Measurements of Voltage and Current Surges on the AC Power Line in Computer and Industrial Environments

R. Odenberg and B.J. Braskich

Transtector Systems, Inc.

Reprint, with special permission, of IEEE Transactions PAS-104, October 1985

With discussion submitted by Peter Richman KeyTek Instrument Corp. and François D. Martzloff General Electric Company

NOTE: This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of NIST's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by sending a blank email message to <u>pubs-permissions @ieee.org</u>. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

Significance:

Part 3: Recorded surge occurrences and surveys Part 5: Monitoring instruments

This paper was approved for presentation at the 1985 PES Winter Meeting to foster discussion of a new approach for recording the occurrence of voltage surges as well as current surges, the latter being a new contribution to characterization of the surge environment.

Unfortunately, according to the discussions resulting from the presentation, some limitations or possible artifacts of the instrumentation raised question on the validity of the data. For that reason, the complete paper and its discussion have been included in the anthology

Measurements of Voltage and Current Surges on the AC Power line in Computer and Industrial Environments

R. Odenberg

Transtector Systems, Inc. Hayden Lake, Idaho 83835

Abstract - Special computerized instrumentation was developed for monitoring and recording voltage and current surges on the A.C. power line in computer and industrial environments.

From January, 1982, until December, 1983, locations in nine cities were surveyed. The total number of surge occurrences measured during the test period was 277,612. Monitoring and recording of data was accomplished utilizing computer based equipment. At a later time the data was transmitted to a central computer to tabulate.

Two important factors measured and recorded by the computerized systems were: (1) the system measured both voltage and current peak values during the transient occurrence, and (2) the time to peak voltage and current and time to 50% of peak. This provided a correlation between the voltage and current of a specific surge occyrrence.

Measurements were made at different points in AC power systems from a 15A/120VAC service outlets to an AC power mains.

This report provides the tabulated data, calibration tests, describes the site installation and the conditions of the environment when the measurements were taken.

The results show that the composite voltage and current waveforms represented a 1.07×1002.01 us voltage wave and a 60.4 x 999.34 us current wave.

INTRODUCTION

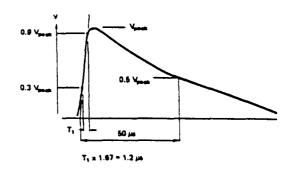
Voltage and current surges occurring on the AC power line has caused considerable problems to both users and manufacturers of electronic systems. The need to eliminate this problem is essential today for efficient operation.

The earliest reports on transients appear in published papers [1] 1969, [2] 1974, and a more current report [3] 1980.

These reports discuss and describe only the voltage characteristics of the transient and no data is provided on the current characteristics of the same transient.

This paper provides data taken in the field on the composite waveforms of peak voltage and current together for each transient occurrence. Special equipment was developed for detection and measurement of these occurrences.

The sensing circuits (current and voltage) were designed to have conditioned signals for an input to a computer based system. The purpose of this paper is to present the data. With this information, improved testing for the susceptibility of electronic equipment and systems can be accomplished.


85 Wi 243-1 A paper recommended and approved by the IEEE Surge Protective Devices Committee of the IEEE Power Engineering Society for presentation at the IEEE/PES 1985 Winter Meeting, New York, New York, February 3 - 8, 1985. Manuscript submitted August 31, 1984; made available for printing November 28, 1984.

INSTRUMENTATION

There are several problems in measuring voltage and current surges and currents in the field [1]. First, the instrumentation cannot be monitored all the time. The system incorporated a memory to store data until the data was transmitted to the main computer. The second problem is sensing and recording voltage and current values in microsecond times and maintaining the accuracy of the time base. The third problem is possible distortion of the transient waveforms by the sensing circuits. These problems were experienced during prototype testing and were compensated for in the subsequent equipment design. Tests were performed on the systems to verify results, as shown in the calibration section.

<u>Waveform Format</u> - The format of sensing and recording the data was chosen to be consistent with the waveforms presented in ANSI/IEEE C62.41-1980.[5] (See Figs. 1 and 2). These waveforms (1.2 x 50 us voltage and 8 x 20 us current) are described by two points, a calculated time to peak and a time to 50%delay. There are no other points described in these waveforms. The waveforms presented in this paper Fig. 3 are the peak values, the measured time to peak and the measured time to 50% of peak value.

(a) Open-Circuit Waveform.

(b) Discharge Current Waveform.

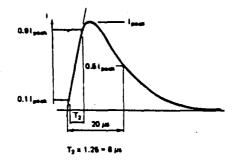


FIG. 1 Way

Waveforms From ANSI/IEEE C 62.41-1980

B.J. Braskich

Location Category	Comparable to IEC No 664 Category	Impulse		Type of Specimen	Energy (joules) Deposited in a Suppressor* with Clamping Voltage of	
		Waveform	Medium Exposure Amplitude	or Load Circuis	500V (120 V System)	1000V
A Long branch Circuits and outlets	ш	0.5 µm-100 kHz	6 LV 200 A	High impedance [†] Low impedance [‡] , §	0.8	1.6
B Major feeders, sbort branch circuits, and load center	ш	مسر 50 × 50 مسر 1.2 × 50 مسر 20 × 8 × 20 0.6 مسر 100 kHz	6 kV 3 ka 6 kV 500 a	High impedance [†] Low impedance [‡] High impedance [†] Low impedance [‡] ,§	40	80 -

*Other suppressors having different clamping voltages would receive different energy levels. *Por high-impedance test specimens or load circuits, the voltage shown represents the surge voltage. In making simulation tests, use

that value for the open-circuit voltage of the test generator.

For low-impedance test specimens or load circuits, the current shown represents the discharge current of the surge (not the shortcircuit current of the power system). In making simulation tests, use that current for the short-circuit current of the test generator. SThe maximum amplitude (200 or 500 A) is specified, but the exact waveform will be influenced by the load characteratuca.

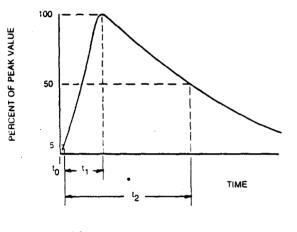
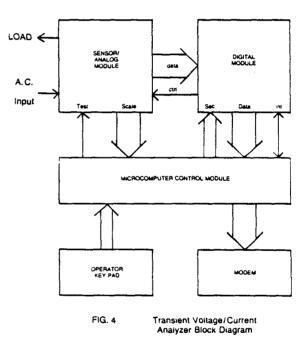



FIG. 3 Definition of Waveform Time Points

<u>Voltage and Current Measurements</u> - The voltage surge measurements were made line to neutral, excluding the A.C. line voltage. The current surge measurements were made with a sensing circuit in series with the A.C. line. The system nulls out the AC line current.

<u>Correlation of Voltage and Current Surges</u> - The computer system looks at the time between voltage and current surges and decides whether they are associated with each other. They are correlated as the same occurrence when the time between a voltage and a current surge is less than 50 us. This is true whether the voltage leads or laos the current surge.

whether the voltage leads or lags the current surge. <u>Description of Surge Analyzer</u> - The surge analyzer will sense, digitize and record voltage and current transients appearing on the AC power line. A block diagram of the system is shown in Fig. 4. The complete system is powered by batteries. The system senses either positive or negative surges. As each voltage/current surge occurs, the following parameters are captured and stored: (1) peak voltage (V_p), time to peak, time to 50% of V_p , (2) peak current (I_p), time to peak, time to 50% of I_p , (3) date of occurrence.

<u>Analog and Digital Modules</u> - (Fig. 4). The Analog Module receives from the sensors transient voltage and current on an AC power line by converting the voltage and current inputs to digital signals. The Digital Module processes the digital information to the system microprocessor.

<u>Microcomputer Control Module</u> (Fig. 4). This module has overall control of the Analyzer. It receives the peak values and time collected by the Digital Module for each transient and along with the scale factors from the Analog Module, determines the characteristic of the transient. It records the date of occurrence of each transient. It contains a real time 24 hour clock which can be set by an operator using the numeric keypad.

