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Distributed Sensor Location through Linear 
Programming with Triangle Inequality Constraints 

Camillo Gentile, Member, IEEE 

Abstract— The falling price and reduced size of sensors for 
monitoring spatially-sensitive environmental properties such as 
temperature, light, sound, and vibration have motivated research 
in location algorithms in recent years. To our knowledge, the 
algorithm which achieves the best performance refnes erroneous 
measurements through an optimization program whose quadratic 
constraints force the sensors to be consistent with the geometry of 
the physical world. Since the program is non-convex, the authors 
relax the constraints to render it convex for which effcient 
solution methods exist. We propose solving a similar optimization 
program however by applying convex geometrical constraints 
directly, necessitating no relaxation of the constraints and in turn 
ensuring a solution still compliant with the physical world. We 
show through extensive experimentation that ours outperforms 
the competing algorithm across all network parameters. In 
addition, this paper formulates a distributed version of our 
algorithm which achieves the same globally optimal objective 
function as the centralized version, and reports the messaging 
overhead for its convergence. 

Index Terms— Simplex method, primal-dual method, 
quadratic programming, semidefnite programming. 

T
I. INTRODUCTION 

HE falling price and reduced size of sensors in recent 
years have fueled the installation of dense networks to 

gauge and relay environmental properties such as tempera-
ture, light, sound, and vibration in applications ranging from 
video surveillance and traffic control to health monitoring 
and industrial automation [1]. Furnishing the sensor locations 
proves as important as the spatially-sensitive readings in order 
for an external system to calibrate a network response. In 
particular military and public safety operations call for ad hoc 
deployability and self-organization to deliver high-precision 
location such as that of a man down in a building ablaze with 
zero visibility. This has launched a research area known as 
sensor location which seeks to aggregate potentially enormous 
quantities of data to achieve optimal results. Most practical 
systems require local distributed processing to cope with 
dynamic links or nodes in motion to maintain a network 
updated; alternatively relaying information across a large 
network sanctions the centralized processing of obsolete data, 
limiting scalability. 

A recent paper conducts an exhaustive survey of the 
available techniques for sensor location [2]. It isolates two 
algorithms which achieve the best performance by refining 
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erroneous distance measurements between neighboring nodes 
in a network through an optimization program whose quadratic 
constraints force the sensors to be consistent with the geometry 
of the physical world. Since the program is non-convex, the 
papers differ in their relaxation approaches to render it convex 
for which efficient solution methods exist, however relaxation 
alters the geometry of the problem. The approach suggested by 
Biswas et al. has greater applicability and yields better results 
than the one by Doherty et al. [2], [3]. We follow their same 
approach, maintaining the efficiency of convex optimization, 
however by applying linear geometrical constraints as opposed 
to quadratic ones. This renders the problem automatically 
convex, necessitating no relaxation of the original geometrical 
constraints and so guaranteeing a tighter solution still compli-
ant with the physical world. Specifically, the contributions of 
this paper are: 

• a convex linear program which ensures that the estimated 
link distances between neighboring nodes conform to 
requisite geometrical constraints; 

• a distributed algorithm to solve the program over the 
network without compromising optimality; 

• a distributed algorithm to reconstruct the locations of the 
sensor nodes from the estimated link distances. 

The paper reads as follows: Section II defines the original 
problem taken from Biswas [2] to determine sensor location, 
and it states our linear program which proposes a solution to it. 
Our distributed location algorithm is divided into two stages: 
1) Section III describes a centralized method to solve the 
program, and Section IV reduces this method to a distributed 
algorithm over the network; 2) Section V shows how to 
reconstruct the sensor locations from the solution to the 
program, also in a distributed manner. An extensive number 
of challenging tests conditions are reported in Section VI to 
substantiate the robustness of our algorithm to high levels of 
noise in comparison to the algorithm proposed by Biswas; we 
also report the messaging overhead of the algorithm. The last 
section summarizes our results. 

II. PRELIMINARIES 

Consider a network with two types of nodes: nA anchor 
nodes (or anchors) with known location and nS sensor nodes 
(or sensors) with unknown location, for a total of n = nA + 
nS nodes. For simplicity, let the nodes lie on a plane such 
that node i has location xi ∈ R2 indexed through i, i = 
1 . . . nA for the anchors and i = nA + 1 . . . n  for the sensors. 
The set N contains all pairs of nodes between which a link 
exists: (i, j), i < j; ||xi − xj ||2 < R, where the network 
parameter R is known as the radio range. The complement 
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¯ set N contains all pairs of nodes between which no links 
exists: (i, j), i < j; ||xi − xj ||2 ≥ R. The set M contains 
all triplets of nodes which form a triangle in the network: 
(i, j, k), (i, j) ∈ N ; (j, k) ∈ N ; (i, k) ∈ N . 

Neighboring nodes i and j measure the link distance d̂ij 

between them through received-signal-strength or time-of-
arrival techniques [4]. Given the locations of the anchors 
xi, i  = 1...nA and the measured distances d̂  

ij , ∀(i, j) ∈ N 
between all neighbors in the network, the original problem 
considered by both Biswas and Doherty to solve for the 
locations of the sensors xi, i  = nA + 1...n follows: 

min |αij |
(i,j)∈N 

s.t. ||xi − xj ||2 = dij , ∀(i, j) ∈ N (1) 

¯≥ R, ∀(i, j) ∈ N||xi − xj ||2 

where dij = d̂  
ij + αij . The problem minimizes the sum of 

When the measured distances contain errors, however, the dis-
tance constraints usually contradict each other and no solution 
exists in the plane; in this case, the semidefinite program 
relaxes the constraints by “lifting” the solution to a higher-
dimensional space, reconfiguring the structure by setting some 
of the points outside of the plane. The optimal semidefinite 
objective function approaches zero as the dimension is allowed 
to increase, and so always results in a smaller value than that 
of the original problem. The higher-dimensional points of the 
semidefinite solution are then projected down into R2 as a 
suboptimal solution to (1). The projection, however, typically 
leads to the crowding of sensors towards the center of the 
network due to the large contribution to the estimated distances 
between neighboring points coming from the dimensions 
ignored [5]. In order to mitigate this limitation the authors 
propose: 1. adding terms to the semidefinite objective function 
containing a heuristic parameter whose value depends on the 
size and geometry of the network, which if not chosen care-
fully leads to an infeasible solution spreading the points too 
far apart; 2. post-processing the suboptimal solution through a 
local gradient descent method. While the combined approach 
improves the suboptimal solution, it reduces to a gradient 
descent search to the non-convex original problem with the 
semidefinite approach providing only an initial solution. The 
approach described in the sequel provides a tight solution 

for the sensor locations, necessitating no initial solution nor 
heuristic parameters. 

