considered 
explainable, whereas a “black box” model is not. However, transparency does not 
guarantee explainability, especially if the user lacks an understanding of machine 
learning technical principles. 

• Interpretability. Attempts to increase interpretability seek to fill a meaning deficit [10]. 
The underlying assumption is that perceptions of risk stem from a lack of ability to make 
sense of, or contextualize, model output appropriately. For example, models are 
developed for a particular functional use. Model interpretability refers to the extent to 
which a user is able to determine adherence to this function and the consequent 
implications of this output upon other consequential decisions for that user. 
Interpretations are typically contextualized in terms of values, and reflect simple, 
categorical distinctions. For example, a society may value privacy and safety, but 
individuals may have different determinations of how much safety is “safe enough” or 
how much privacy is sufficient. 

Risks to interpretability can often be addressed by communication of the interpretation 
intended by model designers, although this remains an open area of research. However, 
the prevalence of different interpretations can be readily measured with psychometric 
instruments. Interpretability is the glue that links transparency – information provided 
along with a modelʼs output – to determinations that have to do with values (e.g., 
privacy, safety). Given a transparent stimulus shown to a decision-maker, they can then 
apply their values to interpret it and determine whether it is, for example, “safe” or “not 
safe.” 
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However, transparency does not guarantee interpretability. Often, interpretability is 
associated with simple representations whereas transparency may create information 
overload. Interpretability is premised on the userʼs ability to “connect the dots” given 
information provided by a more transparent system. This means that there must be dots 
to connect (i.e., transparency is a needed precursor), but also that the information is 
presented in such a way that the user can craft a coherent understanding of the modelʼs 
use in context. Similarly, apart from statistical measures of bias, interpretability allows 
decision-makers to make determinations about whether data, an algorithm, a process, 
etc., imposes an undesired bias (and is therefore unfair). 

• Privacy. Like safety and security, specific technical features of a system may promote 
privacy and assessors can identify how the processing of data could create privacy-
related problems. However, determinations of likelihood and severity of impact of these 
problems are contextual and vary between cultures and individuals. Furthermore, 
ensuring fairness may require violating privacy and vice versa (since fairness 
determinations often require obtaining data that some consider private). 

• Safety. In the context of medical devices and drugs, safety is a categorical determination 
made by domain experts: a drug is either deemed “safe and efficacious” or it is not. 
These determinations are made relative to the state of the art in the field, and relative to 
societyʼs expectations. Regulatory agencies, such as the U.S. Food and Drug 
Administration (FDA), typically maintain measures for safety in a given context; however, 
these measures are subject to revision, often with input from practitioners. For example, 
FDA convenes panels of experts to determine standards of safety for innovative medical 
devices – a process that is not without social influence [11], [12]. Determinations of 
security, as a value, are similar [13]. Leveson [14] proposes a systems theoretic definition 
of safety that may serve as the basis for preliminary metrics. 

• Managing bias. Schwartz et al. [15] point out that bias is neither new nor unique to AI, 
nor can bias be eliminated entirely. Rather, biases which are harmful must be identified 
and, to the extent possible, understood, measured, managed, and reduced. Furthermore, 
perceptions of bias are also human judgments. Thus, perceptions of bias are intimately 
related to interpretations of model output. 

3) Guiding Principles Contributing to AI Trustworthiness 
Human judgments are premised on guiding policies and principles – broad social constructs 
that indicate societal priorities. AI has the potential to benefit nearly all aspects of our 
society, but the development and use of new AI-based technologies, products, and services 
bring technical and societal challenges and risks, including risks to ethical values. While there 
is no objective standard for ethical values, as they are grounded in the norms and legal 
expectations of specific societies or cultures, it is widely agreed that AI must be developed in 
a trustworthy manner. This trustworthiness can support the development and deployment of 
AI in ways that meet a given set of ethical values. 

When specified as policy, human experts apply their judgments to “flow down” these 
principles into technical requirements. Several of the policy documents cited above outline 
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broad statements of values to which AI should adhere. Systems engineers frequently derive 
requirements from these values, which are later translated to measures of performance and 
effectiveness. 

