

Next Generation Spectrum Sharing Technology: Opportunity, Challenges and Roadmap (II)

> Hazem Refai, Ph.D. The university of Oklahoma May 16, 2022

IEEE ICC22 WS23 workshop on spectrum sharing

Outline

- I. Introduction
- II. Shared Radio Spectrum: unlicensed and licensed
- III. Wireless Coexistence:
 - I. LTE-LAA Vs. WiFi Case Study
- IV. Testing & Evaluation, Metric:
 - I. Probability of coexistence and spectrum sharing
- V. Challenges/Opportunity

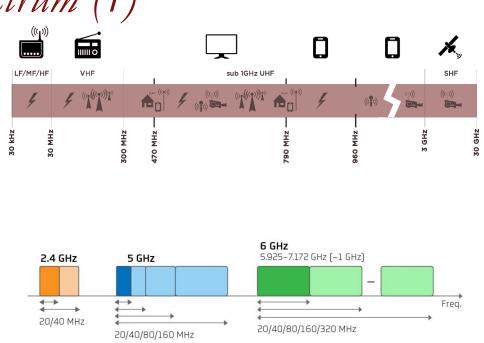
Introduction

Dynamic Spectrum Sharing:

Maximize reliable spectrum utilization by multiple communicating terminals (primary vs. secondary, secondary vs. secondary) by exploiting frequency, time, power, and space.

Enabling Technologies: Cognitive radios, Software defined radios

Method:


Sensing and adapting radio operating parameters:

- Frequency channel, bandwidth,
- Transmission time, packet length,
- Transmission power, clear channel assessment, and receiver sensitivity.
- Modulation, coding scheme,
- Others

Shared Unlicensed Radio Spectrum (1)

- Licensed radio spectrum is underutilized
- Unlicensed radio frequency is crowded with diverse technologies
- 2.4 and 5.0 GHz bands are unlicensed (ISM)
- 1200 MHz of new unlicensed spectrum has been approved for use in the 6 GHz band (5.925-7.125 GHz)

Shared Radio Spectrum (2)

• TVWS:

Primary user: TV stations

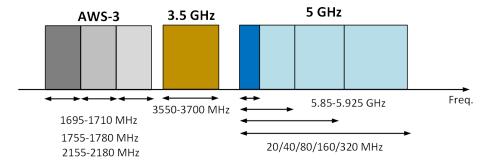
Sharing mechanism: Database coordinator

• AWS-3:

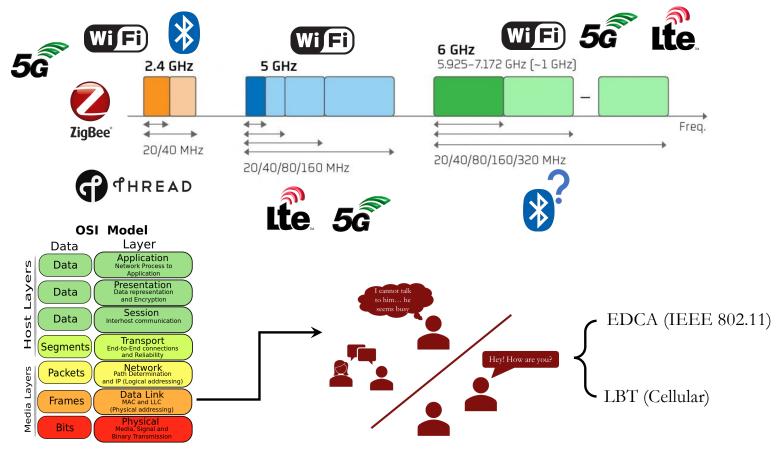
Primary user: Federal Systems.

Sharing mechanism: manual coordination pf protective zones

• 3.5 GHz: Citizens Broadband Radio Service (CBRS)

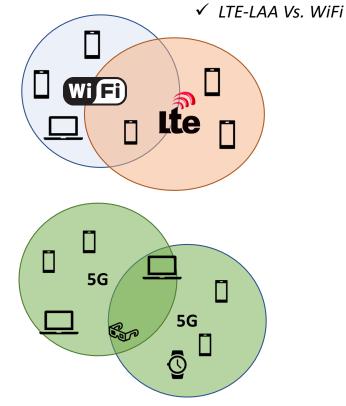

Primary user: Federal systems, fixed satellite

Sharing mechanism: Database coordinator-Spectrum Access System uses of spectrum geo-sensing for automatic frequency assignment and usage policy.


• 5.0 GHz:

Primary user: DSRC (V2X)

Sharing mechanism: Distributed coordination



Case Studies: Wireless Coexistence in ISM Spectrum

Homogenous/Heterogenous Wireless Coexistence

- Despite similarities with EDCA, LBT received research attention pertaining to coexistence with Wi-Fi
- Performance degradation can also arise in homogeneous networks
- Homogeneous LBT in the unlicensed spectrum under dense conditions merits evaluation
 - LBT defines 4 sets of priorities
 - Single-class
 - Multi-class

Technology Overview: LBT

• ETSI defines four sets of channel access parameters for LBT

4				COT [ms]	
	1	4	8	2	Class 4 SIFS P Backoff
3	1	8	16	4	Class 3 SIFS P Backoff
2	3	16	64	6*	Class 2 SIFS P Backoff
1	7	16	1024	6 *	Class 1 SIFS P Backoff Backoff

