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� Abstract
The analysis of fluorescence microscopy of cells often requires the determination of cell
edges. This is typically done using segmentation techniques that separate the cell objects
in an image from the surrounding background. This study compares segmentation
results from nine different segmentation techniques applied to two different cell lines
and five different sets of imaging conditions. Significant variability in the results of seg-
mentation was observed that was due solely to differences in imaging conditions or
applications of different algorithms. We quantified and compared the results with a
novel bivariate similarity index metric that evaluates the degree of underestimating or
overestimating a cell object. The results show that commonly used threshold-based seg-
mentation techniques are less accurate than k-means clustering with multiple clusters.
Segmentation accuracy varies with imaging conditions that determine the sharpness of
cell edges and with geometric features of a cell. Based on this observation, we propose a
method that quantifies cell edge character to provide an estimate of how accurately an
algorithm will perform. The results of this study will assist the development of criteria
for evaluating interlaboratory comparability. Published 2011 Wiley-Liss, Inc.y

� Key terms
fluorescence microscopy; k-means cluster; image segmentation; cell edge; bivariate simi-
larity index

NUMEROUS areas of biomedical research rely on imaging of cells to provide infor-

mation about molecular and phenotypic responses of cells to pharmaceuticals, tox-

ins, and other environmental factors (1,2). Cell imaging is widely used in biological

experiments because it can provide information on several relevant scales simulta-

neously. Molecular and supramolecular scales can be probed with the use of antibody

and other specific affinity reagents and with fluorescent proteins. Gross phenotypic

characteristics of cells that characterize their ultimate functional state can be exam-

ined in the same experiment, and often the temporal regime can be probed simulta-

neously. Together, these applications of cell imaging allow inference about the molec-

ular details and the complex outcomes of the cellular biochemistry.

Because of the enormous number of parameters that may influence a biological

outcome, cell imaging experiments are often done in a ‘‘high content’’ mode (3,4),

where large numbers of paired and replicate experiments are carried out simulta-

neously and result in very large (often gigabyte) image datasets. Such a large volume

of image data precludes visual inspection of every image, and automated image proc-

essing and analysis is the only viable approach to data analysis.

Segmentation of cell objects is a common image analysis operation that provides

spatial and other features of identified objects and often precedes other operations to

quantify parameters such as intracellular fluorescence. Segmentation can pose signifi-

cant challenges to automated image processing and analysis. Because morphological

features are often important indicators of a complex cellular response, and because
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accurately quantifying intracellular fluorescence may be de-

pendent on having an accurate cell mask provided by a seg-

mentation operation, segmentation, or edge detection is often

a critical image analysis operation.

Many software packages are available that provide image

processing and analysis tools, and many microscope and high

content screening instrument manufacturers provide proprie-

tary software. Segmentation algorithms are often used as

‘black boxes’, and assumptions are made about their accuracy.

There have been several studies published on comparing seg-

mentation algorithms for cells (5–7). A study that examined

how poor segmentation of cellular images can influence the

interpretation of image data was published by Hill et al. (8).

The study examined the analysis of SK-BR-3 cells in a high

content screening assay to compare experimental treatments

that affected cell morphology. Their study determined that

64% of cells were poorly segmented by the algorithm used,

resulting in a failure to detect the effect of the treatment, an

effect that became apparent when only well-segmented cells

were considered for analysis. Thus the accuracy of segmenta-

tion can critically influence experimental conclusions.

In this study, we compare nine different segmentation

methods over a range of segmentation types: histogram-based

methods, k-means clustering methods, and nonhistogram

based methods. We test three common histogram-based seg-

mentation algorithms that are available through widely used

imaging software such as ImageJ (9–11): Otsu (12,13), isodata

(14), and maximum entropy (15). We also examine 2-, 3-, 4-,

and 5-means clustering (16). For comparison with a nonhisto-

gram-based approach, we employ an implementation of the

Canny edge detector (13,17), as well as the use of a single

global threshold value chosen by a microscopist for a given

cell line and image condition. We apply these methods to ex-

perimental data from two types of mammalian cell lines that

have quite different morphologies, A10 vascular smooth mus-

cle cells and NIH 3T3 fibroblasts. A10 cells tend to be larger

and better spread than NIH 3T3 cells, and have smoother

edges. The methods are applied to fluorescence images of fixed

cells that have been covalently labeled by treatment with a

common fluorophore reagent. The cells were seeded at a low

density to ensure high contrast between the cells and the back-

ground at the periphery of each cell. We compare datasets

containing the same images collected under different acquisi-

tion conditions that result in variation in the ratios of back-

ground intensity to cell intensity and the sharpness of focus.

The outcome of the segmentation was determined by compar-

ing the results with reference data generated by manually out-

lining cell objects. While the data used in this study do not

visually appear to be very difficult to segment, there is a sur-

prisingly large variation in the results achieved from the differ-

ent algorithms. In this report, we present quantitative metrics

by which to compare algorithm performance, and offer an

analysis of what cell image features are likely to be problematic

for which algorithms.

MATERIALS AND METHODS
1

Cell Culture

A-10 rat smooth muscle cells and NIH-3T3 mouse fibro-

blasts (ATCC, Manassas, VA) were maintained in Dulbecco’s

Modified Eagles Medium (DMEM/10 %FBS, Mediatech,

Herndon, VA) supplemented with glutamine, nonessential

amino acids and occasionally penicillin/streptomycin (Invi-

trogen, Carlsbad CA) in 5% CO2 at 378C. For the experiment,

the cell lines were seeded at 800 and 1,200 cells/cm2, respec-

tively, in three-wells of a six-well tissue culture treated polysty-

rene plate (353046, BD Falcon, Franklin Lakes, NJ) in mainte-

nance media, and placed in the incubator for �20 h. The media

was removed; the cells were rinsed with PBS and fixed for 3 h

with 1% (v/v) formaldehyde in PBS at 258C. The cells were

stained with PBS containing 0.02% (v/v) TritonX-100 (Sigma,

St. Louis, MO), 0.5 lg/mLTxRed c2 maleimide (Invitrogen) (5

mg/mL in DMSO stock), 1.5 lg/mL DAPI) (Sigma) (1 mg/mL

in DMSO stock) for 4 h, rinsed with PBS, PBS containing 1%

BSA and PBS, sequentially. Fixed and stained cells were covered

with PBS, stored at 4 8C, and imaged within two days.