Principles relevant to AI include: 
• Fairness. Like safety, standards of fairness are culturally determined, and perceptions of 

fairness differ between cultures, with societal determinations of fairness litigated in 
courts. Engineers often assume that machine learning algorithms are inherently fair 
because the same procedure applies regardless of user; however, this perception has 
eroded recently as awareness of biased algorithms and biased datasets has increased. 
Arguably, absence of harmful bias is a necessary condition for fairness. 

• Accountability. Determinations of accountability are closely related to notions of risk 
and “blame” – that is, the responsible party in the event that a risky outcome is realized. 
Anthropologists, including Mary Douglas [16], have written extensively on how 
perceptions of risk and blame associated with technology differ systematically between 
cultures, and legal scholars [17] have developed psychometric measures of cultural 
cognition that are theorized to vary with these risk perceptions. 

• Transparency. Attempts to increase transparency seek to fill a perceived information 
deficit. The underlying assumption is that perceptions of risk stem from an absence of 
information. Transparency reflects the extent to which information is available to a 
decision-maker when making a judgment about an AI system, and may span the scope 
from what data were included in model training, the structure of the model, its intended 
use case, to how decisions were made, by whom, when, etc. Absent transparency, users 
are left to guess about these factors and may make unwarranted assumptions regarding 
model provenance. 

Although it is impossible to remove a subjectʼs background knowledge from their 
evaluations of a model, making adequate knowledge available is a precursor to building 
trust. This risk may be mitigated by a transparent process – one in which users can get 
answers regarding what decisions were made and what resources (e.g., data, energy, etc.) 
were used throughout the lifecycle, and why these decisions were made. This highlights 
the importance of documenting information in a standardized manner throughout the 
development lifecycle of an AI algorithm (i.e., the need for a “transparency toolkit.”) 
Beyond such a toolkit, usersʼ perceptions of systems as transparent are crucial. This 
emphasizes the need to develop approaches (e.g., a convenient user interface and 
cataloguing system, and possibly human contact) to surface this information when 
needed or requested, potentially in a context-sensitive manner. Finally, transparency is 
often framed as an instrumental value – a means to the end of achieving a broader value, 
such as accountability. 

Table 1 provides a mapping of the proposed taxonomy to those provided by OECD, the EU, and 
the US Executive Order 13960. 
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Table 1: Mapping of taxonomy proposed in this paper to those provided in relevant policy 
documents 

Proposed 
Taxonomy 

OECD EU US EO 13960 

Technical • Accuracy • Robustness • Technical • Purposeful and 
Design • Reliability • Security robustness performance-driven 
Attributes • Robustness 

• Security & 
Resilience 

• Accurate, reliable, and 
effective 

• Secure and resilient 

Socio- • Explainability • Safety • Safety • Safe 
Technical • Interpretability • Privacy • Understandable by 
Attributes • Privacy 

• Safety 
• Absence of Bias 

• Non-
discrimination 

subject matter experts, 
users, and others, as 
appropriate 

Guiding • Fairness • Traceability to • Human agency • Lawful and respectful 
Principles • Accountability human values and oversight of our Nationʼs values 
Contributing • Transparency • Transparency • Data governance • Responsible and 
to Trust-
worthiness 

and responsible 
disclosure 

• Transparency 
• Diversity and 

traceable 
• Regularly monitored 

• Accountability 
• 

fairness 
• Environmental and 

societal well-being 
• Accountability 

• Transparent 
• Accountable 

Conclusion 

Although the proposed taxonomy cannot be claimed to be collectively exhaustive, the three 
high-level categories that have been identified appear to take into account of existing 
frameworks and may be seen as providing an overarching approach. Within each category, new 
sources of risk will be identified as the AI landscape continues to evolve. Robust discussions of 
this taxonomy, which to date has been happening informally via workshops and small group 
discussions, would position industry, government, and academia to better anticipate these 
broad categories of future risks and to develop management strategies that could be flexibly 
implemented. NISTʼs development of an AI Risk Management Framework is an ideal opportunity 
to advance those discussions and forge agreements across organizations and internationally to 
the benefit AI design, development, use, and evaluation. 
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