A. Triangle inequality constraints 

Instead of relaxing the constraints in (1), we propose apply-
ing a different set of geometrical constraints while maintaining 
the same objective function. We exploit the triangular structure 
of the network such that the estimated link distances conform 
to the triangle inequality constraints. The problem we solve 
can be stated as follows: 

min |αij |
(i,j)∈N ⎫⎬ 

⎭ 

(2)s.t. dij + djk ≥ dik 

dij + dik ≥ djk , ∀(i, j, k) ∈ M 
djk + dik ≥ dij 

and let {α̃+ 
ij , α̃

− 
ij } be in any feasible solution to (3) such that 

α+ α− α+ α− α+ α+− ˜ = ˜  − 

the absolute residuals αij between the measured distances 
d̂  

ij and the estimated distances dij , provided that the latter 
conform to requisite geometrical constraints. The problem as where dij = d̂  

ij + αij . Consider rewriting the problem as a 
linear program in canonical form by removing the absolute defined above cannot be solved through convex optimization 
signs and introducing two bounding constraints: techniques since many of the constraints are non-convex. 

To overcome this obstacle, Doherty relaxes the problem by 
α+min + α− 

ij ijremoving all the non-convex constraints, reducing it to a 
(i,j)∈N 

convex second-order cone optimization problem. This however ⎫⎬ 

⎭ 

limits the estimated locations of the sensors to lie within s.t. dij + djk ≥ dik 

the convex hull formed by the anchors. Biswas avoids this dij + dik ≥ djk , ∀(i, j, k) ∈ M (3) 
limitation not by removing the non-convex constraints, but djk + dik ≥ dij 

rather by relaxing the problem to a semidefinite program: α+ 
ij ≥ 0 

, ∀(i, j) ∈ NWhen the measured distances contain no error, the semidef- α− ≥ 0ij
inite program yields the identical solution to (1) with zero 
objective function [2]: imagine a rigid structure consisting of 
a set of points in R2 with exact distances between each other. 

where αij = α+ −α−. Let  α̃ij be in the optimal solution to (2) ij ij 

{˜ij , ˜ij } ≥  0 and α̃ij = ˜ij ij . Further let ˆij ij 

min{α̃ij 
+ , α̃ij 

−} and α̂ij 
− = α̃ij 

− −min{α̃ij 
+ , α̃ij 

−}; now  {α̂ij 
+ , α̂ij 

−}
are not only in a feasible solution to (3) since {α̂ij 

+ , α̂ij 
−} ≥  0 

and α̃ij = α̂+ − α̂ij 
− , but are also optimal since α̂+ + α̂− ≤ij ij ij 

α̃+ +α̃− in its objective function. Moreover since α̂+ α̂− = 0,ij ij ij · ij 

then α̂+ + α̂− = |α̂+ − α̂−| = |α̃ij |, proving the equivalence ij ij ij ij 
of (2) and (3) at optimality. The solution to the problem above 
does not directly yield the sensor locations as in (1), but only 
the estimated link distances. Hence the complete algorithm 
requires an a posteriori location reconstruction stage described 
in Section V to furnish the locations of the sensors from these 
distances. Note that (3) can be applied to the triangles formed 
in three-dimensional networks as well; this paper does not 
treat the reconstruction stage for such networks for the sake 
of brevity. The advantage of our approach lies in the linearity 
of the constraints which ensures the convexity of the problem 
without relaxing any of the original geometrical constraints. 

III. THE PRIMAL-DUAL METHOD 

A. The primal problem 

We denote the linear program (3) as the primal problem. 
Rewriting the primal in standard form appears as 
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min 

s.t. 

� 

α+ + α− 
ij ij 

(i,j)∈N 

a1 α+ -α− )+ a1 α+ 
ij,k( ij ij jk,i( jk 
2 α+ α− 2 α+aij,k( ij - ij )+ ajk,i( jk 
3 α+ α− 3 α+aij,k( ij - ij )+ ajk,i( jk 

�
α+ 

ij ≥ 0 
, ∀(i, j) ∈ N

α− ≥ 0ij 

� 

-α− )+ a1 α+ -α− ) -α1 b1 �jk ik,j ( ik ik ijk = ijk 

α− 2 α+ α− α2 b2- jk )+ aik,j ( ik - ik) - ijk = ijk , 
α− 3 α+ α− α3 b3 � 

- jk )+ aik,j ( ik - ik) - ijk = ijk 

∀(i, j, k) ∈ M 

(4) 
where � � � 

1 1 1 
� � � � �� � 

b1 ˆaij,k ajk,i aik,j 1 1 -1 ijk -1 -1 1  dij 
2 2 2   a a a =   1 -1 1 ,   b2 =   -1 1 -1   ˆ ,ij,k jk,i ik,j ijk djk 
3 3 3a a a -1 1 1  b3 1 -1 -1 ˆij,k jk,i ik,j ijk dik 

and α+ , α− 
ij are the 2|N | primal decision variables associated ij 

with the links; the 3|M | primal slack variables α1 , α2 , α3 
ijk ijk ijk 

associated with the triangles serve to transform the inequalities 
to equations. 

A basic solution to the primal problem contains exactly 
3|M | nonzero (basic) variables and 2|N | zero (nonbasic) 
variables for the nondegenerate case which assumes linearly 
independent constraints; a feasible solution contains no neg-
ative variables. Since the optimal solution is necessarily both 
basic and feasible [6], the conventional simplex method pivots 
through basic feasible solutions of the system until finding the 
optimal one. A pivot consists of raising an entering variable 
in the nonbasic set from zero that will improve the objective 
function; the entering variable can rise only a certain amount 
until a blocking variable in the basic set reduces to zero; hence 
the entering variable becomes basic and the blocking variable 
nonbasic at another basic feasible solution of the system. 
Determining this amount necessitates global knowledge of 
all variables such that no variable becomes negative, and 
exactly 2|N | of them equal zero throughout the pivots. Hence 
the simplex method does not lend to distributed processing. 
Interior-point methods are designed for centralized computing 
even less than the simplex method, requiring the inversion of 
large sparse symmetric matrices [7]. 