Automated Fluorescence Microscopy Imaging

Fluorescence images of fixed and stained cells were

acquired with an Olympus IX71 inverted microscope (Center

Valley, PA) equipped with an automated stage (Ludl,

Hawthorne, NY), automated filter wheels (Ludl), a Xe arc flu-

orescence excitation source, a 10 x ApoPlan 0.4 NA objective

(Olympus), and a CoolSNAP HQ charge-coupled device

(CCD) camera (Roper Scientific, Tucson, AZ). The filter com-

binations (Chroma Technologies, Brattleboro, VT) were as fol-

lows: the optimal filters for imaging the TxRed stained cells

were a 555 nm � 12.5 nm band pass excitation filter (PN#

S555_25x) and a 630 nm � 30 nm band pass emission filter
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(PN#S630_60m). For the non-optimal filter conditions, the

emission filter was replaced with a custom 740 nm long pass

filter. For nuclear imaging of the DAPI stain, a 360 nm � 20

nm band pass excitation filter (PN#D360_40x) and a 460 nm

� 25 nm band pass emission filter (PN#D460_50m) were

used. For each condition, light passed through a custom

coated multipass dichroic beam splitter (PN#510191
400DCLP) matched to these filters. A fluorescent glass artifact

(Schott GG475, Edmund Scientific, NJ) was imaged with an

FITC filter set to adjust lamp alignment to minimize spatial

variations in illumination, and to assess day-to-day stability in

lamp intensity (18). No flat field correction was performed on

the images. The Xe lamp intensity through the dichroic beam

splitter (with no excitation filter) at the exit site of the 103
objective was measured to be approximately 171 mW/cm2 in a

1 cm2 area detector (Newport Instruments, Stratford, CT).

The microscope stage, CCD and automated shutters were

controlled by modular routines within ISee image acquisition

software (ISee Imaging Systems, Rayleigh, NC). For each well

of the three wells in each plate, a grid of 50 non-overlapping

fields were imaged. At each field, the following operations

were performed sequentially: (1) the optimum filters were set

for TxRed detection, the excitation light shutter was opened,

(2) auto-focusing was performed, (3) three consecutive images

of the TxRed stained cells were acquired at each of three differ-

ent exposure times (see Table 1 for exposure times), (4) the fil-

ters were changed to nonoptimal conditions and three images

were collected at each of two different exposure times, (5) the

filters were switched for DAPI detection and a nuclear image

was acquired (2 s integration time), (6) the emission shutter

was closed and the transmitted light shutter was opened, (7) a

phase contrast image was acquired and the transmission shut-

ter was closed, (8) the stage was moved to the next position.

All images were acquired using 2 x 2 binning on the CCD

sensor. Only the TxRed images were used for segmentation

analysis.

A large dataset was collected, consisting of 500 images of

100 different fields, to allow for future studies to investigate

the effects of shot noise, of well-to-well variability, and of day-

to-day variability. During acquisition, day-to-day variability

was tested by imaging the same fields after storing the samples

at 48C overnight. A fiduciary mark was made at the corner of

a well by crossing two pieces of transparent tape. The stage

position coordinates were zeroed at this location and fields of

view were nearly identically reproduced during the image col-

lection routine. We concluded from preliminary experiments

that day-to-day acquisition variability, well-to-well variability

and variation due to shot noise) were negligible sources of

uncertainty compared to uncertainty due to image analysis.

For our current purposes, we selected a representative

subset of 16 representative fields, eight from each cell line,

based on their representation of a range of cell sizes and cell

densities. Each field of cells was represented by images

acquired under five different image acquisition conditions, for

a total of 80 images. A summary of the imaging conditions

used is given in Table 1, and a set of representative images are

shown in Figure 1 for the five conditions.

Parameterization of the Image Collection Settings

We used the following procedures and Image J image

analysis software (NIH, http://rsbweb.nih.gov/ij/) to parame-

terize the five imaging conditions. Variations in exposure

times were parameterized as average signal-to-noise ratios

(SNR). Using object masks from the manual segmentation ref-

erence data, the image signal was calculated as the average in-

tensity of cell-associated pixels over all images for that imaging

condition, minus the average intensity of the noncell pixels,

and the noise was determined as the standard deviation of the

intensity in the non-cell pixels. These values are shown in Ta-

ble 1. Applying the non-optimal filters resulted in a change in

the SNR and a degradation of the sharpness of the image. This

degradation was quantified as a decrease in spatial resolution

as determined using a chromium coated 1951 USAF resolu-

tion target (Edmund Optics, Barrington, NJ) with a fluores-

cent Schott OG650 glass filter (Edmund Optics, Barrington,

NJ) above it (Supporting Information Fig.TM 1). The smallest

line features that could be resolved are listed in Table 1 as line

pairs per millimeter.

Reference Data

The images acquired under imaging condition 3 had the

brightest and most distinct cell edges and therefore were used

for generating the manually segmented reference masks. Cell

objects in these images were delineated by manually outlining

Table 1. Acquisition conditions and parameters

IMAGE

CONDITION

EXPOSURE

TIME (S) A10

EXPOSURE

TIME (S) 3T3 FILTER TYPEa SNRb

RESOLUTIONc

(lp/mm)

1 0.015 0.01 optimal filter (555 nm excitation, 630 nm emission) 25�8 203

2 0.08 0.05 optimal filter (555 nm excitation, 630 emission) 103�31 203

3 0.3 0.15 optimal filter (555 nm excitation, 630 nm emission) 221�72 203

4 1.0 1.0 non-optimal filter (555 nm excitation, 740 LP emission) 20�9 114

5 5.0 5.0 non-optimal filter (555 nm excitation, 740 LP emission) 50�21 114

a Filters present in filter wheels. A multipass dichroic beam splitter (BS51019, Chroma Technology) is used for all fluorescence imaging.
b The SNR was calculated as described in the Materials and Methods.
c Indicates the smallest line features (lp/mm5line pairs per millimeter) that could be resolved in the 1951 USAF target under the optical

settings used for cell imaging (see Supporting Information 1). These values correspond to group 7 element 5 (203 lp/mm) and group 6 ele-

ment 6 (114 lp/mm) line patterns of the resolution target.
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cells or groups of cells using the Paintbrush tool in ImageJ

with a brush width of one pixel. Cells in contact with one

another were treated as a single object. To facilitate the accu-

rate identification of the cell boundary the image of each cell

was enlarged with the Zoom tool. Masks were generated from

the outlines of the cell images using the ImageJ particle ana-

lyzer. To test the variation in the manual segmentation data

generated with this procedure, two different individuals gener-

ated manually segmented masks. One set of manually segmen-

ted masks was selected as the reference, and the other manual

segmentation data and the algorithm results were compared

with it.