FIG. 2 Table From ANSI/IEEE C 62.41-1980

<u>Voltage and Current Sensors</u> - Fig. 5 shows separate voltage and current inputs to the computer. The sensors provide the means to conduct only the surge voltage and current into the Analog Module. Both voltage and current values have an accuracy of +5%; i.e., a recorded 300 volt transient could really be 285 volts or it could be 315 volts. The time to peak and to 50% of peak has an accuracy of +5%. The sensing circuits measure the peak voltage and current related to time and the return of both to 50% of the peak value of both.

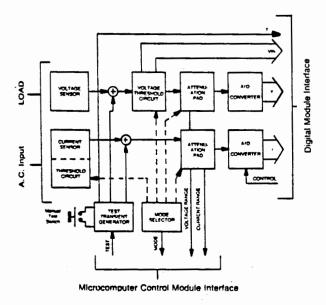
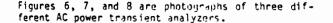



FIG. 5 Sensors/Analog Detailed Block Diagram

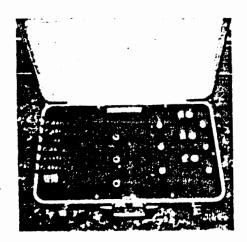


FIG. 6

Transient analyzer - single phase/3 wire

FIG. 7

Transient analyzer - single phase/2 wire

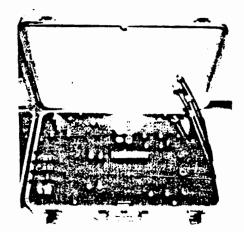


FIG. 8 Transient analyzer - 3 phase/4 wire (part 1 of 2 pieces)

<u>Calibration Tests</u> - To verify that each surg analyzer correctly recorded and reproduced the waw forms measured, a calibration test was performed The setup is shown in Fig. 9. The calibration con sisted of nine waveform tests, four voltage, fou current, and one combined voltage and current wave forms. They are shown in Fig. 10 through 18 and th output results from the transient analyzer is show in Fig. 19.

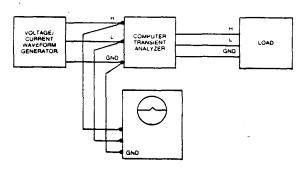


FIG. 9 Block Diagram for Calibration Tests

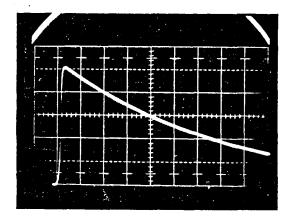


FIG. 10

Calibration Test #3: Voltage Horizontal scale: 10us/Div Vertical scale: 1000V/Div

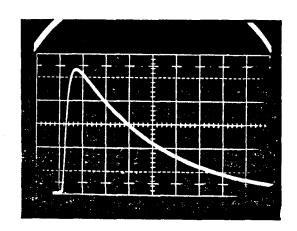
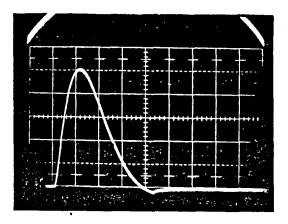



FIG. 12

Calibration Test #4: Current Horizontal scale: 10us/Div Vertical scale: 10A/Div

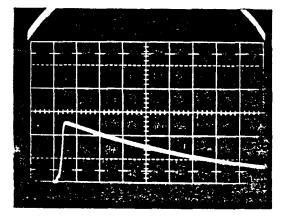
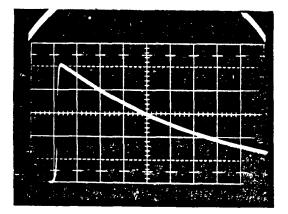



FIG. 11

Calibration Test #1: Voltage Horizontal scale: 10us/Div Vertical scale: 200V/Div

Calibration Test #2: Voltage Horizontal scale: 10us/Div Vertical scale: 500V/Div

.

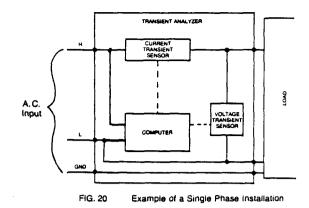
Calibration Test #5: Current Horizontal scale: 10us/Div Vertical scale: 100A/Div Description of Sites and Installation of Analyzer - A variety of locations were selected in computer and industrial facilities. These facilities were selected because they were unprotected environments. The only suppression that was installed at these environments were on the primary side of the building transformer and were either gas tube or air gap type. Location codes were established as shown below:

Code	Location
1 =	15A/120 VAC receptacle
2 =	30A/120 VAC receptacle
3 =	100A/208/120 3 phase 4 wire subpanel
4 =	400A/240/120 1 phase 3 wire subpanel
5 =	800A/208/120 3 phase 4 wire main
6 =	1200A/208/120 3 phase 4 wire main
7 =	800A/480/277 3 phase 4 wire main

A typical electrical installation of the surge analyzers is shown in Fig. 20.

All of the circuits that the analyzers were connected to were under load. All power conductors under test entered and exited the analyzer.

RESULTS


A computer random sampling, one selection per test site per test period is shown in Fig. 21. The total number of occurrences recorded over the two year period was 277,612. The summary of all 277,612 measured voltages, currents and times are shown in Fig. 22 and Fig. 23. The composite waveforms voltage and current the total numbers of occurrences is 1.07×1002.01 voltage and a 60.4×999.34 us current. The callated percentage of waveforms that fall within 1 of this composite waveform is 89.4%. A complication of the composite waveform is shown in F 24 voltage waveform and Fig. 25 current wavefor Rounding off the numbers, the waves then reduce t x 1000 us voltage and 60×1000 us current.

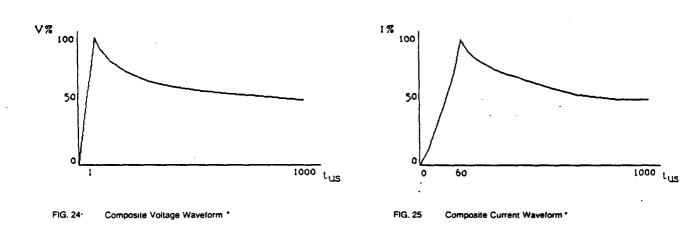
LOCATION CODE 1		uS) TO AK (1 MAX 21.1		(uS) TO F <u>CURVE ¹2</u> <u>MAX</u> 1231.2	UOLTAGE (U) AVERAGE 347.1
2	0.6	20.7	3.4	1124.8	399.5
3	Ŭ.8	18.4	3.2	1177.1	550.2
4	0.7	23.1	8.3	1302.7	651.4
5	0.4	17.7	4.6	1153.7	1520.3
6	0.5	19.1	2.2	1221.8	1633.7
7	0.5	15.6	4.3	1098.6	1230.3

FIG. 22

TABLE III SUMMARY OF VOLTAGE WAVEFORM VALUES

LOCATION CODE	TIME (US) TO <u>PEAK ¹1</u> <u>MIN MAX</u> 3.3 90.1	TIME (uS) TO <u>'50% OF CURVE'</u> 2 <u>MIN MAX</u> 7.0 1271.3	CURRENT (A) <u>AVERAGE</u> 40.5
2	7.4 92.3	13.6 1401.2	137.6
3	4.2 101.1	9.7 1156.7	318.2
4	2.1 87.2	6.2 1086.4	412.8
5	3.6 99.6	7.8 1432.6	1172.2
6	2.7 92.7	5.3 1227.1	2026.4
7	1.8 83.4	4.8 1123.4	612.7