B. The dual problem 

Each primal linear program has a unique dual linear pro-
gram. The dual problem to (4) appears as [6]: 

max b1 β1 +b2 β2 +b3 β3 
ijk ijk ijk ijk ijk ijk 

(i,j,k)∈M 

s.t. 

The Complementary Slackness Theorem [6] states that any 
feasible primal and dual solutions are optimal if the following 
complementary slackness conditions hold: 

u(a) α = 0  ⇒ βu ≥ 0ijk ijk 
(b) αu > 0 ⇒ βu = 0  

, 
ijk ijk 
v(c) αij = 0  ⇒ βij

v ≥ 0 
(d) αv > 0 ⇒ βv = 0  

, 
ij ij 

∀(i, j, k) ∈M 
∀u ∈ {1, 2, 3}
∀(i, j) ∈ N 
∀v ∈ {+ , -} 

(6) 
Rather than solve the primal problem through the simplex 
method, we formulate a distributed version of the primal-dual 
method in the following section. The key advantage to the 
latter relaxes the condition that a primal solution be basic. 
Our algorithm proceeds in the follow manner: 

1) first a link in the network finds a feasible (not necessarily 
basic) primal solution locally such that all incident 
triangles meet the triangle inequality constraints; 

2) the link then applies the complementary slackness con-
ditions given through this primal solution, defining the 
restricted dual problem locally; 

3) if the dual solution to the restricted problem is also 
feasible, then the primal solution is optimal through 
the Complementary Slackness Theorem; otherwise the 
primal solution is modified to improve the objective 
function. 

Once all the links attain optimal solutions, the network 
achieves the globally optimal solution. Dantzig treats a full 
discussion on the primal-dual method [7]. 

IV. DISTRIBUTED LINK DISTANCE ESTIMATION 

A. Network organization 

The nodes in the network transmit asynchronously. If node 
i wakes up after node j, then  ni defaults as manager of 
link ij . The link manager maintains the information on ij : 
the measured distance d̂  

ij and the residual αij initialized to 
zero. Consider three nodes ni, nj , nk in a network all within 
radio range, where nk woke up first and nj second, assigning 
manager of jk to nj . When  ni wakes up subsequently, it 
broadcasts a HELLO message containing its ID#: i. Nodes nj 

and nk respond with their ID#s; since nj acts as link manager, 
it also broadcasts the information on the links it manages, 
namely d̂  

jk . In receiving the messages from nj and nk, ni 

becomes manager of ij and ik and estimates d̂  
ij and d̂  

ik ; 
the two-way message exchange allows ni to measure these 
distances asynchronously [8]. As manager, ni then broadcasts 
the information on the links it manages. Now both managers 

⎫  ⎬ 

 ⎭ 

α+: a1 β1 +a2 β2 +a3 β3 +β+ = 1
ij ij,k ijk ij,k ijk ij,k ijk ij 

k, (i,j,k)∈M 

α−: -a1 β1 a2 β2 a3 β3 +β− = 1ij ij,k ijk - ij,k ijk - ij,k ijk ij 
, ni and nj have access to information on all three links of ijk 

and can so compute their local primal and dual variables: k, (i,j,k)∈M 

∀(i, j) ∈ N Definition: The local primal and dual variables to link ij⎫⎬ 

⎭ 

α1 : β1 ≥ 0ijk ijk are uthose associated with its incident triangles α , βu 
ijk ijk , 

α2 : β2 ≥ 0 , ∀(i, j, k) ∈M ∀k, (i, j, k) ∈ M ; ∀ijk ijk u ∈ {1, 2, 3} and those associated with 
vthe links of those triangles α , βv ∀l ∈ {i, j}; ∀ - .kl,α3 : β3 ≥ 0ijk ijk v ∈ {+ , }

(5) When pivoting in the distributed primal-dual method, link ij 
where β1 , β2 , β3 are the dual decision variables associ-ijk ijk ijk considers only its local primal and dual variables. While we 
ated with the triangles, and β+, βij 

− are the dual slack variables refer to the links as the processing centers for the distributed ij 
associated with the links. As indicated, each primal variable algorithm in the sequel, the actual processing of course takes 
has a corresponding dual constraint. place at the link managers. 

kl 
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(a) The initial network. (b) A feasible primal solution. (c) The corresponding restricted dual problem. 

Fig. 1. Propagation in the distributed primal-dual algorithm. 

B. A feasible primal solution 

Denote a triangle ijk as feasible if it meets all three of 
its triangle inequality constraints: αu ≥ 0, ∀u ∈ {1, 2, 3}.ijk 
Suppose that a link ij changes value, rendering one of its 
incident triangles infeasible: αu < 0, for  u, k. Theorem I (15) ijk 
shows that if any one of the constraints is bound, then the other 
two are feasible; so by setting αu = 0, ij restores feasibility ijk 
to ijk . Since the value of ij was just changed, it remains the 
same; rather the link selects one of the other two links on the 
triangle ( jk or ik) to set the value of αu to zero, say ijk jk. 

∂αv 

Consider modifying αv such that αjk = αjk + jk δαu 
jk ∂αu ijk , 

ijk 

where δαu = −αu represents the necessary change in αu 
ijk ijk ijk 

to render the violated constraint feasible. The partial 

∂αv 1jk = (7)
∂αu vau 

ijk jk,i αij ,αik 

while maintaining the value of the links ij and ik constant 
is computed through rewriting the primal constraint u in (4) 
as 

vαv 
jk 

The portion of a network in Fig. 1a consists of four 
ˆfeasible triangles (shaded) with the estimated distances d = d 

displayed on each link. Let d12 decrease to 1, rendering 123 

infeasible. The infeasibility then propagates along the path 
indicated by the dashed arrow in Fig. 1b, altering the values 
of the boldfaced links: d23 decreases to 3, restoring feasibility 
to 123, but renders 234 infeasible; d24 decreases to 7, 
restoring feasibility to 234 while maintaining 245 feasible. 
The propagation terminates at 245 with all four triangles 
newly feasible. 