Algorithm Implementation

The sixteen representative fields imaged under the five

imaging conditions comprised a set of 80 images contained a

total of 71 unique cell objects, 31 from the A10 cell line and 40

from the NIH 3T3 cell line. The cell objects in these images

were segmented using the 9 different methods listed in Sup-

porting Information Table 1: global threshold (glo), Canny

edge detection (cn), 2-means clustering (k2), 3-means cluster-

ing (k3), 4-means clustering (k4), 5-means clustering (k5),

maximum entropy (mx), isodata (iso), and Otsu thresholding

(ot). The resulting masks were compared to the reference seg-

mentation masks generated by manual segmentation using the

bivariate metric described below. Supporting Information Ta-

ble 1 also reports information about the algorithm variables

that can be modified to change the segmentation results. The

isodata, Otsu, and maximum entropy methods were imple-

mented as part of the ImageJ Multithresholder plug-in and

were used without alteration. The k-means clustering and

Canny edge-based segmentation were implemented in FOR-

TRAN and called via an ImageJ plug-in that managed their

execution in a separate operating system process.

The k-means implementation initialized the clusters by

randomly selecting values from the range of pixel values found

in an image instead of the more typical strategy of randomly

selecting pixel values directly from the image itself. The imple-

mentation also produced cluster maps in which the pixels

were labeled with cluster IDs sorted by centroid values. This

cluster initialization and sorting strategy minimized some of

nondeterministic features associated with k-means clustering

and led to consistent results of repeated trials. The first cluster,

which had the lowest centroid value, was assumed to be the

background.

The Canny edge-based segmentation followed the

approach outlined in Gonzalez and Woods (13,17). First the

input image was smoothed with a circular 2D Gaussian filter.

The gradient magnitude and angle images were then com-

puted from the smoothed image so that non-maxima suppres-

sion could be applied to the gradient magnitude image using

the angle image. Finally, the edges were detected and linked

using hysteresis thresholding and connectivity analysis.

The results from all of the segmentation methods were

post-processed using a morphological threshold to eliminate

particles from debris that was determined to be too small to

be cellular objects. This morphological threshold value varied

by cell line; for the smaller NIH 3T3 cells the threshold was set

at 50 pixels and for the larger A10 cells it was set at 200 pixels.

These thresholds were set based on experience that objects of

this size and smaller are not cell objects. This criterion was

used in order to assure robust, unsupervised, automated seg-

mentation. Cells were excluded from the analysis if their corre-

sponding reference data mask touched an image boundary to

reduce the ambiguity associated with partial cell objects.

Segmentation methods occasionally returned a number

of cell objects in an image that was different from the number

of cell objects in the reference data image. Missing cells and

cells which fragment during segmentation can lead to a differ-

ent labeling of the same cell across segmentations and make

comparisons difficult and time-consuming. To facilitate the

automated comparisons of segmentation results, an overlap-

based region-of-interest (ROI) converter was implemented in

MATLAB and was invoked prior to further analysis. This was

accomplished by first processing the binary output mask from

each segmentation method by the ImageJ particle analyzer to

output a mask (via the Count Mask feature) in which each

object’s pixel values identifies the object. The ROI converter

Figure 1. Representative images of A10 cells showing the effect

of image acquisition conditions. See Table 1 for details of imaging

conditions.
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then relabeled the objects to be consistent with the reference

segmentation. Afterwards, additional MATLAB routines were

invoked to analyze the relabeled masks.

Analysis pipeline

The evaluation was run in an unattended fashion using

ImageJ macros to apply each segmentation method to every

image in the dataset. The ImageJ macros themselves were cre-

ated by a set of code generators written in Perl to facilitate

their maintenance and extension.

After an evaluation run, the segmentation masks were

compared with the reference data masks in MATLAB. The

results of the segmentations were compared with manually

outlined cell objects to evaluate the algorithm performance.

Extended Edge Neighborhood Calculation

We developed a metric to explore the role that the gradi-

ent of the pixel intensity at the cell edge can play in determin-

ing whether a cell image can be properly segmented. These

concepts have been combined into a single quantity that can

be calculated quickly for each cell in an image. The extended

edge neighborhood (EEN) is a fraction derived from the ratio

of pixels at risk of being misclassified to the total area of the

cell. The pixels at risk of misclassification are determined from

the cell perimeter and a quality index (QI) described below.

The cell edge thickness is then determined from the quality

index.

For each cell in an image, its quality index is found from

the pixel intensities within an isolated region containing the

cell. These steps, described in detail in (19), are summarized

as:

1. Find the 3-component Gaussian mixture via the EM (Ex-

pectation-Maximization) algorithm, whose components

correspond to background (B), edge (E), and cell (C) pix-

els, and denote the means of the components by lB, lE,
and lC.

2. Find the average gradient magnitude at each intensity

between lB and lE and denote the resulting function by

G(Intensity). Because not all possible intensity values are

present in the portion of the image containing the cell,

there will be gaps where no average gradient magnitude can

be calculated. These missing average gradient values are

approximated by interpolation.

3. Find the intensity, A, at which the smoothed average gradi-

ent magnitude is maximized.