19.722.92 Digition 1.4.1 2.4 4.2.1 1.4 <th1.4< th=""> 1.4 1.4</th1.4<>	DÉCURANCE	AREA	PEAK VOLTAGE	TIME (US) TO PEAK VOLTAGE	TIME (US) TO 150% OF CURVE!	PEAK	TIME (US) TO PEAK CURRENT	TIME (US) TO	LOCATION CODE
2722/42 ST LQUIS 333 2.5 483 32 78 1846 2 6/36/42 HAMI 345 2.6 1007 3.6 67 1003 1 6/32/42 LA 327 3.3 1031 2.6 67 1083 2 12/02/42 DOSTON 766 1.6 474 327 47 1023 4 12/02/42 DOSTON 766 1.6 474 337 47 1023 4 12/02/42 DOSTON 766 1.7 729 440 36 78 4 12/02/42 DOSTON 1.7 729 440 36 78 411 12/04/43 DOSTON 1.7 799 440 106 5 12/04/43 DOSTON 1.91 1.7 1097 44 1061 5 2/04/43 DOSTON 371 2.4 1021 10 7 441 1041	5/17/82	BOSTON	360	2.9 4	993 Z	14	e0 ¹ 1	م ٥٥٥	1
P-15-02 HIAMI 385 2.0 1007 34 85 1023 1 P-27042 LA 327 3.3 1031 20 97 1009 2 P-27042 SERTLE 980 2.9 994 2.9 994 3 12/26724 BOSTOM 740 1.4 994 343 72 109 3 12/26727 ST LOUIS 474 2.3 1031 340 72 102 4 12/26727 ST LOUIS 474 2.3 1031 340 72 1067 3 12/26743 DEGTOM 194 1.0 101 10 97 44 977 4 2/26743 DEGUSM 197 101 971 101 971 101 971 101 971 101 972 44 977 45 2/26743 Nicolis 1971 1.0 971 24 101 971	7/22/82	CHICAGO	345	3.1	1021	33	92	980	1
# 272/42 LA 327 5.3 1031 28 #7 1087 2 # 256/42 SEATLE #90 2.4 #96 77 47 401 2 12/04/25 DOSTON 749 1.4 #94 346 72 401 2 12/04/25 DECEMS 434 2.3 1031 348 72 1089 3 12/04/25 DECEMS 44 2.3 1031 348 72 1089 3 12/04/25 LA 448 2.5 1100 10 9 1067 3 12/04/25 LA 448 2.5 1100 10 9 1067 3 2/04/25 DECEMD 150 1.4 971 121 46 464 4 2/04/25 DECEMD 130 1.5 1212 417 96 1460 5 2/14/25 GEATLE 110 1.5 1212 41	7/23/82	ST LOUIS	333	3.5	980	37	78	1050	2
# /26.42 SEATLL 16 2.0 801 77 92 861 2 12.75.742 DOSTON 700 1.4 940 346 72 949 3 12.76.742 DOSTON 700 1.4 944 332 47 1053 4 12.76.742 DLOIS 474 2.3 1031 346 72 1053 4 12.76.742 DLOIS 474 2.3 1031 346 74 4 12.76.742 ST LOUIS 474 2.5 1108 316 98 1067 3 12.76.743 DOSTON 1964 .9 1007 977 54 977 6 2.76.743 DIGUIS 1978 1.6 971 1216 14 1461 9 2.76.743 Niculi 1.0 1.5 1212 61 940 6 2 2.716.73 Niculi 1.1 1.3 1096	8/19/82	HIAHL	385	2.8	1007	36	85	1023	1
12/29742 BOSTON 218 1.8 994 348 22 995 3 12/42/42 CHICAGO 458 1.9 994 336 22 1223 4 12/42/42 ST LOUIS 474 2.3 1031 340 72 1899 3 12/42/42 ST LOUIS 474 2.3 1031 340 72 1899 3 12/42/42 ST LOUIS 474 2.5 1100 310 96 1662 3 12/14/42 SEATTLE 418 2.1 494 75 418 3 12/14/42 SEATTLE 418 2.1 494 464 66 6 2/80/43 ST LOUIS 177 4 72 4100 5 1007 5 2/16/35 LA 191 1.3 1096 49 460 6 4000 5 2/16/35 LA 1931 3.1 114 4100 1017 5 4100 1017 5 2/16/35 SCATLE	8/27/82	LA	327	3.3	1031	28	87	1005	2
12-64-72 CHICAGO 498 1.9 974 332 4.7 12023 4 12-62-722 RILMIL 974 2.3 1031 340 72 1099 3 12-62-722 RILMIL 976 1.7 709 540 36 79 4 12-769-72 LA 448 2.5 1100 10 96 166-7 3 12-769-72 LA 448 2.5 1100 197 54 777 6 12-769-73 FUCUS 1978 .6 971 1200 44 64 6 2-767-73 RIAMI 1100 1.5 1212 417 98 1408 5 2-767-73 RIAMI 1100 1.5 1212 417 98 1408 5 2-767-73 RIAMI 1100 1.5 1212 417 98 1408 5 2-767-73 RIAMI 1.4 1201 37 41 1011 1 1408 1 2-767-73 RIAMI	8/30/82	SEATTLE	500	2.9	900	77	57	801	2
12-02-02 FILANIE 474 2.3 1031 340 72 1898 3 12-02-02 FILANIE 908 1.72 708 440 39 794 4 12-04-02 LA 444 2.5 1100 316 98 106-7 3 12-14-02 SENTLE 10 2.1 979 74 4 677 4 12-14-02 SENTLE 10 1.6 971 1010 44 460 6 2-09-03 ST LQUIS 1978 .6 878 1220 44 640 6 2-09-03 LA 1991 1.3 1010 1.5 1212 47 98 1007 5 2-09-03 LA 1991 1.3 1011 37 41 1011 1 2-09-03 LA 1031 31 31 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <	12/03/82	BOSTON	700	1.8	99 0	360	72	989	,
12/02/02 HIAHI 900 1.7 700 640 30 744 4 12/02/02 LA 440 2.5 1100 310 90 1067 3 12/14/02 SEATTLE 410 2.1 994 278 75 915 3 12/14/02 SEATTLE 410 2.1 996 1007 977 14 977 4 2/04/03 CHICAGO 1520 1.0 971 1010 61 1941 5 2/04/03 SEATTLE 100 1.5 1212 61 971 1007 5 2/07/03 HIAHI 1100 1.5 1212 61 97 1007 5 2/10/03 SEATTLE 1201 .5 971 2.1 7 640 912 7 4/12/03 SEATTLE 1201 .5 971 2.1 101 1 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11<	12/04/82	CHICAGO	650	1.9	994	332	67	1023	4
12/40/42 LA 440 2.5 1100 310 40 1067 3 12/14/82 SEATTLE 410 2.1 978 278 25 915 3 2/06/83 BOSTOM 1904 .0 1002 987 54 977 6 2/06/83 CHICAGO 1970 .0 971 1018 61 11641 9 2/06/83 CHICAGO 1970 .0 971 1210 44 640 6 2/07/83 RIAHI 1100 1.5 1212 417 98 1400 5 2/07/83 RIAHI 1100 1.5 1212 417 98 1400 5 2/12/83 SEATTLE 1021 .9 971 221 50 412 1011 1 4/12/83 DESTON 371 2.4 1131 71 44 991 1 4/12/83 DESTON 371 2.4 1013 28 71 1213 1 4/12/83 RTUAHTA	12/02/02	ST LOUIS	674	2.3	1031	340	72	1050	3
12/14/82 SEATTLE 410 2.1 498 278 73 415 5 2/03/23 DOSTON 1504 .9 1002 962 14 972 4 2/03/23 DOSTON 1504 .9 1002 962 14 972 4 2/03/23 DEGTON 150 1.0 471 1010 41 1041 5 2/03/23 FLGUIS 179 .8 672 1200 44 640 6 2/07/23 FLGUIS 179 .8 672 1107 5 2/16/23 SEATTLE 1201 .9 671 221 50 412 7 4/16/23 CHICAGO 373 .0 1131 31 64 791 1 4/16/24 CHICAGO 373 .0 1131 31 64 71 1 4/16/23 CHICAGO 371 2.4 1011 51 42	12/07/02	HIANI	900	1.7	700	560	38	799	4
Z/23/33 BOSTON 1594 .9 1007 997 54 977 6 Z/06/43 CHICAGO 1520 1.0 491 1010 61 1041 9 Z/06/43 ST (GUIS 1778 .0 678 1200 44 660 6 Z/06/43 Hiami 1100 1.5 1212 617 96 1400 5 Z/16/03 Kiami 100 1.5 1212 617 96 1400 5 Z/16/03 Kiami 1.0 .9 471 221 50 412 7 L/12/03 MOSTON 371 2.4 1201 37 41 1011 1 4/12/03 MIAMI 54 2.3 1013 26 71 1213 1 4/12/03 KULACO 331 3.5 903 35 54 1018 1 4/12/03 KULACO 337 2.4 1112	12/00/02	LA	660	2.5	1100	310	98	1067	,
2/04/03 CHICAGO 1520 1.0 491 1010 61 1041 5 2/02/03 ST LQUIS 1970 .0 070 1200 44 060 6 2/02/03 HIAHI 1100 1.5 1212 617 96 1400 5 2/10/03 LA 1951 1.3 1050 945 57 1107 7 2/01/03 EGNTOR 1221 50 912 7 4/12/03 EGNTOR 371 2.4 1201 37 41 1011 1 4/12/03 EGNTOR 371 2.4 1011 51 47 987 2 4/12/03 ST LQUIS 591 1.4 1011 51 47 997 2 4/12/03 EMENTLE 501 4.6 1202 27 54 1018 1 9/1/03 HQUITOR 337 2.4 1112 64 3 1061	12/14/82	SEATTLE	410	2.1	998	278	79	7 15	3
2/02/03 ST LGUIS 177 .0 678 1200 44 660 6 2/02/03 HLMHI 1100 1.5 1212 617 96 1400 5 2/16/03 LA 1951 1.5 1212 617 96 1400 5 2/16/03 SEATTLE 1201 .9 471 221 50 412 7 4/12/03 SEATTLE 1201 .9 471 221 50 412 7 4/12/03 DESTON 371 2.4 1201 37 41 1011 1 4/16/03 CHICAGO 351 3.0 1131 31 84 981 1 5/03/03 ST LQUIS 551 1.9 977 34 57 993 2 4/13/03 REATTLE 791 4.4 1011 51 47 963 2 4/13/03 REATTLE 791 4.4 1018	2/,03/83	BOSTON	1504	. 9	1007	997	54	977	6
