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Vision: Widespread Spectrum Monitoring & Sharing
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Many, Distributed Sensors
Measuring RF Spectrum Across
Frequency, Space, & Time
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FUTURE SPECTRUM LANDSCAPE

Decentralized, flexible, automated, coordinated access
through edge & cloud; lots of data
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RadioHound Project: Low-Cost Sensors + System

Sensor (V3)

RF g -
0.1-6 Ghz / g o | Learn, Infer
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Usage

Deployment

Motivation

e Understand spectrum usage patterns in time and space
o  Spectrum situational awareness to inform sharing mechanisms as well as regulatory policy
o Requires truly large-scale deployments with hundreds or thousands of sensors

Objective
e (Create a scalable spectrum sensing system to learn, detect and predict spectrum usage patterns

Approach
e Use low-cost, low-power sensors with a signal processing & machine learning backbone



Quantity over Quality: Intuition
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Work Stream 1: Sensor Development

Mo w & e V1 (Nov 2016) V2.1 (Apr2018) V3.3 (July 2022)
Tkl ;‘:’3:::} Tunable 25 MHz-6 GHz 25 MHz-6 GHz 100 MHz-6 GHz
s ié;;i’ 25-100 MHz Range
Bandwidth 2 MHz 2 MHz 20 MHz
Power 5W 4 W 3.5W
Costin parts ~$75 ~$50 ~$35
T Key Features  Raspberry Pi Raspberry Pi, BeagleBone Black,
3 MSP for Fast On-board GPS and
bl Tune ADC
; Status 20 units 100 units 100’s of units
;



Desion & Specs V.o S

Supply Voltage

RF Input Power

RF Frequency

IF Frequency

Tunable Gain

P1dB
Board Gain

Noise Figure

ADL5380

MCU -
4 MSP430

1-6 GHz
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Hybrid AD9283

HMC833

.
Host
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X AR
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': o 48 MHz Clock GPS

Circuit
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dBm
MHz
MHz
dB
dBm
dBm
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dB

Variable gain adjusted to access entire range

Split across two antennas

On-Board VGA tunable gain

Decreases with frequency

Increasies with frequency

Dimensions set by BeagleBone
Black footprint

104mm x 55mm x 30mm (I, w, h)
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Bottom Side




Work Stream 2: Software Development

- e Node configuration and

status
Heatmap Algorithm Mongo e Scan data
(Python) DB e Future:
° Experiment

management
° User ACLs

MQTT Backend Application
(Mosquitto) < (Python/Flask)

TCP/IP Backhaul

e Ethernet

e  WiFi Frontend Application
e LTE/CBRS (Javascript/React)
([

T

RadioHound

Node (Python)
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Desktop ~ Mobile
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https://docs.google.com/file/d/18lv0wn-QR_QHkH3a3eDA2lIgsodStsmy/preview
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https://docs.google.com/file/d/1MobzJ5Dme710x-h5M6rxGaMxDjjX5rJu/preview

Work Stream 3: Deployment Collaborations

CRADAs between ND/FCC & FCC/USPS
FCC WTB deployed 7 RadioHound V3.1 sensors on
USPS vehicles in Denver, CO

e Scans of 800 MHz-2400 MHz in 15 kHz increments

e Correlated with phone throughput from three
service providers

e Part of Congressional feasibility study on
broadband mapping throughout the US

Results

e Partner obtained experience with the platform as
well as datasets for further study

e HW feedback & testing informed V3.2 design to
increase sensitivity & performance up to 3 GHz

e SW feedback led to “Experiments” framework

e (Congressional report in May 2021

Only 7 USPS vehicles in this pilot study, but
there are ~200,000 more! Many technical &
logistical challenges cited in the report.


https://www.fcc.gov/sites/default/files/report-congress-usps-broadband-data-collection-feasibility-05242021.pdf
https://www.fcc.gov/sites/default/files/report-congress-usps-broadband-data-collection-feasibility-05242021.pdf
https://www.fcc.gov/sites/default/files/report-congress-usps-broadband-data-collection-feasibility-05242021.pdf

FCC Collaboration Timeline

06/2020: Initial Discussions

01/2021: Delivered V3.1 Sensors

03/2021: Project Plan & Formal Agreement
04/2021: Data Collection

05/2021: Report to Congress

07/2021: V3.2 sent for manufacture
09/2021: V3.2 received for testing



Work Stream 4: Basic Research & Publications

Dr. Nikolaus Kleber (defended Ph.D. September 2020, now with Raytheon)

o N. Kleber, C. R. Dietlein and J. D. Chisum, "Cooperative Cross-Correlation
Algorithm to Optimize Linearity of Fused RF Sensors," in IEEE Sensors
Journal, vol. 20, no. 7, pp. 3766-3776, April 1, 2020, doi:
10.1109/JSEN.2019.2959255.

o N. Kleber, M. Haenggi, J. Chisum, B. Hochwald and J. N. Laneman,
"Directivity in RF Sensor Networks for Widespread Spectrum Monitoring,"

in IEEE Transactions on Cognitive Communications and Networking, doi:
10.1109/TCCN.2021.3124523.

e Dr.. Abbas Termos (defended Ph.D. February 2022, joining Qualcomm)

o A. Termos and B. Hochwald, “Robust Neural Network-Based Spectrum
Occupancy Mapping,” in Proc. IEEE DySPAN 2021, Virtual, 12/15



Fusing Sensor Data to Improve Linearity
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How Many Sensors for Emitter Detection?

e Model crowdsourced sensors as
Poisson point process

e Closed-form expressions for
detection probability enables
analysis for design insights

e Need to account for emitter
directivity
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N. Kleber, M. Haenggi, J. Chisum, B. Hochwald and J. N. Laneman, "Directivity in RF Sensor

Networks for Widespread Spectrum Monitoring," in IEEE Transactions on Cognitive Communications
and Networking, doi: 10.1109/TCCN.2021.3124523.