4. Since intensity A has the maximum average gradient mag-

nitude, all pixels adjacent to A will have a lower average

gradient magnitude. The pixel intensities also decrease

across the cell edge from the cell interior to the back-

ground. We can calculate the expected intensity B of a pixel

neighboring A closer to the cell edge, and pixel B will have

a lower gradient magnitude as well as a lower intensity

value. Calculate the expected intensity B of a neighboring

pixel to a pixel with intensity A as

B ¼ A� G Að Þ 3 Dx; whereDx ¼ 1 pixel unit:

5. Calculate the expected intensity C of a pixel neighboring a

pixel with intensity B; i.e.,

C ¼ B � G Bð Þ 3 Dx ¼ A� G Að Þ 3 Dx � GðA� GðAÞ
3 DxÞ 3 Dx:

6. Calculate the quality index as QI5 (A 2 C)/(A 2 lB).

The quality index ranges from 0.0 to 2.0, with a perfectly

sharp edge at a value of 2.0, which would correspond to an

edge thickness of 1.0 pixel unit. Figure 2 has an example of

two A10 cells acquired under our five imaging conditions

colored to show the various resulting edge thicknesses. There-

fore, to find the edge thickness in general, we define edge

thickness (T) and then extended edge neighborhood (EEN),

as:

T ¼ 2:0=QI

EEN ¼ perimeter3T=area

The extended edge neighborhood is defined by the inten-

sity contrast of the image, through the calculation of the gra-

dient at each cell edge, and by the overall geometry of the cell

via the ratio of cell perimeter to cell spread area. For a more

detailed description of this index, see (20).

RESULTS

Bivariate Similarity Index

A range of approaches for evaluating biomedical segmen-

tation algorithms appear in the literature. Visual inspection of

the segmentation algorithm results is perhaps the simplest and

most intuitive; it is also widely used (21–27). Another

approach is the use of a metric which quantitatively assesses

the performance against reference segmentations. A variety of

metrics have been used. Gulda et al. (28) and McCullough

et al. (29) use root-mean-square (RMS) deviations to evaluate

their segmentation algorithms while Li et al. (30) and Russell

et al. (31) use false positive and negative rates. Several

approaches based on set theory also appear. Zijdenbos et al.

(32) use the Jaccard similarity index based on set intersection

and union operations to examine segmentations of brain

lesions, while Ko et al. (33) compare their nuclear segmenta-

tions to manual segmentations by defining over- and under-

extraction ratios based on set difference and intersection

operations which they then use to calculate the segmentation

accuracy. Korzynska et al. (34) take a similar approach when

defining a cell area error metric for their live cell segmentation

method as does Srinivasa et al. (35) when they use area simi-

larity to evaluate their active mask algorithm for fluorescent

microscopy. Recently, Polak et al. (36) have proposed the

object-level consistency error (OCE) which is a sophisticated

set theory-based metric. Statistical approaches to segmenta-

tion algorithm evaluation are similar to set theory-based

approaches and include work done by Coelho et al. (6) to

evaluate nuclear segmentations using statistical indices, Cardi-

nale et al.’s (37) use of Bayesian image analysis to validate their
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framework for subcellular feature segmentation and tracking,

and the proposed use of the Normalized Probabilistic Rand

(NPR) index by Unnikrishnan et al. (38).

The results of the more mathematically sophisticated

approaches can be difficult to interpret in practice. While the

performance of segmentation algorithms can be evaluated by

simple criteria such as measured cell areas with respect to ref-

erence values, such criteria do not adequately allow assessment

of how algorithms fail. Another approach is the use of com-

mon similarity indices, but because of ambiguities that are

described below, for this analysis we will present a bivariate

similarity index.

The commonly used Jaccard similarity index (32,39)

which compares a reference data set with another set of esti-

mates E is defined as:

S ¼ T \ Ej j
T [ Ej j where 0 � S � 1:

For our purposes, T represents the pixels in a reference

mask (‘‘truth’’) and E represents the pixels in a mask produced

by a segmentation technique (‘‘estimate’’). The numerator

represents the count of the pixels in common while the de-

nominator represents the total number of pixels in both

masks. If an estimate matches the reference then T \ E 5 T

| E and S 5 1 If an algorithm fails to segment a cell object

then E 5 0 and S 5 0. However, S cannot discriminate

between certain underestimation and overestimation cases.

Figure 3 schematically demonstrates this dilemma. For exam-

ple, if the reference and the estimate for an object are both cir-

cular and concentric, then the underestimation case where the

reference area T 5 1000 and the estimated area E 5 500 yields

a similarity S 5 500/1,000 5 0.5. A corresponding overestima-

tion case with DT 5 1,000 and E 5 2,000 also yields a similar-

ity S 5 500/1,000 5 0.5. Despite their different situations,

both of these cases yield the same similarity index value.

Because the degree of under-versus-over estimation is an im-

Figure 2. A—E: Two A10 cells acquired under five imaging conditions (1—5, respectively). The manual reference segmentation for the cells

is shown in (F). For each pair of cells (A—E) the pixel intensity range of the image was divided in 40 equal smaller ranges. The 40 colors

from low (purples) to high (black) are shown in the color table. The manual reference segmentation for the cells is shown in (F).

Figure 3. A schematic framework for bivariate similarity index. T
(green circles) represents the pixels associated with the object (T
5 1,000); E represents the estimated pixels from a segmentation

procedure. For E 5 10,000, only a portion of the red circle is repre-

sented.
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portant characteristic of a segmentation algorithm, this simi-

larity index ambiguity is a disadvantage, suggesting the need

for developing an alternative similarity index that would pro-

vide such directional over-versus-under estimation informa-

tion.

We propose the use of a bivariate pair of similarity indices

defined as follows:

TET ¼ T \ Ej j
Tj j where 0 � TET � 1

and

TEE ¼ T \ Ej j
Ej j where 0 � TEE � 1:

As with the similarity index described above, T represents

the pixels in a reference mask (‘‘truth’’), E represents the pixels

in a mask produced by a segmentation technique (‘‘estimate’’)

and the numerators represent the count of the pixels in com-

mon. Here however, the denominators represent the total

number of pixels in the reference mask and or a given segmen-

tation mask, respectively. If the estimate matches the truth

then T 5 E and TET 5 1 and TEE 5 1. If an algorithm fails to

segment an object then

E 5 / TET 5 / and TEE is undefined. For the purposes

of this paper, we defined TEE 5 1 when E 5 / as this corre-

sponds intuitively to the case of a threshold being set too high

for thresholding methods.

TET and TEE are symmetrically defined, bounded, and

sufficiently independent and orthogonal for our purposes.