C. The restricted dual problem 

1) Defining and solving the restricted dual problem: We 
say that a link ij has a feasible primal solution locally if all 
of its incident triangles are feasible. Once a link establishes 
this, it can apply the complementary slackness conditions to 
its local variables in order to define the restricted dual locally: 

• every bound primal constraint αu = 0  admits one ijk 
dual decision variable (unknown) βu to the restricted ijk 
problem (6a), while setting the remaining dual decision 
variables to zero (6b). Theorem II (16) shows that a 
triangle with two bound links is isosceles; it readily �� 

(α+ 
ij -α

− 
ij )� +au 

jk,i (α
+ 
jk α

− ) +au (α+ α−-jk ik,j ik ikau 
ij,k ) αu 

ijk = bu 
ijk .- - follows a triangle with three bound links is equilateral. �

So a triangle may have up to three bound constraints, αij αik 

(8) which in turn means that each triangle admits up to three 
vNote that αv > 0 implies α - = 0. The pseudocode below unknowns to the dual. 

jk jk 
summarizes the local pivot: • every nonzero primal decision variable αij

v > 0 admits 
one bound dual constraint (equation) βij

v = 0  to the ⎡ 

⎢⎢⎢⎢⎢⎣ 

Pivot I: Set αu = 0 by modifying αv 
ijk jk 

∂αv 
jkαjk = αjk + ∂αu δαijk 

u 
ijk 

∂αv (9) 
jk = 1 

u∂αu vaijk jk,i αij ,αik 

δαu = −αu 
ijk ijk 

In restoring feasibility to ijk , jk may in turn render a 

: restricted problem (6d), while unbounding the remaining 
dual constraints (6c). A link introduces two constraints 
indexed as α+ and α− to the dual problem in (5). Adding ij ij 

these constraints together yields β+ + β− = 2; this  ij ij 
implies that bounding one of the constraints as βij

v = 0  
unbounds the other as βij 

−v = 2, which in turn means that 
each link admits at most one equation to the dual. 

neighboring triangle jkl infeasible, analogous to the change 
in ij which rendered ijk infeasible in the previous step. 
This mechanism causes infeasibility to propagate through the 
triangles in the network, leaving those in its path feasible, 
and so obtaining a feasible primal solution locally at each 
step until termination at a certain triangle. In the worst case, 
propagation terminates at the edge of the network where jk 

has no neighboring jkl. The following subsection describes 
how to select αv optimally in Pivot I. jk 

Fig. 1c graphically represents the restricted dual problem 
corresponding to the feasible primal solution in Fig. 1b: each 
of the three darkly shaded triangles has one bound primal 
constraint, admitting one unknown per triangle to the dual: 
β2 d23) at  123, β1 d24) at  123 (d12 +d13 = 234 (d23 +d34 = 234, 
and β2 (d24 +d25 =d45) at  245; each of the three boldfaced 245 
links with nonzero residuals (α− 3, α− 2, α− 2) admits 12 = 23 = 24 = 
one equation per link to the dual in (5): ( -β2 1) at  123 = 12, 
(β2 β1 1) at  23, and  (β1 β2 1) at  24. Link  123 - 234 = 234 - 245 = 12 
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vsolves for its single unknown β2 = −1, and then broadcasts • IF entering αv lowers a local blocking variable α˜ >123 ij jk 
the value to the other two links of 123; now knowing the ∂αv 

0, ij = −1; conversely, reducing αṽ to zero through v 
jkvalue of β2 solves for its single remaining unknown ∂α˜ 

123, l23 
jk 
∂αv 

β1 = 2, and then broadcasts the value to the other two Pivot II below raises αv
ij . The partial ij is computedv234 ∂α˜ 

links of 234; now knowing the value of β1 solves through (8). 
jk 

234, 24 

for its single remaining unknown β2 = 1, completing the 245 ⎡ 

⎢⎢⎢⎢⎢⎣ 

vPivot II: Set α˜ = 0 by raising αv :jk ijrestricted dual solution, and then broadcasts the value to the 
other two links of 245. As demonstrated, the dual solution, 
like the primal, is found by propagating the solution through 
the triangles in the network. The dashed arrow in Fig. 1c 

∂αv 

δα˜ij vαij = αij + v jk ,∂α˜ 
jk (11)u∂αv ṽaij jk,i = − ,v∂α˜ 

jk 
uva

αik ,αu =0ijk 
ij,k indicates the direction of propagation. 

As any solution to a nondegenerate linear system contains at 
v vδα˜ = −α˜ 
jk jk 

least the same number of unknowns as equations, any solution 
to the nondegenerate primal system in (4) contains at least 
the same number of nonzero primal decision variables as the 
number of bound primal constraints. So due to complemen-
tary slackness, the restricted dual contains at least the same 
number of equations as the number of unknowns: a potentially 
overconstrained system. If not overconstrained, the unknowns 
in the restricted dual can be found through propagated substi-
tution, as shown above; otherwise if the equation of a bound 
link ij is overconstrained, increase the number of unknowns 
at the link by admitting a dual decision variable βu 

ijk . This can 
be achieved by setting the corresponding primal slack variable 
αu > 0 to zero through Pivot I (9), effectively bounding ijk 
another constraint of a triangle incident on ij . The following 
describes how to select αu optimally in Pivot I. ijk 

2) Modifying the primal solution towards optimality: If the 
solution to the restricted dual is feasible (i.e. all the decision 
and slack variables are greater than or equal to zero), then the 
primal solution is optimal. Otherwise it can be shown [7] that 
setting an infeasible dual variable to zero improves the primal 
objective, provided that the nonzero feasible dual variables 
remain admitted to the restricted dual problem. 
Case i: If the restricted dual solution includes an infeasible 
decision variable βu < 0, then raising its corresponding ijk 
primal slack variable αu from zero sets βu = 0  through ijk ijk 
complementary slackness. 

u• IF entering αu lowers a local blocking variable α˜ >ijk ijk 
∂αu 

ijk u0, ũ = u, u = −1; conversely, reducing α˜ to zero
∂α˜ ijk 

through Pivot
ijk

I raises αu 
ijk . The partial 

Note that Pivot II affects the value of αu u ∈ {1, 2, 3};ijk , ∀ 
so if βu > 0 before the pivot, maintain αu = 0 such ijk ijk 
that the nonzero feasible dual variable remains in the 
restricted problem. 

• ELSE entering αv
ij lowers a local blocking variable 

∂αv 

αu > 0, ij = −1; conversely, reducing αu to zeroijk ∂αu ijk 
ijk 

1through Pivot I raises αv
ij . 