N. Kleber, J. Chisum, B. Hochwald and J. N. Laneman, "Three-Dimensional RF Sensor Networks for
Widespread Spectrum Monitoring," submitted for publication.



Quantity versus Quality: Result

e Lower sensor quality/cost allows
larger sensor quantity for a fixed
budget

e Sensor quantity has larger effect
on detection probability than
sensor quality

N. Kleber, M. Haenggi, J. Chisum, B. Hochwald and J. N. Laneman, "Directivity in RF Sensor
Networks for Widespread Spectrum Monitoring," in IEEE Transactions on Cognitive Communications
and Networking, doi: 10.1109/TCCN.2021.3124523.

Probability of detection, Pr(£)
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ML-Based Occupancy Maps

Define occupancy as RF power exceeding a fixed
threshold, function of frequency and location

Given sparse power measurements at a given
frequency, estimate occupancy over more dense grid

Apply latest neural network techniques, train and test
with commercial propagation model (Atoll)

Highly accurate!
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A. Termos and B. Hochwald, "Robust Neural Network-Based Spectrum Occupancy
Mapping," in Proc. IEEE Int. Symp. on Dynamic Spectrum Access Networks
(DySPAN), 2021, pp. 296-301, doi: 10.1109/DySPAN53946.2021.9677439.



ML-Based Occupancy Maps

Define occupancy as RF power exceeding a fixed
threshold, function of frequency and location

Given sparse power measurements at a given
frequency, estimate occupancy over more dense grid

Apply latest neural network technigques, train with
accurate propagation models (Atoll)

Highly accurate!
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A. Termos and B. Hochwald, "Robust Neural Network-Based Spectrum Occupancy
Mapping," in Proc. IEEE Int. Symp. on Dynamic Spectrum Access Networks
(DySPAN), 2021, pp. 296-301, doi: 10.1109/DySPAN53946.2021.9677439.



Different Topology, Different Occupancy
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Direction 1: Simplify Sensor

Reduce mixer quality
e Introduces harmonics, but save ~69% power and ~66% cost

Remove LNA N o VG
e Reduces the SNR of the received signal, but saves ~79% power u(r) u(r) u(n)
and ~71% cost [\ c —@
RF BB
Remove VGA

» Introduces clipping (under/over-flow) at the ADC, but saves
~86% power and ~85% cost

Reduce ADC resolution Down-
» Provides 1-bit information, but saves ~89% power and ~95% u(t) conversion 70 i(n)
cost 4-phase | | /_\ / 1-bit ®
RE mixer \\_detector BB

How many more streamlined sensors are needed?
Preliminary: ~4x

How are effects modelled and accounted for in ML system?

u ® ’
A. Termos Spectrum Occupancy Mapping With Minimal Assumptions and Simple Sensors, PhD @ ‘ l n tel
_

Dissertation, University of Notre Dame, February 2022. https://doi.org/10.7274/3x816m3421g



Direction 2: Enhance Sensor

Maximum Tuning Frequency
e 12 GHz, or 60 GHz (instead of 6 GHz)

Bandwidth
e Sampling rate of A/D 100 MHz (instead of 48 MHz)

Multiple RF Chains
e Stack RF chains to enable MIMO, BF, TDOA, ...

Targeted Bands

e CBRS + C-Band
6 GHz ISM Band
Scientific Sensing

SPECTRUI\!}\



Direction 3: Platform Integrations

(%)

Student Backpack Drones Delivery Vehicles Telecom Tower
Small size Small size Medium Size Medium Size
Limited power Some power Reasonable Power Reasonable Power
Medium Protection Medium Protection Extra Protection Long-Term Deployment
Little Protection
CRC has built 3 drones Campus vehicles, student
for prototyping or faculty vehicle can No proxy, need a tower
serve as a proxy for partner

prototyping
SPECTRU %



Call for Sensor Requirements & Evaluations

e ND has standardized an Equipment Evaluation agreement for RadioHounds

e To help us plan activities for the coming year, please send us a brief writeup

including:
o Sensor / software feature requests / requirements
o Summary of desired application / deployment scenario(s)

o Number of sensors and delivery date desired
e Availability of RadioHound V3.2: ~10 today, 2 months to order
e Availability of RadioHound V3.3: June 2021 (estimated)

o Availability of funding, if any, and / or opportunities to pursue joint funding
o Team contact information and main point of contact
Email to

SPECTRU%\


mailto:sensors@spectrumx.org

SpectrumX - An NSF Spectrum Innovation Center

e 5-year, $25M center award from the US
National Science Foundation (NSF)

e Part of the new NSF Spectrum
Innovation Initiative (Sll)

e 27 top universities, including 14
Minority-Serving Institutions (MSls)

e Numerous industry & government
collaborators

e Led by ND Wireless Institute

A National: USPS, American Tower, National Spectrum Consortium

#/Iicrosoft *Many locations across the U.S.
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Get Involved 1n SpectrumX!

Bookmark Follow on Email Interests
the Website & Feedback

SPECTRU%\


http://spectrumx.org/
http://www.linkedin.com/company/spectrumx-center
http://www.linkedin.com/company/spectrumx-center
mailto:info@spectrumx.org

Wrap Up

e \Wide-band, wide-area spectrum sensing is within reach for
data-driven spectrum access & management

e \We have a sensor platform (RadioHound), development &
collaboration experience (ARL, FCC), and a national center
(SpectrumX) to realize this vision

e |et's team up to advance spectrum monitoring and sharing!!