They serve as a valid mathematical basis for evaluating seg-

mentation algorithms, and we believe that they provide more

information and easier interpretation than previously used

metrics. TET and TEE are very similar to precision and recall

from precision-recall framework used to evaluate boundary-

based segmentations of natural scenes (40–42). Both are

bivariate means of comparing segmentation quality. Precision

and recall also have forms which are similar to our TEE and

TET, respectively. There are some key differences between the

two approaches. The precision-recall framework uses an affin-

ity function to calculate mutual information between the seg-

mentations containing multiple classes. Precision and recall

are defined in terms of shared classification agreements

between all possible pixel pairs in both segmentations (40).

Our TET/TEE bivariate metric assumes only two classes (fore-

ground and background) and directly compares correspond-

ing pixels from each segmentation.

TET and TEE are also similar to the under- and over-

extraction ratios proposed by Ko et al. (33) for use in calculat-

ing their segmentation accuracy metric but are made simpler

by removing the set difference operations. This bivariate met-

ric divides performance into four regions: (1) where TET and

TEE are both small, i.e., the object and estimate are dislocated

from one another as in Fig. 3, lower left, (2) where TET is

large and TEE small, i.e., the object is overestimated as in Fig.

3, lower right, (3) where TET is small and TEE large, i.e., the

object is underestimated as in Fig. 3 upper left, and (4) where

both TET and TEE are large, i.e. the object is well segmented

as in Fig. 3, upper right.

In some situations, segmentation comparisons may be

facilitated by using a univariate metric instead of a bivariate

metric. For this these purposes, we have defined the segmenta-

tion distance as the Euclidean distance from the point corre-

sponding to perfect segmentation (TET 5 1, TEE 51):

dseg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� TETÞ2 þ ð1� TEEÞ2

q

The segmentation distance retains the disadvantages of

the similarity index in that it does not uniquely define the

type of segmentation failure for any comparison. For example,

dseg 5 1 when TET 5 1 and TEE 5 0 as well as when TET 5
0 and TEE5 1.

Comparison of Manual Segmentations

Figure 4 shows the use of the bivariate similarity index to

compare the results of the two sets of manual segmentations.

As described in the Methods section, of the two individual sets

of manually generated segmentation masks for the 71 cell

images, one was arbitrarily chosen as the reference for all other

segmentations. If manual segmentation #2 for a cell was a per-

fect segmentation relative to the reference mask for that cell, it

would be displayed at the center of the open circle at the point

(1.0, 1.0) on the plot. The comparison of the manual segmen-

tation of each A10 cell with its corresponding reference man-

ual segmentation is indicated by its Euclidean distance from

the circle and is shown as black six-pointed stars with the aver-

age indicated by the larger black six-pointed star. The corre-

sponding data for NIH 3T3 cells are shown as white five-

pointed stars. It is apparent in this figure that the two manual

segmentations are more consistent for the A10 cells than the

NIH 3T3 cells. Comparison of the results of the two manual

segmentations indicates that there appears to be no systematic

Figure 4. TET vs. TEE bivariate similarity index plot for the two

manually segmented sets of each of the 71 cell objects collected

over the five image conditions used in this study. Results for the

A10 cells are shown as black six-pointed stars, the results for NIH

3T3 cells as white five-pointed stars. The segmentation distance is

shown for one pair of segmentations.
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bias between two different humans’ interpretations of cell

edges, since both under- and over-segmentation occur.

Comparison of Automated Segmentation Methods

Each cell object mask that resulted from the automated

segmentation methods was compared to the manual reference

segmentation. Segmentation operations were performed on

each cell image collected under the different acquisition condi-

tions. Thus, for each algorithm, we compared masks from the

71 cell objects and 5 different acquisition conditions for a total

of 355 comparisons.

In Figure 5 we show all results for all 355 comparisons for

each of the nine segmentation methods as a function of ima-

ging condition (see Table 1 for descriptions of imaging condi-

tions). Each segmentation mask was compared with the refer-

ence data mask and plotted as a function of TET and TEE with

the data for A10 cells in red and the data for NIH 3T3 cells in

green. A perfect segmentation, relative to the reference mask,

is displayed by an open circle at the point (1.0, 1.0) on the

plot. In general, all segmentation methods gave higher accu-

racy, relative to the reference data, for the larger, well spread

A10 cells than for the smaller NIH 3T3 cells. For both cell

lines, the average TET and TEE values are indicated by the red

A10 marker and the green NIH 3T3 marker. We show average

values of the bivariate statistic because the average is a mea-

sure of the central tendency, and is a rational way to compare

algorithms to one another on a cell-by-cell basis. The TET and

TEE values for the 2nd nonreference manual segmentations

are also indicated in Figure 5 by the yellow circles, and the av-

erage values by the black A10 markers and blue NIH 3T3 mar-

kers. Some segmentation results lie within the region of the

plot occupied by 2nd manual segmentation results; such seg-

mentation results are considered to be indistinguishable from

manually segmented results. It is interesting to note that

unlike the comparison of the manual segmentations, the auto-

mated methods demonstrate considerable bias in the inaccu-

racy of the segmentation. For the larger (A10 cells), especially,

inaccuracies that result in low values for TET tend to have

large values for TEE, indicating that the estimated cell area is

more often underestimated than overestimated. This trend is

less pronounced in the case of the 3T3 cells, which have more

optical contrast at their edges. These kinds of situations are

easy to detect with a suitable bivariate metric but are not dis-

cernible with a univariate metric.

The data in Figure 5 demonstrate the effect of image ac-

quisition condition on the performance of these algorithms.

The imaging condition that provided the average segmenta-

tion that was closest to the reference was condition 3, which

provided the highest SNR (as shown in Table 1). Imaging con-

dition 3 resulted in many cell objects that were intensity satu-

rated; this apparently did not adversely affect the histogram-

based analyses. Imaging condition 3 also resulted in higher

contrast at the cell edge. We will comment on this further in

our discussion of the sharpness of cell edges below. As seen in

Table 1, conditions 1 and 2 involved shorter exposure times,

resulting in smaller SNR; conditions 4 and 5 were additionally

degraded by the use of suboptimal filters, resulting in poorer

spatial resolution.