2/07/03 HIAHI 1100 1.5 1212 417 98 1400 5 2/10/03 LA 1591 1.3 1090 965 57 1107 5 2/10/03 SEATLE 1201 .9 971 221 50 912 7 4/12/03 GOSTOM 371 2.4 1201 37 41 1011 1 4/12/03 GOSTOM 371 2.4 1201 37 41 1011 1 4/12/03 GOSTOM 371 3.0 1131 31 64 961 1 5/03/03 ST LQUIS 391 1.9 977 34 57 977 2 4/27/03 IA 471 2.4 1011 51 47 903 2 5/12/03 ATLANTA 344 3.5 903 35 1401 2 4/17/3 SLC 330 2.6 643 1401 2 4/17/3 SLC 330 2.2 1011 20 31 <	2/06/83	CHECAGO	1920	1.0	*5 1	1010	61	1041	5
2/10/05 LA 1591 1.3 1090 7495 57 1107 5 2/10/05 SEATTLE 1201 .9 471 221 50 412 7 4/12/05 SOSTCH 371 2.4 1201 37 41 1011 1 4/12/05 SOSTCH 371 2.4 1201 37 41 1011 1 4/12/05 STLCUIS 351 1.9 977 34 97 997 2 4/27/05 LA 471 2.4 1011 51 47 993 2 4/27/05 LA 471 2.4 1011 51 47 993 2 4/17/05 MOLSTON 337 7.8 7.9 54 1018 1 9/12/03 ATLANTA 344 3.7 993 35 54 1021 2 4/17/03 SC 358 2.8 75 34 44	2/02/03	ST LOUIS	1978	. •	878	1200	49	860	6
2/41/03 SEATTLE 1201 .9 471 221 50 412 7 4/12/03 005TON 371 2.4 1201 37 61 1011 1 4/10/03 CHICAGO 331 3.0 1131 31 94 991 1 4/10/03 STLCUIS 351 1.9 977 34 57 997 2 4/27/03 HIANI 360 2.3 1013 20 71 1213 1 9/12/03 LA 471 2.4 1011 91 47 905 2 4/13/03 RLANTA 344 3.5 1033 25 5.4 1018 1 9/21/03 ATLANTA 344 3.5 1037 5.4 1018 1 9/21/03 ATLANTA 344 3.5 1037 5.4 1018 1 9/21/03 ATLANTA 344 3.5 1027 4 4 972 1 4/12/43 BOSTON 674 1.7 971 331	2/07/83	HIANI	1100	1.5	1212	617	98	1400	5
4-12/03 BOSTON 371 2.4 1201 37 41 1011 1 4-18/03 CHICAGO 331 3.0 1131 31 84 981 1 5-03/03 ST LOUIS 351 1.9 977 34 57 997 2 4-78/03 HIANI 568 2.3 1013 28 71 1213 1 5/12/03 LA 471 2.4 1011 51 47 903 2 4/13/03 SEATTLE 301 4.4 1202 27 54 905 2 4/13/03 ATLANTA 744 3.5 983 35 54 1018 1 9/21/03 ATLANTA 744 3.5 983 34 64 972 1 4/12/03 SCC 330 2.8 963 31401 2 4/12/243 BOSTON 674 1.7 971 331 46 46	2/10/03	LA	1991	1.3	1090	985	\$7	1107	5
4-18/43 CHICAGO 331 3.0 1131 31 84 981 1 9-03/43 ST LQUIS 351 1.9 977 34 97 997 2 4-29-43 HIAMI 348 2.3 1013 28 71 1213 1 9-12/43 LA 471 2.4 1011 91 47 903 2 4-29-43 MIAMI 348 2.3 1013 28 71 1213 1 9-12/43 LA 471 2.4 1011 91 47 903 2 4-13/43 SKATTLE 301 4.6 1202 27 54 956 2 4-11/43 SUC 351 2.4 1112 40 63 1401 2 4-11/43 SUC 350 2.8 963 34 64 972 1 4-11/43 SUC 350 2.8 971 351 34 64 972 1 4-11/49 SUC 350 2.7	2/01/03	SEATTLE	1201	.•	97 1	221	50	+12	7
9-03/03 ST LOUIS 391 1.9 972 36 97 997 2 4-29-03 HIAMI 348 2.3 1013 28 71 1213 1 9-12-03 LA 471 2.4 1011 51 47 903 2 9-12-03 SEATLE 301 4.0 1202 27 54 958 2 4-13/03 ATLANTA 344 3.5 963 35 54 1016 1 9-721-03 ATLANTA 344 3.5 963 34 643 1018 1 9-721-03 SLC 330 2.8 963 34 643 1021 2 4-11/05 SLC 330 2.8 963 34 643 1023 4 4-727-03 CHICAGO 951 2.2 1011 296 63 1023 4 4-727-03 ST LOUIS 976 1.9 1051 375 71 989 3 4-727-05 LA 651 1.7	4/12/03	BOSTON	371	2.6	1201	37	61	1011	1
4-22-43 NiAHI 348 2.3 1013 28 71 1213 1 9-12-43 LA 471 2.4 1011 51 47 903 2 9-12-43 SEATTLE 301 4.0 1202 27 54 950 2 4-13-43 ATLANTA 344 3.5 993 35 54 1401 2 4-11-73 SLC 330 2.8 963 54 64 972 1 4-11-73 SUC 330 2.8 963 54 64 972 1 4-11-73 SUC 330 2.8 963 54 64 972 1 4-11-73 SUC 330 2.8 963 54 64 972 1 4-12-03 BOSTON 674 1.7 971 331 44 951 5 7-13-43 SCLUIS 999 1.9 1051 375 71 989 3 4-28-63 HIAHI 721 1.6 853	4/10/03	CHICAGO	331	3.0	1131	31	84	981	1
9/12/83 LA 471 2.4 1011 51 47 903 2 4/13/83 ATTLE 301 4.0 1202 27 54 950 2 4/13/83 ATLANTA 344 3.5 903 35 5.4 1016 1 4/13/83 ATLANTA 344 3.5 903 35 5.4 1016 1 4/13/83 ATLANTA 344 3.5 903 35 5.4 1016 1 4/13/83 ATLANTA 344 3.5 903 * 34 64 972 1 4/12/03 HOLSTON 372 2.4 1112 40 63 1023 1 4/12/03 BOSTON 674 1.7 971 331 49 971 2 7/13/05 CHICAGO 951 2.2 1011 296 63 1023 4 4/27/05 BOSTON 674 1.7 1023 352 67 1031 5 4/13/05 LAUIS 991 1.	5/03/83	ST LOUIS	5 391	1.9	\$77	36	57	997	2
#veltes Stattle Joi 4.0 1202 27 54 950 2 4/13/03 ATLANTA J44 J.3 903 J5 S4 1018 1 9/21/03 ATLANTA J44 J.3 903 J5 S4 1018 1 9/21/03 HOUSTON J37 Z.4 1112 40 43 1401 2 4/11/03 SLC J30 Z.8 963 J4 64 972 1 4/12/03 BOSTON 674 1.7 971 J31 49 951 3 7/13/03 CHICAGO 951 Z.2 1011 296 63 1023 4 4/02/03 ST LOUIS 898 1.9 1051 375 71 989 3 4/20/03 LA 451 1.7 1023 392 67 1031 3 4/13/03 SEATTLE 491 2.1 992 <	4/29/83	HIANI	368	2.3	1013	28	71	1213	1
4/13/43 ATLANTA 344 3.5 983 35 54 1018 1 9/21/83 HQUSTON 337 2.4 1112 40 63 1401 2 4/11/83 SLC 330 2.8 963 34 64 972 1 4/12/83 BOSTON 474 1.7 971 331 49 951 3 4/12/83 BOSTON 474 1.7 971 331 49 951 3 4/12/83 BOSTON 474 1.7 971 331 49 951 3 4/12/83 BOSTON 474 1.7 971 331 49 951 3 4/12/83 ST LOUIS 999 1.9 1051 375 71 999 3 4/12/83 KLA 491 1.7 1023 352 67 1031 3 4/19/83 SEATULE 491 2.1 989 221 81 1024 3 4/19/83 SEATULE 491 1.1 <th>9/12/83</th> <th>LA</th> <th>471</th> <td>2.6</td> <td>1011</td> <td>51</td> <td>47</td> <td>*03</td> <td>2</td>	9/12/83	LA	471	2.6	1011	51	47	*03	2
4/13/83 ATLANTA 344 3.5 983 35 54 1018 1 9/21/83 HQUSTON 337 2.4 1112 40 43 1401 2 4/11/83 SLC 330 2.8 963 34 64 972 1 4/12/83 BOSTON 424 1.7 971 331 49 971 3 4/12/83 BOSTON 424 1.7 971 331 49 971 3 4/12/83 BOSTON 424 1.7 971 331 49 971 3 4/12/83 BOSTON 424 1.7 971 331 49 971 3 4/12/83 BOSTON 424 1.7 1971 331 40 44 492 4 491 4 492 44 492 44 492 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44			301	4.0	1202	27	54		2
9-21/03 HOUSTON 337 2.4 1112 40 63 1401 2 4-11/03 SUC 330 2.8 963 34 64 972 1 4-12/03 BOSTON 674 1.7 971 531 49 971 3 4-12/03 BOSTON 674 1.7 971 531 49 971 3 4-12/03 BOSTON 674 1.7 971 531 49 971 3 4-12/03 CHICAGO 951 2.2 1011 296 63 1023 4 4-12/03 ST LOUIS 898 1.9 1051 375 71 989 3 4-28/03 HIMHI 721 1.4 853 311 58 961 4 7-23/03 LA 451 1.7 1023 352 67 1031 3 4-19/03 SEATTLE 491 2.1 989 271 81 1024 3 4-19/03 SEATTLE 491 2.0 <th></th> <th></th> <th>344</th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			344						