Recall in Section IV-B that the initial feasible primal 
solution is found in the absence of any dual restrictions, and so 
the arbitrary selection of a link to modify in Pivot I may lead 
to a sub-optimal solution. When modifying the primal solution 
towards optimality, a local pivot to a link may affect the primal 
feasibility of a non-incident triangle. And so another link on 
the triangle maneuvers to restore its feasibility through Pivot 
I, but now using dual restrictions to decide which one. The 
new feasible primal solution of the triangle in turn generates 
other dual restrictions local to this other link. As the pivots 
continue, the feasible primal solution becomes more and more 
restricted by the dual solution until reaching global optimality. 
An example presented in the following section substantiates 
these ideas. 

D. Example network 

Consider the example network in Fig. Ia of Table I with 
four nodes and five links. The measured distances d̂ appear 
on each link. Table I displays the coefficients of the primal 
problem corresponding to this example network in A and b. 
The blank slots indicate zeros and are left so to reduce clutter. 
As the nodes wake up asynchronously, let links 12 and�

∂αu ��
∂αv �� 

∂αu � 
au 

ijk jk ijk jk,i = = (10)
u u u∂α˜ ∂α˜ ∂αv a˜ 
ijk αij ,αik ijk jk jk,i 

is computed through (7). Note that Pivot I results in 
αv > 0, and in turn sets βv = 0  through comple-jk jk 
mentary slackness; so if βv > 0 before the pivot, the jk 
pivot removes a nonzero feasible dual variable from the 
restricted dual. Select αv such that βv ≤ 0.jk jk 

• ELSE entering αu lowers a local blocking variable ijk 
∂αu 

αv > 0, ijk = −1; conversely, reducing αv to zerojk ∂αv jk
jk 

∂αu 

raises αu ijk appearsijk . The reciprocal of the partial ∂αv 
jk

in (7). 
Case ii: If the restricted dual solution includes an infeasible 
slack variable βij

v < 0, then raising its corresponding primal 
decision variable αv from zero sets βv = 0 through comple-ij ij 
mentary slackness. 

be the last two established, completing the triangles 123 

and 234 respectively. Note that 123 and 234 are initially 
infeasible with α1 . In solving the initial 123 = −2 and α3 

134 = −1 
primal problem and in the absence of any dual restrictions, 
12 raises its value to 7(α+ 6) to restore feasibility to12 = 123, 

and broadcasts this value to the other two links; likewise 34 

raises its value to 2(α+ 1) to restore feasibility to 234, and  34 = 
broadcasts this value to the other two links. Each network link 
subsequently computes its corresponding local primal decision 
and slack variables. This first (1) primal solution with objective 
7 appears in row αv (1) and column αu (1) of Table I. The ij ijk 
solution is indexed according to global solutions for the sake 
of clarity, but as just explained, the solutions are computed 
locally, distributedly, and asynchronously. 

1Changing the subscript from αv to αv 
ij jk . 

34 
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TABLE I 

THE PRIMAL-DUAL TABLE 

1 

2 3 

1 

5 

3 

1 

4 

2 

(a) The example network. 

+ − + − + − + − + −
A α α α α α α α α α α b αu (1) βu (1) αu (2) βu (2) αu (3) βu (3) 12 12 23 23 13 13 34 34 14 14 ijk ijk ijk ijk ijk ijk 

β1 
123 1 −1 1 −1 −1 1 2 4 1 1 
2 
123 

β −1 1 1 −1 1 −1 

β 1 −1 −1 1 1 −1 

3 
123 
1β 1 −1 1 −1 −1 1234 

β 1 −1 −1 1 1 −12 
234 

β3 
234 −1 1 1 −1 1 −1 1 1 1 0 

αv (1) ij 6 0 1 0 

βv (1) ij 2 2 3 −1 2 2 

αv (2) ij 2 0 1 0 

βv (2) ij 2 2 3 −1 2 2 

αv (3) ij 1 0 1 

βv 
ij (3) 2 2 2 1 1 1 1 

−4 

−6 

−7 

−3 

10 

-1 

8 

2 

4 4 

4 4 

8 6 

2 2 

With all the triangles incident on 12 now feasible, 12 ap-
plies the complementary slackness conditions from its primal 
solution to define the corresponding restricted dual problem 
locally: 

α3 = 0  ⇒ β3 ≥ 0 

{ 123 , α
2
123} > 0 ⇒ { 123 , β

2 = 0  
123 123 

α1 β1 
123 }

α− + + β−{ 12 23 23 13 = 0  ⇒ {  , β+ , β− , β+ , β− 0, α  , α− , α  , α− 
12 23 13} ≥13} 23 13 

a12
+ > 0 ⇒ β+ 

12 = 0  

So 12 processes a single unknown (β3 ) and a single 123 ≥ 0 
equation (−β3 = 1) to solve for its local dual variables. It 123 
solves for β3 = −1 and distributes this value to the other 123 
two links of 123. Through the same process, 34 solves for 
β3 

234 = 1 in its restricted dual and distributes this value to 
the other two links of the triangle. Now that each link ij in 
the network holds the dual decision variables β1 , β2 , β3 

ijk ijk ijk 
of all incident triangles ijk , it can compute its slack dual 
variables β+, βij 

− . The first (1) dual solution appears in column ij

βu (1) and row βv (1) of Table I. The table evidences the ijk ij 
complimentary slackness structure of the primal-dual solution, 
where the dual slack (decision) variable is zero if a primal 
decision (slack) variable is nonzero; the boxes indicate the 
admitted unknowns and equations in each restricted dual. 

The first dual solution reveals two infeasible variables 
β3 

123 = −1 and β− = −1. Raising  α3
123 or α− will improve 13 13 

the primal objective, provided that the nonzero feasible vari-
ables remain admitted to the restricted dual problem. Link 12 

raises α3 through Pivot I, setting the local blocking variable 123 
∂α3 

α1 = 4, 123 = −1 to zero by modifying the value of 123 ∂α1 
123 

12 to 3 (α+ = 2). Selecting to remove β+ = 0 from the 12 12 
restricted dual problem ensures that this pivot improves the 
primal objective. The second primal solution remains feasible 
after Pivot I, necessitating no additional pivots to restore 

feasibility. Note that the primal objective equal to 3 has indeed 
improved. The second primal-dual solution appears in Table 
I. 