The error in cell segmentation can be large, as seen where

points have low TETor TEE values. Determination of reported

cell areas led to a mean relative bias of 232.5 % across all

examined automated methods and imaging conditions. Figure

5A–5D shows the effect that imaging conditions can have on

segmentation accuracy and why. Many segmented cells imaged

Figure 5. Segmentation results by imaging condition for all seg-

mentation methods (with no distinction made between segmen-

tation methods), plotted for each imaging condition. TET and TEE

bivariate similarity index plots for all 71 cell objects examined

under the five imaging conditions and nine segmentation meth-

ods. Data within triangles indicate failure to identify one or more

cell objects. See Table 1 for the descriptions of the imaging condi-

tions and Supporting Information Figure 2 for an enlarged version

of this figure.
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under conditions 1 and 2 have high TEE and low TET values,

indicating that the estimate of number of cell pixels is much

smaller that the true number of pixels. This result suggests

that these segmentation methods do not do a good job in dis-

tinguishing cell edges from background, particularly when

SNR is low. Increasing SNR (as for imaging condition 3),

improves segmentation accuracy, largely by reducing underes-

timation. Average segmentation accuracy moves closer to per-

fect segmentation for both cell lines for imaging condition 3.

Reducing both spatial resolution and SNR under imaging con-

ditions 4 and 5 resulted in average segmentation accuracies

that were similar to those seen for imaging conditions 1 and 2.

However, the reduction in spatial resolution under imaging

conditions 4 and 5 resulted in algorithm performance that was

less biased toward under-estimation. While many cells are still

underestimated (e.g. they have a high TEE / low TET values),

compared to image acquisition conditions 1 and 2, inaccuracy

was more often due to overestimation as well, as indicated by

more cells having high TET / low TEE values. Especially for

3T3 cells, many segmentation operations resulted in interme-

diate TEE/TET values, indicating that cells were inaccurately

segmented due to the simultaneous inclusion of background

pixels and the failure to include cell pixels. In contrast, for

both cell lines, manual segmentation produced much less sys-

tematic bias, and much less sensitivity to imaging conditions.

It is noted that the two manual segmentations of A10 cells are

much more similar than the two manual segmentations of

3T3s.

To better evaluate what appears to be the optimal imaging

condition, the plots in Figure 6 show the evaluation of the

masks obtained as a function of segmentation technique for

image condition 3. Comparing the average results from the

nine different segmentation techniques indicates that 4 and 5-

means clustering and maximum entropy were the best per-

forming algorithms with respect to concurrence with manual

segmentation. Maximum entropy, however, failed to find

some cells. User selection of a single global threshold value for

a cell line under a given imaging condition also performed

very well. The poorest performing algorithms of those exam-

ined were isodata, Otsu, and 2-means. TEE/TET analysis

shows that failure of these algorithms is largely due to under-

estimation of cell pixels. The location of the marker for the av-

erage segmentation accuracy for isodata indicates the simulta-

neous contribution from background pixels misclassified as

cell pixels as well as cell pixels misclassified as background pix-

els. Examination of selected images indicated that underesti-

mation of segmented areas was usually the result of exclusion

of a large number of cell pixels resulting in a mask with a

heavily eroded appearance and segmentation of only the

brightest cell body features, resulting in either a single small

mask or several disconnected small masks within a cell object.

Even under these imaging conditions, some of the algorithms,

namely maximum entropy, Canny edge detection, and isodata,

failed to find one or more cells, as indicated by points lying

within the triangle on some plots.

A summary of the relationship between algorithm, ima-

ging condition, and accuracy of segmentation is shown gra-

phically in Figure 7 and numerically in Table 2. The segmenta-

tion distance is taken as the Euclidean distance from perfect

segmentation (TET 5 1, TEE 5 1), where perfect segmenta-

tion would have a Euclidean distance of zero. It is clear from

the values in Table 2 that no automated method outperforms

manual segmentation, even though the two manual segmenta-

tions are not identical. Imaging condition 3 resulted in the

best concurrence with the manual segmentation reference for

all methods. Five-means clustering resulted in the lowest or

next to lowest Euclidean distances over all imaging conditions.

Maximum entropy, while a poor performer under most condi-

tions, performed as well as 5-means clustering under imaging

condition 3, where the SNR was high. Segmentation using iso-

data gave poor results even under the best imaging condition,

condition 3. Many of the algorithms failed to find some cells

(as indicated by a Euclidean distance of 1.0); this occurred for

even relatively accurate methods such as 4-means clustering,

although only under the poorest imaging conditions tested.

Effect of Edge Quality on Segmentation

We observed in Figure 5 that imaging condition 3, which

resulted in the largest SNR, produced the best segmentation

results. Because of the relatively long exposure times, imaging

condition 3 produced high object intensities and relatively

sharp object edges. We now examine how the characteristics of

the cell object edge can potentially influence the success of seg-

mentation. In particular, for each cell object, a value for edge

quality was computed based on the steepness of the gradient

at the cell edge (19). Cells with edge pixels that are very dis-

tinct from background values have a high edge quality, while

cells that have shallow gradients of intensities at their edges

have a lower edge quality. We combined a measure for edge

quality, outlined in a previous article (19), with information

about the geometry of each cell, to give an overall measure of

the fraction of cell pixels for a given cell which are on or near

the edge of the cell and thus at risk to be segmented impro-

perly. We call this measure the extended edge neighborhood,

and it is the ratio of the pixels in the neighborhood of the cell

edge to the area of the cell. Images of large round cells, like

many of the A10 cells we examined, have a high fraction of

pixels inside the cell, away from the cell edge, while small,

thinner cell objects, like most of the images of the 3T3 cells,

have a larger fraction of pixels at risk, near the edge of the cell.

Small thin cells with indistinct edges have an even larger frac-

tion of pixels at the edge than small thin cells with sharp

edges.

In Figures 8 and 9 we examine the relationship of the

extended edge neighborhood (EEN) metric to the results of

segmentations of the A10 and NIH 3T3 cells. Segmentation

distances are shown for cell images collected under different

imaging conditions and analyzed with each of the algorithms.