4-11/43 SLC 330 2.8 963 * 34 64 972 1 4-12/03 BOSTON 474 1.7 971 331 49 951 3 7-13/03 CHICAGO 951 2.2 1911 290 63 1023 4 6-02/03 ST LOUIS 898 1.9 1051 375 71 989 3 6-720/03 ST LOUIS 898 1.9 1051 375 71 989 3 6-720/03 LA 451 1.7 1023 352 67 1031 3 6-720/03 LA 451 1.7 1023 352 67 1031 3 6-720/03 LA 451 1.7 1023 352 67 1031 3 6-71/03 SEATTLE 491 2.1 989 271 81 1024 3 6-71/03 SLC 897 1.1 899 422 51 1011 4 6-72/103 SLC 897						-			
4/12/83 80STON 674 1.7 971 331 49 951 3 7/13/83 CHICAGO 951 2.2 1011 290 63 1023 4 6/02/83 ST LOUIS 890 1.9 1051 375 71 989 3 6/22/83 ST LOUIS 890 1.9 1051 375 71 989 3 6/22/83 ST LOUIS 890 1.9 1051 375 71 989 3 6/22/83 ST LOUIS 890 1.7 1023 352 67 1031 3 6/22/83 SEATTLE 491 2.1 989 271 81 1024 3 6/19/83 SEATTLE 491 2.1 989 271 81 1024 3 6/17/83 ATLANTA 692 2.4 1024 340 65 995 3 7/12/83 BOSTON 489 2.0 1303 397 97 989 3 7/21/83 SEC 877									
7/13/03 CHIEAGO 951 2.2 1011 290 63 1023 4 6/02/03 ST LOUIS 090 1.9 1051 375 71 989 3 6/20/03 ST LOUIS 090 1.9 1051 375 71 989 3 6/20/03 HIAHI 721 1.6 053 311 50 961 4 7/23/03 LA 451 1.7 1023 352 67 1031 3 6/19/03 SEATTLE 491 2.1 909 271 01 1024 3 6/01/03 ATLANTA 692 2.4 1024 340 65 995 3 7/12/03 HOLSTON 460 2.0 1303 397 57 989 3 7/12/03 SLC 857 1.1 699 422 51 1011 4 6/12/03 BOSTON 1457 .7 981 1132 72 1301 5 7/12/03 ST LOUIS 1971	********								
6/02/03 ST LOUIS 0.90 1.9 1051 375 71 989 3 6/20/03 HIAHI 721 1.6 0.93 311 50 961 4 7/23/03 LA 451 1.7 1023 352 67 1031 3 6/19/03 SEATTLE 491 2.1 909 271 01 1024 3 6/19/03 ATLMATA 692 2.4 1024 340 65 995 3 7/12/03 HUISTON 400 2.0 1303 397 57 909 3 7/12/03 HOLSTON 400 2.0 1303 397 57 909 3 7/12/03 BOSTON 1499 .9 1102 997 53 971 6 9/11/03 CHICAGO 1407 .7 901 1132 72 1301 5 9/11/03 CHICAGO 1407 .7 901 1132 60 1100 6 9/11/03 CHICAGO 1407									
6/720/03 MIAMI 721 1.6 000			_						-
7/23/83 LA 451 1.7 1023 352 67 1031 3 4/19/83 SEATTLE 491 2.1 989 271 81 1024 3 4/19/83 SEATTLE 491 2.1 989 271 81 1024 3 4/81/83 ATLANTA 692 2.4 1024 340 65 995 3 7/12/83 ATLANTA 692 2.4 1024 340 65 995 3 7/12/83 ATLANTA 692 2.4 1024 340 65 995 3 7/12/83 HOLSTON 480 2.0 1303 397 57 989 3 7/21/83 SLC 877 1.1 899 422 51 1011 4 805TON 1457 .9 1102 997 53 971 6 9/11/83 ST LOUIS 1971 1.4 1013 1123 68 1100 6 8/18/83 HIAHI 1526 1.2									
4/19/83 SEATTLE 491 2.1 989 271 81 1024 3 6/01/83 ATLANTA 692 2.4 1024 340 65 995 3 7/12/83 ATLANTA 692 2.4 1024 340 65 995 3 7/12/83 HOLSTON 680 2.0 1303 397 57 989 3 7/12/83 SLC 857 1.1 899 422 51 1011 4 8/12/83 BOSTON 1459 .9 1102 997 53 971 6 9/11/83 CHICAGO 1487 .7 981 1132 72 1301 5 9/11/83 ST LOUIS 1971 1.4 1013 1123 68 1100 6 9/11/83 ST LOUIS 1971 1.4 1017 1027 807 60 1037 5 9/14/83 LA 1471 1.4 902 932 67 982 5 9/14/83 SEATTLE									
6/01/03 ATLANTA 692 2.4 1024 340 65 995 3 7/12/03 HOLSTON 600 2.0 1303 397 57 989 3 7/12/03 SLC 657 1.1 899 422 51 1011 4 8/12/03 SLC 657 1.1 899 422 51 1011 4 8/12/03 SLC 657 1.1 899 422 51 1011 4 8/12/03 SLC 657 .9 1102 997 53 971 6 9/12/03 SOSTON 1459 .9 1102 997 53 971 6 9/11/03 CHICAGO 1467 .7 981 1132 72 1301 5 9/12/03 ST LOUIS 1971 1.4 1013 1123 68 1100 6 9/14/03 LA 1471 1.4 902 932 67 982 5 9/12/03 SEATTLE 1600 1.5 <th></th> <th></th> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
7/12/03 HOLSTON 400 2.0 1303 397 97 989 3 7/21/03 SLC 057 1.1 099 422 51 1011 4 0/12/03 BOSTON 1497 .9 1102 997 53 971 6 0/12/03 BOSTON 1497 .7 901 1132 72 1301 5 0/12/03 CMICAGO 1487 .7 901 1132 72 1301 5 0/13/03 ST LOUIS 1971 1.4 1013 1123 68 1100 6 0/18/03 NIAMI 1526 1.2 1027 807 60 1037 5 0/18/03 HIAMI 1526 1.2 1027 807 60 1037 5 0/18/03 LA 1471 1.4 902 932 67 982 5 0/12/03 SEATTLE 1600 1.5 1204 1021 74 1052 7 9/12/03 ATLAMTA 2100							48		, -
7/21/03 SLC 857 1.1 899 422 51 1011 4 0/12/03 BOSTON 1459 .9 1102 997 53 971 6 0/12/03 BOSTON 1459 .9 1102 997 53 971 6 0/12/03 CHICAGO 1487 .7 981 1132 72 1301 5 0/15/03 ST LOUIS 1971 1.4 1013 1123 68 1100 6 0/15/03 ST LOUIS 1971 1.4 1013 1123 68 1100 6 0/15/03 ST LOUIS 1971 1.4 1027 807 60 1037 5 9/14/03 LA 1471 1.4 902 932 67 982 5 0/12/03 SEATTLE 1600 1.5 1204 1021 74 1052 7 9/12/03 ATLANTA 2100 .8 897 1522 42 971 5 9/13/03 HOUSTON 1525<									, -
0/12/03 BOSTON 1499 .9 1102 997 53 971 6 9/11/03 CHICAGO 1407 .7 901 1132 72 1301 5 0/15/03 ST LOUIS 1971 1.4 1013 1123 60 1100 6 0/15/03 ST LOUIS 1971 1.4 1013 1123 60 1037 5 0/16/03 HIAHI 1926 1.2 1027 807 60 1037 5 0/16/03 LA 1471 1.4 902 932 67 982 5 0/12/03 SEATTLE 1600 1.5 1204 1021 74 1052 7 9/12/03 ATLANTA 2100 .8 897 1522 42 971 5 9/13/03 HOUSTON 1525 .9 987 1001 88 1312 5									
P-11-03 CHICAGO 1407 .7 901 1132 72 1301 5 0-15-03 ST LOUIS 1971 1.4 1013 1123 68 1100 6 0-15-03 HIAMI 1526 1.2 1027 807 60 1037 5 0-10-03 HIAMI 1526 1.2 1027 807 60 1037 5 9-14-03 LA 1471 1.4 902 952 67 982 5 0-12-03 SEATTLE 1600 1.5 1204 1021 74 1052 7 9-12-03 ATLANTA 2100 .8 897 1522 42 971 5 9-13-03 HOUSTOM 1525 .9 987 1001 08 1512 5									
0-15-03 ST LOUIS 1971 1.4 1013 1123 68 1100 6 0-10-03 HIAHI 1526 1.2 1027 807 60 1037 5 9-10-03 HIAHI 1526 1.2 1027 807 60 1037 5 9-10-03 LA 1471 1.4 902 932 67 982 5 0-17-03 SEATTLE 1600 1.5 1204 1021 74 1052 7 9-12-03 ATLANTA 2100 .8 897 1522 42 971 5 9-13-03 HOUSTON 1525 .9 987 1001 88 1312 5									
0/10/03 HIAHI 1526 1.2 1027 807 60 1037 5 9/14/03 LA 1471 1.4 902 932 67 982 5 0/12/03 SEATTLE 1600 1.5 1204 1021 74 1052 7 9/12/03 ATLANTA 2100 .8 897 1522 42 971 5 9/13/03 HOUSTON 1525 .9 987 1001 08 1312 5									
P/14/03 LA 1471 1.4 P02 932 67 P02 5 0/12/03 SEATTLE 1600 1.5 1204 1021 74 1052 7 9/12/03 ATLANTA 2100 .8 897 1522 42 971 5 9/13/03 HOUSTON 1525 .9 987 1001 08 1312 5									
0/17/03 SEATTLE 1600 1.5 1204 1021 74 1052 7 9/12/03 ATLANTA 2100 .8 897 1522 42 971 5 9/13/03 HOUSTON 1525 .9 987 1001 88 1312 5									
9/12/03 ATLANTA 2100 .0 097 1522 42 971 5 9/13/03 HOUSTON 1525 .9 907 1001 00 1312 5									
P/13/83 HOUSTON 1525 .9 987 1001 88 1512 5									
erzeres suu 1921 2.0 1391 976 71 1025 6									
	₩ 724/ 8 3	940	1921	2.0	1391	976	71	1025	6


