Digitization of a Secondary Pump Condition-based Monitoring System

NIST Center for Neutron Research

Reactor Operations and Engineering Group

By:

Abdullah Weiss

2018 NIST Summer Undergraduate Research Fellowship

Grant Number:70NANB18H070

NIST Advisors: Dagistan Sahin, PhD Marcus Schwaderer

NIST

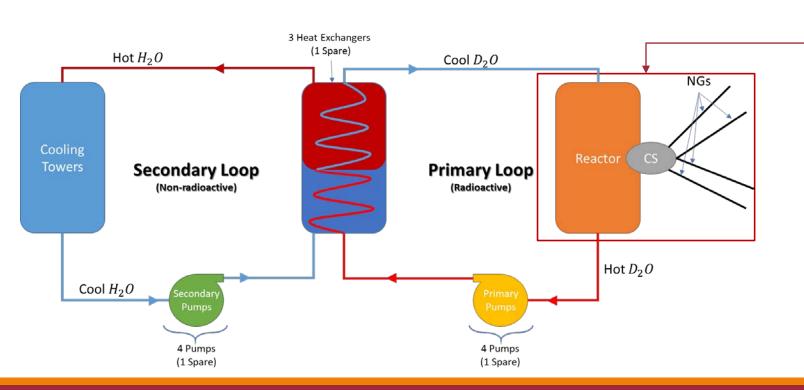
Background

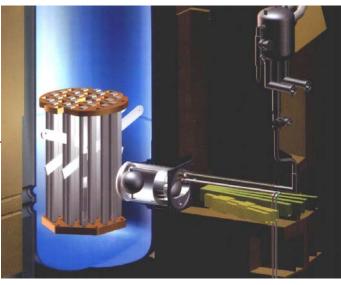
Abdullah Weiss

- B.S. in Mechanical Engineering at Texas A&M University-Kingsville
- Upcoming PhD in Nuclear Engineering student at Texas A&M University

Katie Behnert

- Collaborator on the project (led the physical lump of the project)
- Upcoming Senior in Nuclear Engineering at Penn State University

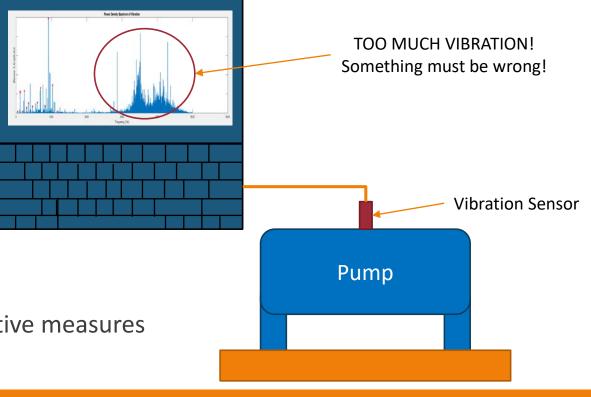




MECHANICAL AND NUCLEAR ENGINEERING

Project Background

- NCNR generates neutrons via a fission nuclear reactor
 - D_2O moderated and cooled
 - cooled via H_2O in a secondary loop