The plots in Figures 8 and 9, in general, demonstrate two con-

cepts. The first is that for all of the segmentations produced

with the algorithms evaluated, there is a clear trend between

imaging condition and segmentation distance: for images

acquired using the optimal filter, the distances are largest for

imaging condition 1, intermediate for imaging condition 2,
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Figure 6. Bivariate similarity plots of segmentation results by segmentationmethod for both cell lines under imaging condition 3. Datawithin

triangles indicate failure to identify one ormore cell objects. See Supporting Information Figure 3 for an enlarged version of this figure.
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and smallest for imaging condition 3. A similar trend holds

for the images acquired using the non-optimal filter (imaging

conditions 4 and 5). Thus, imaging conditions that tend to

result in poorer SNRs tend to lead to cell objects with lower

edge quality, and in general, poorer segmentation accuracy.

Edge quality is a major factor of our extended edge neighbor-

hood concept. The other factor of the EEN metric is cell ge-

ometry, but clearly the metric is relevant to the different

shapes of both the cell lines studied here.

In general, we observe that the segmentation distance

decreases with decreasing EEN metric. For the algorithms with

the poorest accuracy, namely maximum entropy, isodata, and

Otsu, EEN is a less clear predictor, suggesting perhaps that the

weakness in these methods is less a result of SNR. These tech-

niques typically underestimate the area of a cell which suggests

that they select threshold values that are too high. The edges

of the resulting segmentation masks are further away from the

actual cell edges than those produced by the more accurate

methods. As a result, it appears that the EEN, a measure of the

cell edge, is a less effective predictor for these methods.

The extended edge neighborhood therefore seems to be a

metric that may provide an indication of how well a cell can

be segmented. Indeed preliminary results with a larger sam-

pling of the same data, looking at some of the better methods

Figure 7. The average segmentation distance for each evaluated algorithm under the five imaging conditions and two different cell lines.

The numbers for the data indicate the imaging condition as shown in Table 1. The designation of algorithms is listed in Supporting Infor-

mation Table 1a. ‘‘Glo’’ refers to a user-selected global threshold. The algorithms have been arranged in order of increasing average seg-

mentation distance for the combined results of all of the imaging conditions. The points marked with a colored box containing a white

number represent the mean values for each imaging condition.

Table 2. Euclidean distances from ideal segmentation for different segmentation methods and imaging conditions

METHOD CONDITION 1 CONDITION 2 CONDITION 3 CONDITION 4 CONDITION 5 ALL CONDITIONS

k2 0.664 0.651 0.470 0.599 0.581 0.593

Ot 0.663 0.638 0.355 0.598 0.560 0.563

mx 0.702 0.666 0.130 0.697 0.601 0.559

k3 0.422 0.387 0.255 0.311 0.290 0.333

k4 0.310 0.286 0.174 0.247 0.216 0.247

k5 0.237 0.223 0.130 0.221 0.217 0.206

cn 0.256 0.242 0.209 0.312 0.242 0.252

glo 0.141 0.122 0.099 0.215 0.283 0.172

iso 0.885 0.651 0.422 0.718 0.680 0.671

2nd Man. Seg. – – 0.107 – – –

Euclidean segmentation distances as determined from the bivariate similarity index plot are reported as a measure of segmentation

accuracy. The smallest values (bold) represent the highest accuracy with respect to the reference data. See text or Supporting Information

Table 1a for algorithm abbreviations. The last row gives the corresponding result from the second non-reference manual segmentation,

which was performed on image condition 3 only.
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(5-means, 4-means, 3-means, and Canny Edge-based segmen-

tations), show a significant correlation between segmentation

distance and extended edge neighborhood. The EEN may also

be used to determine whether a cell should be segmented as

poorly segmented cells can adversely affect analysis results

while retaining only well segmented cells appears to retain bio-

logical heterogeneity in certain HCS-unfriendly cell lines (8).

Hill et al. (8) trained classifiers to accomplish this task for SK-

BR-3 cells but it is possible that setting an EEN threshold

could perform this task without having a training set.

DISCUSSION

The collection of large cell image datasets demands the

use of automated image analysis. Because human supervision

during analysis is often precluded by the amount of data to be

analyzed, the quality of the analysis is dependent on how well

the applied algorithms perform. How well any algorithm per-

forms is a function of cell morphology and the imaging pa-

rameters for each cell. While reports of new and improved

algorithms that solve unique discrimination challenges con-

tinuously appear, it is rarer that algorithm performance is

evaluated by quantitative means. Some examples of quantita-

tive algorithm comparison include use of the Normalized

Probabilistic Rand (NPR) index (38) and methods used in

research on face recognition. There are few examples of sys-

tematic comparisons of image analysis algorithms for cell

image data; these include a comparison of cell shape analysis

(5), a recent report from the Murphy lab on comparing seg-

mentation algorithms (6), a study on predicting confidence

limits in segmentation of cells (37) and analysis of segmenta-

tion of nuclei (7).

In this study, we examined two different cell lines and

five imaging acquisition conditions to compare algorithm per-

formance and assess the affect of image quality on segmenta-

tion accuracy. We present a bivariate similarity index method

for quantitatively evaluating segmentation method perform-

ance. The bivariate analysis method can discriminate between

overestimation, underestimation and dislocation of the esti-

mated cell mask relative to the manually determined cell

mask. The TET versus TEE plots can indicate both random

bias, such as in the case where both overestimation and under-

estimation occur equally (see Fig. 4 for an example), and sys-

tematic bias, such as in the case of uniform overestimation

(see Fig. 6B for example). Furthermore, this metric can be

reduced to a single value (i.e., a Euclidian distance) for ease of

reporting comparisons. Previous use of a similar approach,

the precision-recall framework (40–42) has been reported for

evaluating segmentation of complex natural scenes and for

determining the effect of parameters on algorithm perform-

ance. The bivariate statistic presented here will be similarly be

useful for tracking reduction in bias in algorithm performance

as parameters are adjusted but also has the advantage of being

Figure 8. Segmentation distance versus extended edge neighborhood for the A10 cells segmented by each algorithm evaluated.
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intuitive and efficient to compute for fluorescent microscopy

images.

We employed manual segmentation of cells as reference

against which all other analyses were compared. We consider

the differences between two manually segmented sets of data

to bracket the acceptable quality of automated segmentation.

The uncertainty associated with manual segmentation is well

established (6). While manual segmentation is imperfect, the

comparison of the results of automated segmentation relative

to two manual segmentation operations allows a basis for eval-

uating the acceptability of the result to the practitioner. A

semiautomated segmentation method is under development

that may significantly reduce this uncertainty (43).