COPOSITE UNUEFORMS: 1.07 X 1002.01(US) UDLTAGE 60.41 X 999.34 CURRENT

• .

٠

89.4% WITHIN ± 10% ENVELOPE

.

Note: These graphs are strictly a computer drawn waveform. The only places on the graphs that are accurate are the peak & 50% points voltage or current, and the time to reach these points.

CONCLUSION

This data provides confirmation on the existence of longer voltage and current waves than has been traditionally used. It provides new guidance for testing for susceptibility and vulnerability of equipment. Further work is being continued in this area and as results become available they will be documented.

REFERENCES

- [1] Martzloff, F.D and Hohn, G.J. Surge Voltage in Residential and Industrial Power Circuits. IEEE Transactions on Power Apparatus and Systems PAS-89, July/Aug 1970, pp 1049-1056.
- [2] Allen, G.W. and Segal, D. Monitoring of Computer Installations for Power Line Disturbances, Conference Paper C 74 199-6 IEEE PES Winter Meeting, New York, 1974.
- [3] Goldstein, M. and Speranza, P.D. The Quality of U.S. Commercial Power. Intelec Conference Proceedings, 1982, pp 28-33.
- [4] General Electric Semi-Conductor Product Department, Transient Voltage Suppression Device Selector Guide, Publication 600.40, Page 3, 1983.
- [5] ANSI/IEEE Std. C62.41-1980, IEEE Guide for Surge Voltages in Low-Voltage AC Power Circuits.