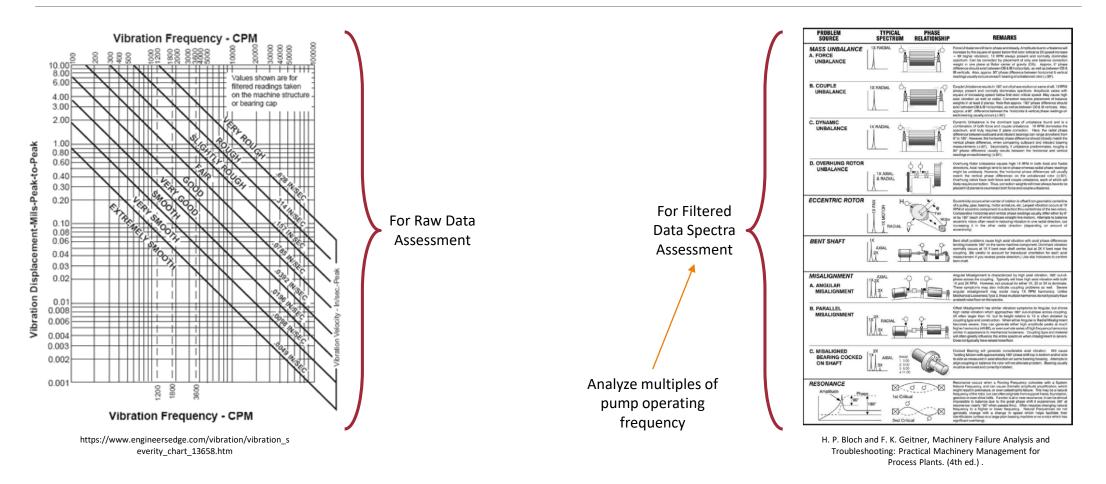


https://www.ncnr.nist.gov/summerschool/ss07/bob_williams.pdf

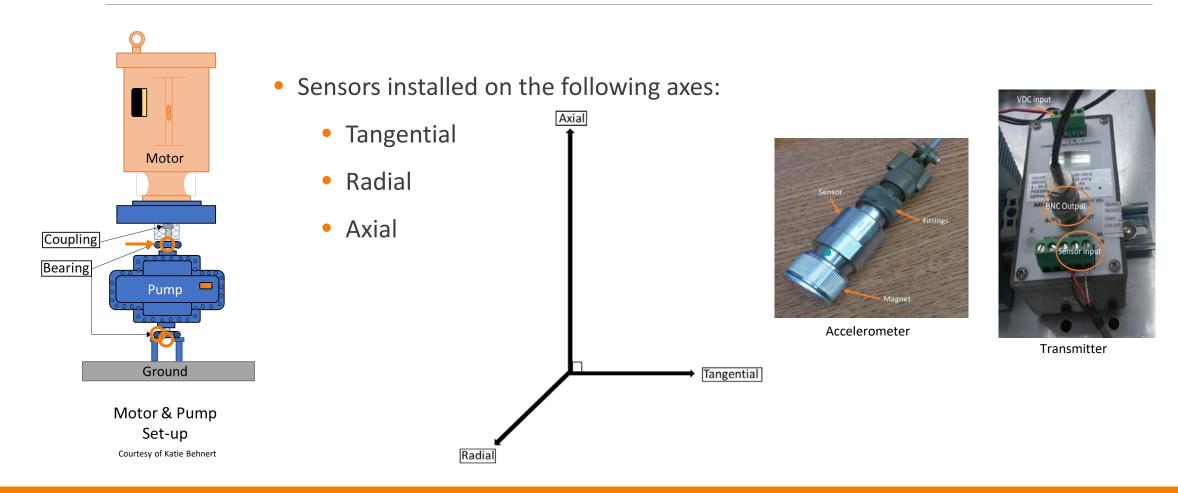
Condition-based Monitoring (CBM)

- The primary form of predictive maintenance for machinery
- Monitors different conditions:
 - Vibration, Temperature, etc..
 - Via noise analysis
- Evaluates health of machinery using:
 - Time-history plots
 - Frequency spectra
- Can provide financial savings through predictive measures

Monitored conditions in our CBM System


Temperature (simple one)

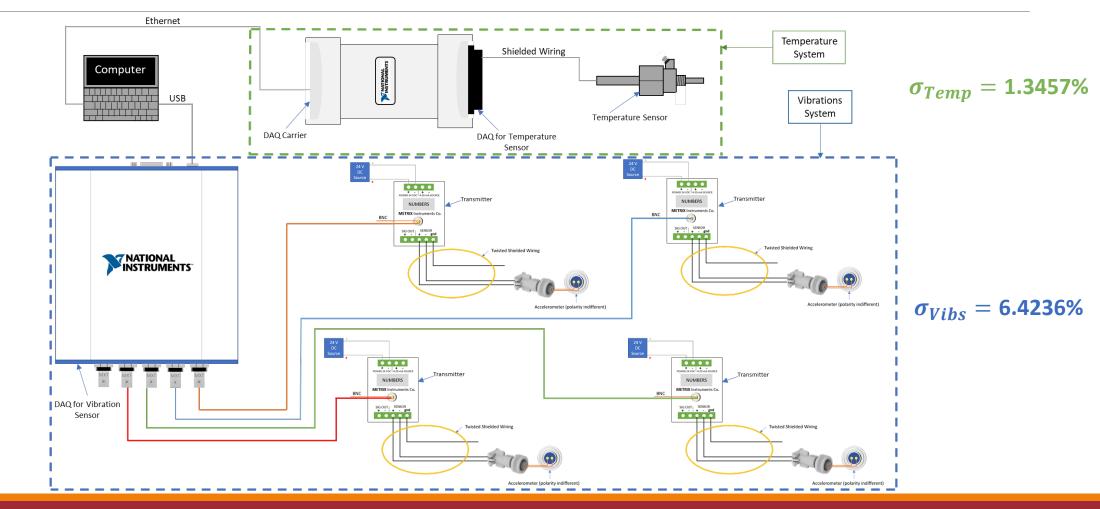
• If the temperature of the bearing exceeds a set-limit, then you should investigate.