The second dual solution still reveals the infeasible variable 
β− = −1. Link  13 raises α− through Pivot II, setting the 13 13 

∂α− 

local blocking variable α+ = 1, 13 = −1 to zero while 34 ∂α+ 
34 

maintaining α3 = 0 such that β3 = 1 remains admitted 134 134 
to the restricted dual problem. This pivot however raises α1 

123 
from zero, violating a dual restriction by removing β1 = 1123 
from the same restricted dual. Link 13 sets α1 back to zero123 
through Pivot I by modifying the value of 12 to 2 (α+ = 1).12 
(Alternatively modifying the value of 23 to 1 (α− = 1) would 23 
remove the nonzero feasible dual variable β− = 2 from the 23 
dual problem and in consequence raise the primal objective 
function to 4.) The third primal-dual solution with objective 
2 appears in Table I, where all the feasible dual variables 
indicate the optimality of this primal solution. As confirmed 
here, the value of the dual objective function at optimality 
equals that of the primal objective function [6]. 

V. DISTRIBUTED LOCATION RECONSTRUCTION 

A. Location propagation 

The reconstruction stage yields the locations of the sensors 
in the network from the link distances estimated through the 
linear program (3). The stage originates at any two anchor 
nodes (shaded) sharing a neighboring sensor node (unshaded), 
as in Fig. 2a. Given x1 = (x1, y1) and x2 = (x2, y2) (and 
so the distance d12 between them), and d13 and d23, the  
following set of equations [9] furnishes the unknown location 
x3 = (x3, y3) with respect to the reference coordinate system 
centered at x2: 
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(a) The geometry. (b) Location propagation from the anchor nodes. (c) Candidate mirror locations. 

Fig. 2. Location reconstruction. 

d2 d2 
12 +d2 

1323 -(a)   = arccos 
2d12d23 

x3 x2 d23 cos  
(b) = + (12)

y3 y2 s · d23 sin   

y2 − y1(c) φ = arctan  
x2 − x1 

x3 x2 cos φ − sin φ x3 − x2(d) = + 
y3 y2 sin φ cos φ y3 − y2 

In fact, the set actually furnishes two candidate locations 
mirrored about the line between x1 and x2 for the same given: 
x3 for s = 1  in (12b) and x˜ for s = −1. This  mirror3 
ambiguity [10] arises from the use of only two anchor nodes 
to determine location. 

Once a node determines its location, starting with the anchor 
nodes, it broadcasts this location to its neighboring nodes; we 
say that the two anchor nodes propagate their locations to the 
unknown sensor node. Now that the sensor node is known, it  
serves with another known sensor (or anchor) to determine the 
location of an unknown sensor neighboring the two. Following 
the arrows in Fig. 2b, n1 and n2 propagate their locations to 
n3; nodes n2 and n5 propagate their locations to n4; n2 and 
n3 propagate their locations to n4; and  n3 and n4 propagate 
their locations to n6. 

If, however, n3 cannot resolve the mirror ambiguity after the 
first propagation, it computes both candidate locations x3 and 
x˜ shown in Fig. 2c and broadcasts them both; the information3 
it subsequently receives through its neighbors about the loca-
tions of other known sensors in the network serves to resolve 
that ambiguity. Note the each propagation step from the origin 
potentially doubles the number of candidate locations: Fig. 
2c illustrates the four candidate locations x43 , x˜ , x4˜ , x˜43 3 43̃ 

for n4 after the second propagation. Rather than double these 
four locations yet further to eight, node n4 can exploit the 
network redundancy to dismiss candidates x4̃3 

and x43̃ 
which 

place n1 and n4 within radio range even though they are 
not neighbors; this mechanism suppresses the exponential 
growth of candidates. Node n4 also separately computes two 
candidate mirror locations originating from anchors n2 and 
n5, but only one will be correspond to the true location x4̃˜ 

,
3 

so dismissing the other remaining candidate x43 . Broadcasting 
its unique location, node n4 in turn enables n3 to resolve its 
true location as x3̃. 

2 

5 

4 

3 
1 

Fig. 3. Artificial links. 

B. Artificial links 

1) Location propagation to singly-connected sensor nodes: 
As described in the previous subsection, the location of a 
node is reconstructed through connections to it from two other 
nodes in the network. If a node such as n5 in Fig. 3 has only 
one normal link (dark) to the network, we insert an artificial 
link (light) to it from a non-neighboring node: 15 now enables 
location propagation to it from n1 and n4. As any other normal 

¯link, an artificial link between xi and xj , (i, j) ∈ N generates 
a set of new triangles in the network and so appears in the 
corresponding set of triangle inequality constraints in (3). 
Lacking an estimated distance for it, however, an artificial link 
is less restrained than a normal link in that we can only exploit 
the relationship dij = d̂  

ij +α+ ≥ R. So rather than arbitrarilyij 

minimize the positive residual α+ in the objective function, setij 

d̂  
ij = R and introduce only the positive bounding constraint 

α+ ≥ 0 in the linear program (α− = 0  since dij < R).ij ij 

Although the single artificial link between n1 and n5 

suffices to reconstruct x5, adding multiple artificial links to all 
neighbors of n4 as in Fig. 3 guarantees a tighter solution to the 
problem since they are individually less restrained than normal 
links. In theory, artificial links between all non-neighboring 
nodes in the network guarantee an even tighter solution, 
however they also increase the computation complexity of 
the linear program; in practice, an artificial link ij between 
two nodes ni and nj bearing normal links to a third node 
nk completes the triangle and renders satisfactory results; 
including any more than in this case proves superfluous. 

A node completely disconnected from the network cannot 
gather any location information except that it lies beyond the 
radio range R of all other nodes in the network, hence no 
deterministic method exists to compute its location with any 
meaningful accuracy. 
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o 
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1 

Fig. 4. Location propagation between anchors. (a) The path n1 → n3 → n4 
and x3 to x4, x5, and  x2. 