2688

Discussion

Pter Richman, (KeyTek Instrument Corp., Burlington, MA): The authors state that 89.4% of the 227,612 observed surges in a total of nine cities had durations lying within a \pm 10% band centered around their composite waves' approximately 1000 μ s durations, for both voltage and current.

The 89.4% figure for the entire population implies that for every surge with duration less than about 900 μ s or greater than about 1100 μ s, there were nine with durations in the 900 to 1100 μ s interval. Long waves have artainly been reported in prior literature. However, duration consistency of the sort reflected here would seem more likely to be an artifact than a characteristic of the random phenomena being monitored.

Manuscript received February 25, 1985

Francois D. Martzloff (General Electric Company, Schenectady, NY): "Measurements of Voltage and Current Surges on the AC Power Line in Computer and Industrial Environments" by R. Odenberg and B. J. Braskich is a welcome contribution toward a more complete characterization of the surge environment in low-voltage ac power circuits than had heretofore been available. Its value could be considerably enhanced, however, if the authors would provide in their closure the answers to the questions presented here, together with a clarification of some concepts.

Following general comments on concepts, questions will be presented as separate entities in order to facilitate the dialogue with the authors and the reading of the final *Transactions* document. Some of these questions, however, are interrelated in terms of the total impact of the paper. General Comments

1. Waveform versus Data Points

The authors state in the "Introduction" that the paper provides data on waveforms recorded in the field. This statement raises great interests and expectations among the workers associated with the subject. Unfortunately, the data actually present only two points of the infinitely diverse waveforms that can occur in the real world.

When the authors state, in "Instrumentation," that *two* points...no other points are described...in the ANSI/IEEE C62.41-1980 waveforms....," there seems to be a confusion of interpretation. The C62.41 waveforms and those of other standards are indeed described by the citation of only two points, but these waveforms are defined mathematically by precise equations used in numerical methods. The two points cited to describe the wave merely form a shorthand label to represent a wave that has been produced, recorded, and accepted as completely defined.

In contrast, what the authors attempt to do is to fit the diverse realworld waveforms (none of which has been recorded by them) into a simplified "composite" envelope. The parallel suggested by the authors between the *two* points of Standard C62.41 and *their two* points is therefore inappropriate.

This simplification is more than the old issue of simplification of the world for the sake of repeatable and comparable results in the laboratory, because in this case we have no indication of what the waves which are being simplified actually represent. Attaching the qualifier "composite" to the word "waveform" is perhaps an attempt at clarification, but its use only adds to the confusion.

2. Computer-Drawn Waveform

The risk of confusion is further developed by the drawing of "composite waveforms" in Figs. 24 and 25. The warning note added to these figures might serve as a reminder of their computer origin. However, busy readers are likely to remember only that the paper has shown the world to contain 1×1000 or 60 $\times 1000$ surges whereas, in fact, all the paper has shown is a recording of two points. To avoid misleading information, Figs. 24 and 25 should be deleted.

3. Exclusively Linear Loads

The authors state that the currents recorded are those associated with the loads downstream from the instrument. They say, further, that no surge suppressor was included in the loads.

Assuming that indeed the authors had complete access to and knowledge of the loads, which knowledge would guarantee the validity of the statement, it seems unfortunate that the measurements did not include a period of time with a known surge diverter connected across the line.

A very useful application of current recordings made possible by the authors' new instrument would be the determination of what current the unknown transient source would inject into a nonlinear surge diverter, in contrast to the linear loads described by all the data of the paper. *Question 1:* Do the authors intend to extend their measurements to in-

Questions on Instrumentation Characteristics

1. Frequency Response

The authors state that the ac line voltage is "excluded" and the ac line current is "nulled." With the reported vast majority (90%) of the tails closely packed around 1 ms (the statement "89.4% within $\pm 10\%$ envelope"), and with the 60 Hz ac signals having a half-period of only 8 ms, one wonders what this exclusion or nulling might do to the surge signals. A complete scan of the instrument response versus frequency would clarify this issue.

Question 2: Have the authors considered calling upon an independent laboratory, to characterize the instrument?

2. Threshold and Voltage-Current Correlation

The authors do not state a threshold in their measurements to help define what is being considered as a "surge" by the instrument.

Question 3: If the voltage-current correlation is being decided according to the criterion "the time between a voltage surge and a current surge is less than 50 μ s," is this decision based upon the reaching of the unstated threshold for each current and voltage signal?

Since most current surges have a time to peak in excess of 50 μ s, the peak presumably cannot be used as the basis for the decision. A more detailed explanation of the stated correlation would be helpful.

3. Recovery after Recording - 50% Tail Definition

The authors show in Figs. 16 and 17 simple decaying oscillations where it is apparent that the first passage through 50% of the crest after the peak will produce the recording of the time elapsed as the time to 50%.

- Question 4: However, what would be the response of the instrument to complex waveforms such as those of Figs. A, B, C, D, and E, shown below?
- Question 5: Would the instrument record points (a), (b), (c), (d), and (c), repectively, as 50% points on those waves or record a later 50% passage%
- Question 6: When triggered by a threshold, and busy recording the 50% passage, does the instrument have a recovery time before it can record a subsequent peak of the same event, and then will it cite only the highest point of the total event?
- Question 7: Does the instrument record an unconnected second event that occurs soon after the first?

Statistical Aspects of the Data

The following questions and comments reflect my own concerns as well as those of G.J. Hahn, coauthor of the 1970 paper cited as Ref. [1] of the Odenberg and Braskich paper.

1. Sampling Procedures and Definitions

Further clarification of the site sampling procedures and definitions of surges would be useful. In particular,

a. The survey involved nine cities and seven locations.

Questions 8: • Does this statement mean that there were 7 locations in each of the 9 cities, or a total of 63 "places?"

- (Table II shows 45 combinations.)
- How were the locations in each city selected?
- Can these be regarded as a random sample?

b. The nine cities used should be specifically named in Tables III and IV and some statement made as to why they were selected.

- Questions 9: Is there a standard definition of a surge?
 - Is it the same from one city, location, and place to the next?

It would be very useful to present the data of Table II with an indication of the per-unit levels of the peak voltage values recorded, because the system voltage varies with the location code.

2. Summary of the Study Results

The value of the information presented would be considerably enhanced if the authors could provide additional information. The limitation on page numbers imposed by IEEE on submitted papers is acknowledged, but the closure could be the opportunity for this enhancement, as follows:

- a. Figs. 22 and 23 provide key information. The tabulation could be broken down by the 63 (?) places and summaries provided for location and, possibly, city (and also overall).
- b. In a full documentation, Figs. 22 and 23 should be complemented to include:
 - The number of surges at each location, city, and place.
 - The following percentiles of the distribution: 1, 10, 25, 50, 75, 90, 95, and 99 at each location, city, and place (and totals); or
 - A frequency table for each location, city, and place (and totals), showing the number, or percentage, of surge within specified frequency-of-occurrences classes.

• The mean and the standard deviation for each location, city, and place (and totals).

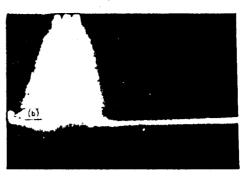
for *each* of the following: time to peak current and voltage, time to 50% current and voltage, and peak voltage and current. Alternatively, some of this information can be provided by histograms, frequency curves, or both.

- c. The information on "min" and "max" is inadequate to give a good picture; for one thing, min and max depend upon sample size. Thus, the minimum complementary information to Figs. 22 and 23 should be the percentiles.
- 3. Differentiation Between Types of Surges

It would be most interesting to be able to differentiate between surges due to lightning storms and power system switching surges, for improved understanding. We recognize that such information might not be available. However, if it is available, even on a sample basis, it warrants reporting. If it is not available, some insights might be provided by:

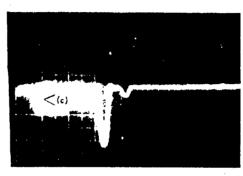
- a. Breaking down Figs. 21 and 22 by city, as previously suggested. In particular, Miami versus Seattle should be interesting as a possible discriminator for lightning.
- b. Breaking down Figs. 22 and 23 further by season.
- 4. Other Questions
- a. Exactly how Figs. 24 and 25 were obtained is unclear. The term "composite waveform" used in the second paragraph of "Results" needs to be defined. If we assume that the front time value of 1.07 cited is the mean of all 277,612 occurrences, we have, by sheer sample size, a good estimate of the front time of all the occurrences.