Vibrations (complex one)

- Raw vibration history-plot reveals a severity measure of the vibrations
- FFT spectrum reveals specific faults including:
 - Cavitation
 - Mechanical Looseness
 - Misalignment
 - Turbulence
 - Oil Whirl Instability
 - Etc..

Vibrations Analysis Literature

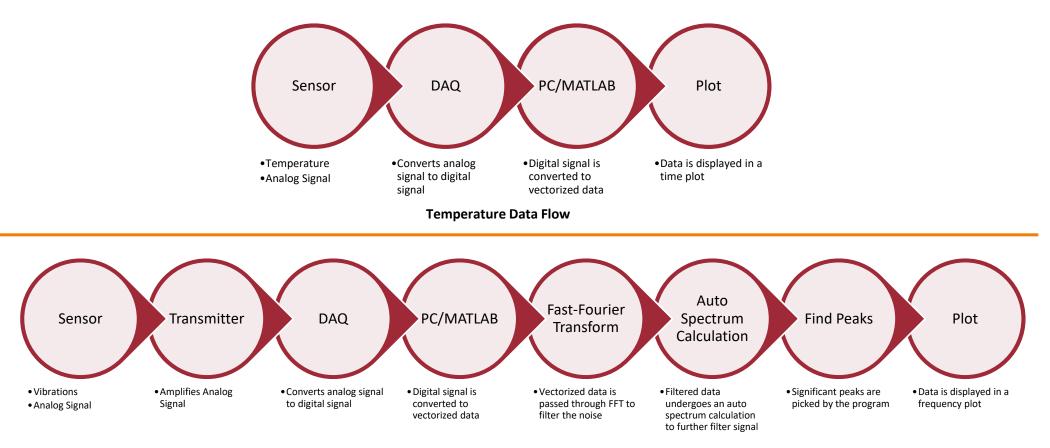
CBM System

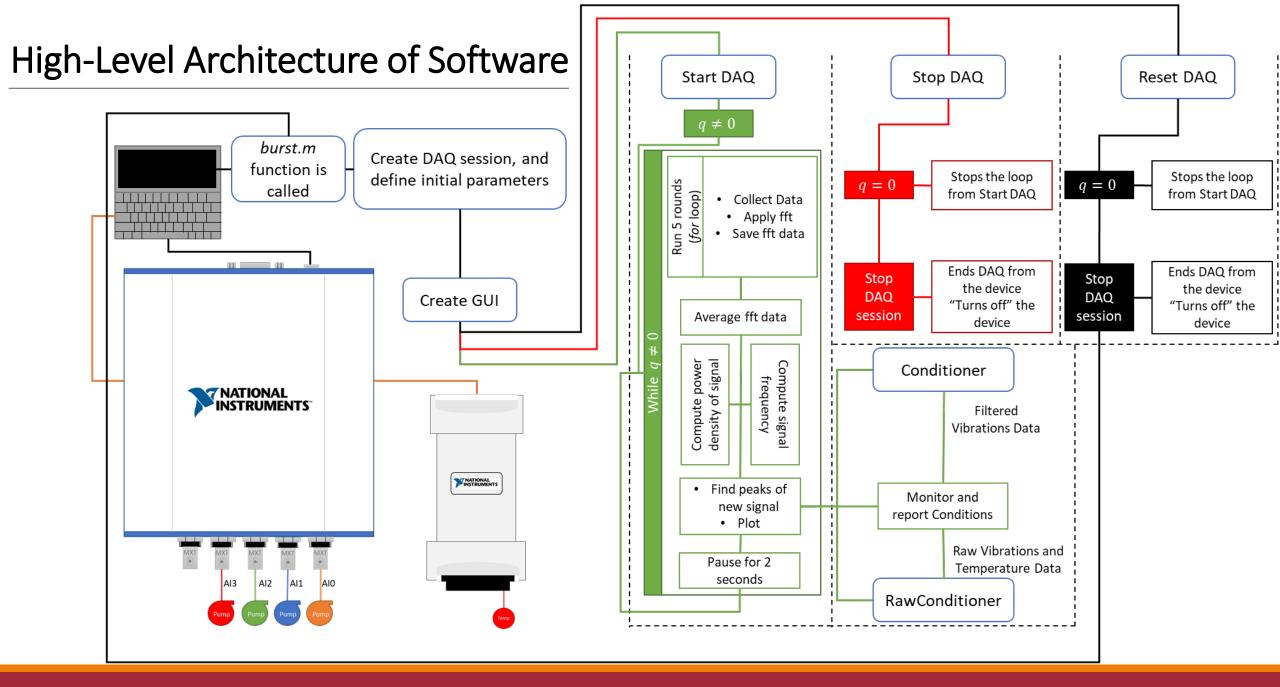

Sensor Locations

Radial (Ch. 2)

Axial (Ch. 0)

CBM Connections Schematic





CBM Connections Box

High-Level Architecture of Software

Vibration Data Flow

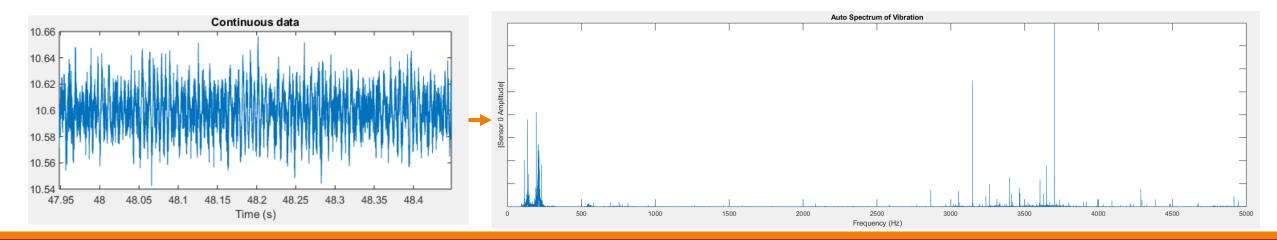
Vibrations Data Acquisition