Except for the Canny edge detection routine, all segmen-

tations used in this study were histogram based. It is impor-

tant to note that the histogram based methods do not take

into account any spatial information and rely only on pixel

intensities to separate the pixels into two classes: foreground

pixels belonging to the cell and background pixels belonging

to non-cell areas. All segmentation methods applied here

except for the Canny edge-based method ultimately result in

separating pixels into these two classes separated based on a

threshold value. The specifics of the operations that provide

these results are responsible for the different outcomes in seg-

mentation.

There are many variations of data preprocessing and

algorithm parameters that can be applied and compared. For

example, we have applied a log transform to the pixel intensi-

ties to these images and segmented them with the eight auto-

mated segmentation methods, and these results, which are

quite different from analysis prior to log transform, are shown

in Supplemental Figure 4. To assist the community in testing

and quantitative evaluation of segmentation algorithms, we

are making this complete dataset (�2500 tif image files) avail-

able at http://xpdb.nist.gov/image/cell_image.html. The data-

base consists of replicates of 50 fields of cells labeled with

Texas Red and DAPI, collected under 5 imaging conditions.

Users can download phase contrast and fluorescence cell

images, images of masks of manual segmentations, and images

of spatial resolution targets. Specific datafiles can be selected

by semantic queries using extensive experimental metadata.

We report large differences in the quality of performance

of these algorithms and substantial differences in response of

algorithms to different imaging acquisition conditions. In gen-

eral, 3-, 4-, and 5-means clustering appeared to be the best

performers over the two cell lines and the five acquisition con-

ditions examined. In general, the use of k-means with greater

than 2 clusters is similar to a multiple threshold technique.

These techniques allow the pixels to be classified into at least 3

clusters (i.e., background, cell edge, and cell body). This sug-

Figure 9. Segmentation distance versus extended edge neighborhood for the NIH 3T3 cells segmented by each algorithm evaluated.
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gests that when the cell edge and cell body pixels are placed in

a single classifier, they do not form a cluster of pixels with

unique character to separate it from the background by the

two cluster algorithms. The multiple cluster techniques effec-

tively reduce the weighting of the cell body pixels in the edge

threshold selection process, which results in a more accurate

segmentation of the cell. Canny edge detection, while signifi-

cantly more computationally expensive, did not appear to

provide an advantage in overall performance. The brightest

pixels in the cell body do not significantly influence the cell

edge determination. We find that the accuracy of these nine

segmentation methods vary with a factor that we have called

the extended edge neighborhood, which describes a combina-

tion of the gradient at the edge of a cell and the geometric fea-

tures of the cell. These observations provide an intriguing pos-

sibility that an image quality index could predict the likely

uncertainty associated with segmentation of that dataset with

a particular algorithm.

In this study we found that our image acquisition condi-

tion 3, which was associated with the highest SNRs, often

resulted in the best segmentation. A potential disadvantage is

that the long exposure time resulted in intensity saturation in

many cells, which could result in the loss of useful intensity

data. Other image acquisition parameters had a greater or

lesser effect on algorithm performance depending on the algo-

rithm. User selection of a single global threshold value was not

sensitive to lower SNRs but was very sensitive to poor focus.

Poor focus degrades the quality of the segmentation of most

of the algorithms examined and seemed to negatively affect

the segmentation of fibroblasts even more than smooth mus-

cle cells. This is probably due to the different shapes of the

cells and the cell-line-specific differences in intensity gradients

at cell edges.

In this study, we do not know the true location of the cell

edge and we use manually segmented cells to represent the

ideal segmentation. An alternative method for obtaining refer-

ence segmentation data is to simulate cellular images (44).

However, there are challenges associated with simulating cell

images because we do not have detailed models for complex

image features such as the intensity distribution at the cell

edge and the morphology of the cell boundary. In the future,

we are interested in using the images studied here to refine

models for simulating fluorescence images of cells. High-qual-

ity simulations of fluorescent cell images have several advan-

tages for the development and testing of segmentation algo-

rithms: (1) a variety of cell and image characteristics could be

systematically examined, (2) the precise location of the cell

edge would be known, and (3) the laborious task of outlining

cells would be eliminated.

While the evaluation presented here considers whole cell

staining, the methods for evaluating segmentation perform-

ance can be applied to a variety of the microscopy imaging

problems including nuclear staining or tissue sections. In cases

where a set of reference segmentation data is available, the

TET vs. TEE plots for can be used to evaluate the performance

of automated segmentation algorithms. The plots can also be

extended to evaluate 3D segmentation, where the TET vs. TEE

axes would represent discrepancies between the reference seg-

mentation and the test segmentation in volume information.

The overall goal of this work is to develop a framework for the

evaluation of algorithm performance and the uncertainties

associated with the automated analysis of cell microscopy

images. The results of this study suggest that it would be pru-

dent to run preliminary measurements and manual segmenta-

tion results in order to compare the accuracy of possible image

segmentation approaches.

CONCLUSIONS

While the image data chosen for this work were fairly

easy to segment, significant differences in algorithm perform-

ance were observed. The results from applying the bivariate

similarity analysis suggest that, compared with k-means clus-

tering and Canny edge detection, the more commonly used

segmentation methods (Otsu, Maximum Entropy, isodata)

did a poor job as judged by concurrence with human identifi-

cation of pixels associated with cells. These methods appeared

to select a threshold value that was too high and as a result

had a tendency to produce masks that were smaller than those

of the corresponding reference masks. We also found that

higher SNRs in the image resulted in more accurate segmenta-

tion by all algorithms as a result of increasing intensity gradi-

ents at cell edges, a component of a metric we refer to as

extended edge neighborhood.

We present here a bivariate similarity analysis method

that provides an indication of how algorithms fail, and we also

present an edge quality metric that may prove useful in pre-

dicting image segmentation success. The tools developed for

this analysis should have general applicability for future stu-

dies.

These results provide some guidance for achieving con-

currence among sets of image data collected in different labo-

ratories or at different times. Because algorithm results are

sensitive to SNRs and spatial resolution, the conditions under

which images are collected, as well as the algorithms applied,

will influence the analysis.
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