Now, taking the mean of the 45 occurrences of front time shown in Table II, which we compute at 2.00, and applying Student's "t Test" to compare this mean of 2.00 to the overall mean of 1.07, we find a statistically significant difference at the 0.1% level between the two means. This difference should not be significant if the sample is a random sample from the total population. Thus, the statement that the values of Table II make up a random sample needs clarification.


Moreover, the value of 1.07 does not appear to be the median either, because only 8 of the 45 values given in Fig. 21 are below 1.07. b. The statement " '89.4% within ± 10% envelope" is ambiguous. Questions 10: • Does this statement refer to voltage or current?

- Time to crest or time to 50%?
- Peak value?
- All of the above (an amazing coincidence or an instrument artifact [see Question 2])?

Figs. 21 and 22 complemented, or revised as suggestted, would provide more meaningful summary values.


Conclusion

The measurements reported in this paper surely represent a major commitment of resources by the authors' organization, which the community of workers in the field of surge characterization can well recognize and appreciate. The ultimate value of this effort would be substantially enhanced, and the ambiguities removed, if the authors could provide a response to the questions raised in the present discussion and to any others that might be submitted.

Vertical: 40 A/div - Sweep: 0.5 ms/div

Fig. B. Current surge in a varistor, resulting from capacitor bank switching

Vertical: 20 A/div - Sweep: 0.2 ms/div

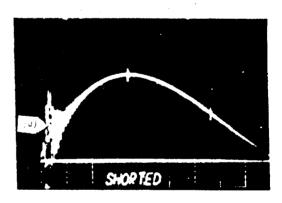
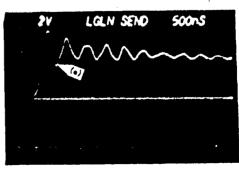
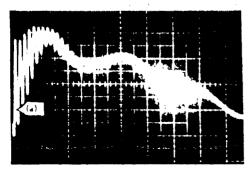




Fig. D. Voltage at terminals of shorted load with parasitic inductance, during conduction of a current surge

Vertical: 2 kV/div - Sweep: 0.5 µs/div

Vertical: 500 V/div - Sweep: 1 ms/div

Fig. A. Voltage transient caused by capacitor bank switching

Fig. E. Voltage at line terminals during application of a step function

REFERENCES

IJ F. D. Martzloff, Varistor vs Environment: Winning the Rematch, 85SM 365-2 IEEE/PES 1985.

F. D. Martzloff is now associated with the Electrosystems Division of the National Bureau of Standards, Gaithersburg, MD.

Manuscript received February 28, 1985

R. Odenberg and **B. J. Braskich**: To simplify the dialogue with the discusser and the reader of the *Transactions* document, the questions will be provided with the answers.

Discussion from - F. D. Martzloff

Comments to paragraphs on: 1. Waveform versus data points.

2. Computer - drawn waveforms.

It is the opinion of the authors that the discusser's comments regarding waveforms are inappropriate. It is our opinion that the technique utilized and the classification of the measurements as waveforms, are consistent with the waveform format as utilized in ANSI/IEEE C62.41. In addition, since there is a disclaimer attached to Figs. 24 and 25, we will not remove them from the paper.

Comments to paragraphs 3 and 4, titled, "Exclusively Linear Loads." Quote, "it seems unfortunate that the measurements did not include a period of time with a known surge diverter connected across the line." Answer: the purpose of this field study was to measure the uncontrolled environment, not the characteristics of a known surge suppressor that could be determined in a laboratory.

- Question 1: Do the authors intend to extend their measurements to include some with known diverters installed downstream from the instruments?
- Answer 1: No, what would be measured under these parameters would be strictly transient remnant, which can be accomplished in the laboratory using the waveforms described in the paper.
- Question 2: Have the authors considered calling upon an independent laboratory, such as the National Bureau of Standards, to characterize the instrument?
- Answer 2: No, during the calibration period for each analyzer, the frequency spectrum was analyzed to cover a broad band of frequencies; with a variety of standard laboratory test equipment. There were no effects within the tolerance provided on this nulling process to the signals.
- Question 3: If the voltage-current correlation is being decided according to the criterion "the time between a voltage surge and a current surge is less than 50µs," is this decision based upon the reaching of the unstated threshold for each current and voltage signal?

Answer 3: Yes.

- Question 4: However, what would be the response of the instrument to complex waveforms such as those of Figs. A, B, C, D, and E, shown below?
- Question 5: Would the instrument record points (a), (b), (c), (d), and (e), respectively, as 50% points on those waves or record a later 50% passage?
- Question 6: When triggered by a threshold, and busy recording the 50% passage, does the instrument have a recovery time before it can record a subsequent peak of the same event, and then will it cite only the highest point of the total event?
- Question 7: Does the instrument record an unconnected second event that occurs soon after the first?

Answers to 4, 5,

6, and 7: When triggered by the threshold, the whole event is recorded

and then the computer analysis for the peak of the event and the first 50% point of that peak. Therefore, points (a), (b), and (c) would not be recorded (from Figs. A, B, and C); point (d) on graph (Fig. D) is unclear, and point (e) (Fig. E) would be recorded.

Yes, after the recording and analyzation of the transient event, there is a recovery time to ensure accurate data storage. If a second event occurs during the analyzation and recovery time, it would not be recorded.

Ouestion 8: This survey involved nine cities and seven locations.

- Does this statement mean that there were 7 locations in each of the 9 cities, or a total of 63 "places?" (Table II shows 45 combinations.)
 - How were the locations in each city selected?
 - Can these be regarded as a random sample?
- Answer 8: Yes, there was a total of 63 "places" analyzed. Many factors were taken into account in the location selection process to consider a random sampling.

Yes, 63 locations can be regarded as random sampling, even though 63 locations is a small number to 630 or 6300 or 63,000 locations. It is far greater than 6 or 1 location. The nine cities are:

Boston	Los Angeles
Chicago	Seattle
St. Louis	Atlanta
Miami	Houston
Salt Lake City	

- Question 9: Table II shows only 45 combinations, to give the reader the example of how the data were presented by the computer.
 - Is there a standard definition of a surge?

• is it the same from one city, location, and place to the next? The analyzers were designed under general conditions; there

Answer 9;

was no set definition of a surge prior to the installation of these systems. Yes, it was the same from one city, location, and place

to the next; as defined by the transient analyzer and its standardized calibration for all analyzers.

Comments to: Summary of the Study Results

Based on the uniformity of 89.4%, there is no need to do that.

- Question 10: The statement "89.4% within $\pm 10\%$ envelope" is ambiguous.
 - Does this statement refer to voltage current?
 - Time to crest or time to 50%?
 - Peak value?
 - All of the above (an amazing coincidence or an instrument artifact (see Question 2)?
- Answer 10: Yes, all of the above. These numbers (89.4%) are not an instrument artifact based on the extensive calibration tests performed on each computer system.

Discussion From - Peter Richman

The Answer to Question 10 above should answer his concerns. Summary

The authors appreciate the assistance and interest in the two discussers, Francois D. Martzloff and Peter Richman, in the questions they ask.

The data provided in this paper measuring voltage and current surge characteristics for the same event, should provide new methods and values for surge Standards, both current and future. In addition, the requirements for longer wave ($1 \times 1000\mu$ sec, $60 \times 1000\mu$ sec) testing should enhance performance and reliability of surge suppressor products and techniques, and ensure more reliable operation of electronic equipment in the field.

Manuscript received April 15, 1985