2) Location propagation between anchor nodes: An anchor 
node in the network can be incorporated in the linear program 
(3) by including the constraints associated with all triangles 
formed between it, another anchor node, and a sensor node 
neighboring both anchors. Set the residual of the link distance 
between the anchor pair to zero since this distance is known. In 
general network topologies, especially those with low anchor 
density, no single sensor node connects any two anchors, as 
in Fig. ??a. Consider as an alternative the connection between 
the two anchors through the minimum-hop path n1 → n3 → 
n4 → n5 → n2 found during network organization. Adding 
the three artificial links 14, 35, and  24 enables location 
propagation between the two anchors according to the arrows: 
from n1 and n3 to n4, from n3 and n4 to n5, and from n4 

and n5 to n2. 
In contrast to location propagation from two anchor nodes 

as described in the previous subsection, here propagation 
originates from one known anchor node n1 and one unknown 
sensor node n3. Since  x3 is unknown, the value of φ in Fig. 
??a is also unknown. Consider instead establishing the relative 
coordinate system illustrated in Fig. ??b oriented along the 
line between n1 and n3 and centered at x3. Now propagate 
x1 and x3 to x4, x5, and  x2 as in Subsection V-A, however 
rather than in terms of real values and with respect to the 
reference coordinate system, here in terms of the variables 
(x3, y3) and with respect to the relative coordinate system. 
These locations assume the following form with individual 
real-valued terms (dx, dy) computed pairwise and stepwise 
through (12): (x4, y4) = (x3 + dx 

34, y3 + dy ), (x5, y5) =34 
(x4 + dx ), and  (x2, y2) = (x5 + dx ), or  45, y4 + dy 

25, y5 + dy 
45 25 

compactly 

x2 x3 + d3P= , (13)
y2 y3 + d2P 

where d3P = dx and d2P = dy + dy + dy 
34 + dx 

45 + d25 
x 

34 45 25 
represent the distances from n3 and n2 respectively to the 
imaginary point P in the relative coordinate system. Once the 
propagation reaches n2, backward substitute (x2, y2) in (13) to 
solve for the unknown values (x3, y3), which in turn yield the 
locations of the other sensor nodes along the minimum-hop 
path. Now that all nodes along the path have known neighbors 
with which to propagate location to other unknown sensors, 
propagation can continue as in the previous subsection. Note 
that the distances d3P and d2P in Fig. ??b must conform to the 
Pythagorean Theorem (d13 + d3P )2 + d2 = d2 , where  d132P 12 

P(x4 ,y ) 

(x2 ,y )

(x ,y )3 3

 4 

(x ,y )5 5

2 

3 

5 

4 

1 

y 
x 

2 

(x1 ,y )1 

→ n5 → n2 connects the two anchors. (b) Location propagation from x1 

and d12 are known values. This relationship serves to resolve 
any mirror ambiguities in propagation along the path up to 
the one degree of freedom associated with the use of only 
two anchor nodes. 

VI. EXPERIMENTAL SETUP AND RESULTS 

A. Gentile vs. Biswas 

In order to quantify the performance of our algorithm in 
comparison to Biswas, we conduct experiments on a network 
with the same structure as in [2]: the network contains 50 
static sensor nodes uniformly distributed throughout a 1 × 1 
unit area. The three varying parameters are the number of 
anchor nodes, the radio range, and the noisy factor of the 

¯link distances. As Biswas, the ground-truth link distances dij 

between neighboring nodes i and j are perturbed with zero-
mean unit-variance Gaussian noise N (0,1) and the varying 
parameter noise, so the algorithm accepts as input the noisy 

¯link distances d̂  
ij = dij ∗(1 + N (0, 1)∗noise). Interior-point √ 

methods, with an expected complexity of O( n ln n) where 
n denotes the number of constraints [11], have recently been 
shown to solve both linear and semidefinite programs more 
efficiently than the simplex method, hence the computational 
complexities of Gentile and Biswas are comparable. 

Biswas reports the results of a single trial network for the 
six tests described in [2]. The quantitative measure for each 
is the average location error over the sensor nodes 

n1 ||x̄ i − xi||2 , (14)
nS i=nA+1 

where x̄ i and xi denote the ground-truth and estimated loca-
tions. Our paper includes a more extensive superset of their 
tests, spanning a much higher range of noise, for a total of 38. 
In addition, for each test we conduct ten trials of randomly 
distributed sensor networks rather than one, totaling 380 trials. 
Table II contains the results for 36 tests as the cross product of 
#anchor = {3, 5, 7}, R = {0.20, 0.25, 0.30}, and  noise = 
{0.0, 0.1, 0.2, 0.3}. For each slot in the table, the result of 
our algorithm is reported on the top line as an average and 
variance over the ten trials μGentile, σ2 

Gentile, and if available, 
the corresponding result (μBiswas, σ2 

Biswas) in [2]  is  shown  in  
parentheses on the middle line in the same slot, as indicated by 
the legend. For perfect range measurements with three anchor 
nodes, our algorithm performs only 12% better for R = 0.25 
in terms of average error, but furnishes an average nearly 
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TABLE II 

NUMERICAL RESULTS FOR EXPERIMENTS 

R=0.20 R=0.25 R=0.30 noise 
3 5 7 3 5 7 3 5 7 

0.0 
.0427, .0058 
(.0800, .0900) 
377.2, 561.0 

.0419, .0111 

369.5, 570.5 

.0408, .0116 

366.0, 584.2 

.0067, .0007 
(.0076, .0021) 
433.4, 573.1 

.0058, .0004 

421.6, 577.0 

.0058, .0004 

412.3, 584.1 

−6 −12< 1e , < 1e
−4(1.8e , 4.3e−5) 

484.1, 551.9 

−6 −13< 1e , < 1e

475.1, 556.1 

−6 −13< 1e , < 1e

462.8, 557.0 

0.1 
.0754, .0087 

395.1, 561.0 

.0644, .0725 

388.4, 570.5 

.0638, .0101 

382.2, 584.2 

.0526, .0029 

372.4, 573.1 

.0436, .0025 

463.4, 577.0 

.0270, .0035 

457.2, 584.1 

0.0447, .0026 

667.4, 551.9 

0.0362, .0027 

657.3, 556.1 

0.0245, .0024 
(0.0640, .0120) 

643.1, 557.0 

0.2 
.0846, .0049 

422.9, 561.0 

.0801, .0094 

415.8, 570.5 

.0676, .0101 

409.7, 584.2 

.0764, .0035 

556.2, 573.1 

.0649, .0074 

539.3, 577.0 

.0493, .0057 

527.5, 584.1 

.0570, .0030 

1051.2, 551.9 

.0566, .0034 

1021.7, 556.1 

.0458, .0041 

1015.5, 557.0 

0.3 
.1063, .0105 

455.6, 561.0 

.0877, .0075 

453.9, 570.5 

.0873, .0117 

444.6, 584.2 

.0954, .0089 

847.0, 573.1 

.0825, .0105 

833.7, 577.0 

.0772, .0067 

827.9, 584.1 

.0767, .0050 

1405.4, 551.9 

.0736, .0055 

1384.3, 556.1 

.0459, .0032 

1373.1, 557.0 

LEGEND 
μ , σ2 

� 

Gentile Gentile� 

μ , σ2 
Biswas Biswas 

#me #meDist. , Cntr. 