- Classes 1 to 4 possess ascending channel access priority
- P0 and CW are given in terms of observation slots (σ)
 - $1 \sigma = 9 \mu s$

Technology Overview: LBT

Select clear channel: Dynamically avoid Wi-Fi

Sharing the channel fairly: "Listen before talk" (LBT)

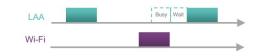
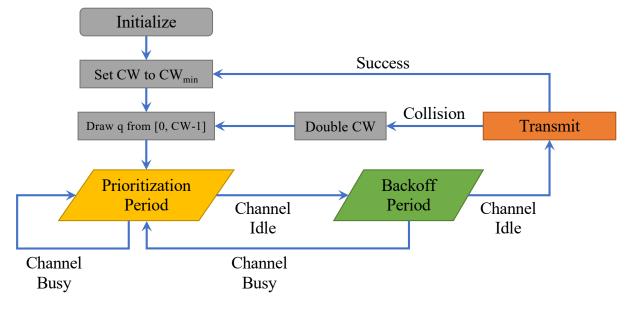
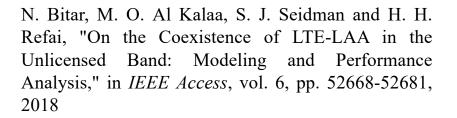
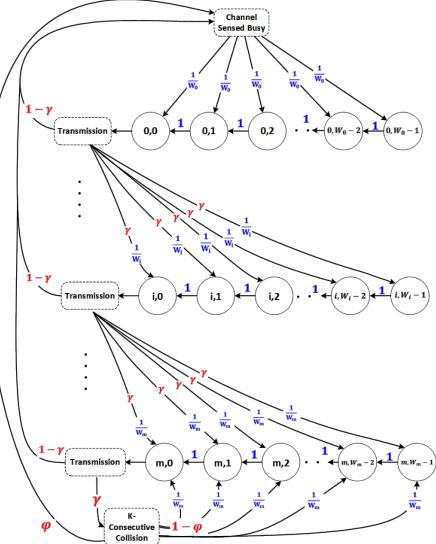
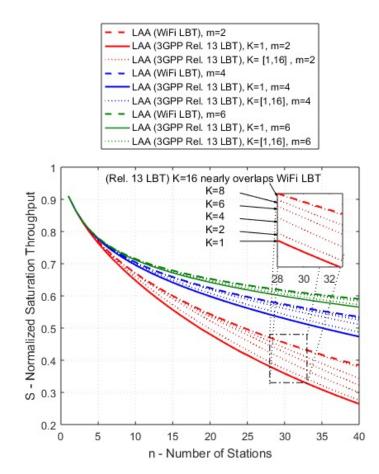
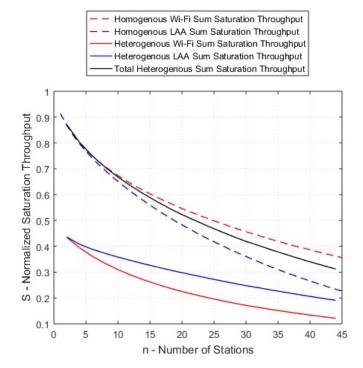





Image source: QUALCOMM

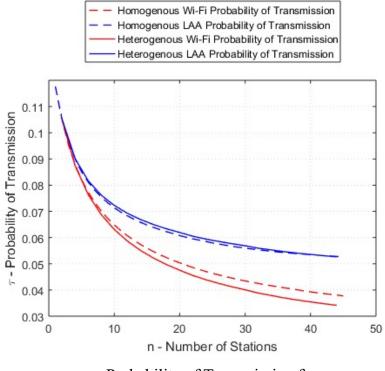


LTE-LAA Markov Model

K-Parameter Analysis


Coexistence Analysis (1)

Assumptions: A heterogeneous network consists


- *nw* Wi-Fi APs and *nl* LTE-LAA eNB stations
- all which are co-channeling and co-located
- each with a full buffer.
- We consider only the DL transmission for one client per AP/eNB, implying the contention is between only the APs and eNBs.
- τw and $\tau /$ denote the transmission probability of Wi-Fi and LTE-LAA respectively

Coexistence Analysis (1)

Equal Parameter Coexistence for LTE-LAA and Wi-Fi

Normalized Saturation Throughput for an Equal Parameter Heterogeneous Network

Probability of Transmission for an Equal Parameter Heterogeneous Network

Coexistence Analysis (2)

LAA Priority = 4, m_p = 7, m_{wifi} = 7 and contention window steps W \in [15,31,63,127,255,511,1023]

Testing & Evaluation: Metric—Probability of Coexistence (ANSI63.27)

M. O. Al Kalaa, S. Seidman, D. Witters, H. H. Refai, "Practical Aspects of Wireless Medical Device Coexistence Testing", *IEEE Trans. Electromagn. Compat.*, vol. 6, Issue:4 no. 1, pages:47-52, 2017.

Challenges/Opportunities:

- Security implementation, especially for the databased coordinator
- Frequency, time, space, power protocols that real-time adjust radio hardware and software to accommodate spectrum sharing requirements.
- Sensing radios (mobile and stationary) that monitor the state of the channel, spectrum, etc. to report back to spectrum coordinator.
- Agile/flexible testbed in real-world setting to evaluate new technologies for coexistence and fair spectrum sharing in homogenous or heterogenous settings. And metric development for spectrum sharing.

Thank You!