half the size as Biswas for R = 0.20, and on the order of 
100 times smaller for R = 0.30. For seven anchor nodes, 
R = 0.30, and  noise = 0.1, the average for Biswas is 161% 
greater than ours. In fact, in the same column their average 
.0640 for noise = 0.1 is still 39% greater than our average 
.0459 for noise = 0.3; this shows that our algorithm is much 
more robust to noise. The fifth test condition not appearing 
in the table included in [2] is for seven anchors, R = 0.30, 
and noise = 0.05, yielding μGentile = .0162, σ2 = Gentile 

= .0540, σ2 = .0140). The last .0021 and (μBiswas Biswas 
competing test condition is for seven anchors, R = 0.40, and  
noise = 0.1, yielding μGentile = .0162, σ2 = .0007Gentile 

= .0500, σ2 = .0120). Our error variances and (μBiswas Biswas 
fall about a magnitude smaller than theirs, showing that the 
proposed algorithm not only turns out a smaller average error 
in all tests, but also a smaller error throughout all the nodes 
in the network. 

B. Distributed vs. Centralized 

We compare distributed and centralized versions of our 
algorithm by the number of transmitted messages required 
for each to converge for the same tests as in the previous 
subsection. As indicated in the legend, the bottom line of each 
slot in Table II displays the number of messages #meDist. 
and #meCntr. for each. The solutions in both the distributed 
and centralized versions match up one-to-one for each trial, 
confirming our results in the table and moreover demonstrating 
that our distributed version indeed finds the global optimum. 
Distributed version: We initialize the network as in Subsec-
tion IV-A  by placing  a  HELLO message on the queue of 
each node at t=0. A node processes any message on its 
queue immediately and generates a new message containing 
information pertaining to network organization, primal-dual 
pivots, or location propagation. Before broadcasting the new 
message to its neighbors, it waits a random variable t ∈ 
(0, 1) ms uniformly distributed within the interval; the random 
delay mimics asynchronous node operation. The distributed 
algorithm combines both stages of link estimation and location 

reconstruction to furnish each sensor node with its estimated 
location upon convergence. 
Centralized version: The centralized version organizes and 
sends messages in the same asynchronous fashion as described 
for the distributed version, but the link estimation and location 
reconstruction instead occur at a processor node. The proces-
sor is designated a priori as the one closest to the geometric 
center of the network to foster the shortest multi-hop routes in 
communicating between all the other nodes. Once it gathers 
all the measured distances from the sensors and the anchor 
locations, it generates the unknown locations and broadcasts 
them back to the sensors. 

The distributed version outperforms the centralized version 
up to noise = 0.2 across all network parameters (except 
for R = 0.30). Larger noise causes more initially infeasible 
triangles, necessitating more iterations to solve the linear 
program: the distributed version dissipates those iterations in 
primal-dual messages while the centralized version places a 
greater burden on the processor but witnesses no increased 
messaging. Larger radio range increases the number of trian-
gles in the network and in turn the number of constraints in 
the linear program, again increasing the primal-dual messages 
in the distributed version and the burden on the processor 
in the centralized version, but actually lowers the number of 
messages in the latter since nodes can communicate to the 
processor through fewer hops. The number of anchors does 
not significantly affect either version of the algorithm. In our 
test network, the number of hops in the centralized algorithm 
averaged from only 2.8 for R = 0.2 to 1.8 for R = 0.30, 
and so the distributed version could prove advantageous in 
larger networks with more hops to the processor. Indeed 
in the distributed version the messages remain local to the 
node, curbing latency issues in forwarding packets across the 
network, especially when the application necessitates frequent 
updating; moreover local messaging reduces the reliability on 
multiple links to the processor: if the node is cut off from 
the processor, or if the processor fails, it cannot recover its 
location. The centralized version may also require special units 
with enhanced processing capabilities. 
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The IEEE 802.15.4a working standard [12] provides a spec-
ification for low-cost Ultra Wideband communication devices 
with ranging capabilities to measure the distance between a 
pair. The radio transmits at a power of P = 33  nW

R=0.20 

for a range of roughly 20 m in line-of-sight conditions, at 
P =52 nW for a range of 25 m, and in accordance with R=0.25 

the FCC unlicensed mask at a maximum power of P =74  
R=0.30 

nW for a range of 30 m. The three radio ranges can be 
associated with R = 0.20, R = 0.25, and  R = 0.30 in our 
experiments. The packet length of a message has an average 
duration of 1 ms due to the long header which enables sub-
meter ranging, so the network transmission energy consumed 
in running the algorithm can be computed for the tests in Table 
II as #me×PR × 1 ms. In both the centralized and distributed 
versions of the algorithms across all parameters, the shortest 
execution period is t = 6.52 ms for the distribution version 
with seven anchors, R = 0.20, and  noise = 0.0 and the 
longest execution period is t = 23.46 ms for the distributed 
version with three anchors, R = 0.30, and  noise = 0.3. 

VII. CONCLUSIONS 

This paper proposes a distributed algorithm to determine 
the locations of sensors in a network. Drawing on previous 
approaches employing complex optimization, our approach 
provides a tighter solution to the problem than its competitors 
by applying triangle inequality geometrical constraints to the 
network. In order to substantiate its performance, we run an 
extensive set of experiments in comparison with the published 
results for the best competing algorithm. Our algorithm out-
performs the competing algorithm and proves robust even in 
the presence of high levels of noise in the measured link 
distances. We also report the number of distributed messages 
for convergence of our algorithm, and confirm that it achieves 
the same optimal objective function as the centralized version. 

APPENDIX 

Theorem I: If any one of the three inequality constraints of a 
triangle is bound, then the other two are feasible. 
Proof: Assume without loss of generality that the first inequal-
ity constraint is bound: 

−dij + dik = djkdij + djk = dik ⇒ ,−djk + dik = dij 

dij + dik ≥ −dij + dikbut since dij , djk ≥ 0,
djk + dik ≥ −djk + dik 

dij + dik ≥ djkso .�
djk + dik ≥ dij (15) 

Theorem II: If any two of the three inequality constraints of 
a triangle are bound, then the triangle is isosceles. 
Proof: Assume without loss of generality that the first two 
inequality constraint are bound: 

dij + djk = dik ⇒ djk = dikdij + dik = djk (16) 

by subtracting one equation from the other. � 
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