- Utilized a NI USB-4432 DAQ device
 - 5 BNC input channels (only 4 are used)
 - 200 kS/s (10 kS/s used)
 - Sensitivities set in MATLAB
- Performed 5 batches of DAQ (5 seconds each)
 - Average is utilized
 - Represents an average over every "30" seconds.

THE ABDULLAH GUARANTEE:

Program will always update in no more than 30 seconds

Data Acquisition Device (DAQ)

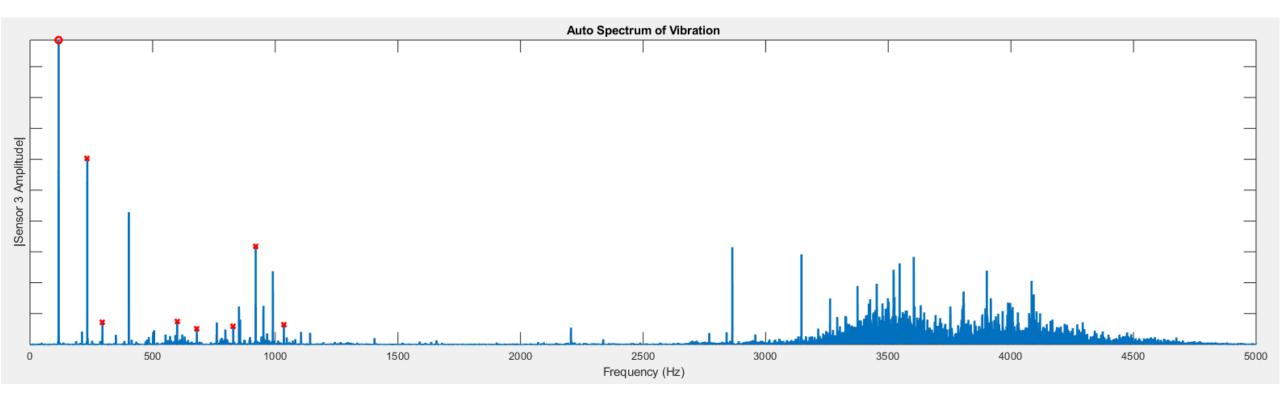

Vibrations Data Processing

- Raw data → Fast-Fourier Transform (*fft command in MATLAB*) → Filtered data
 - Computes the Discrete-Fourier transform using a built-in MATLAB FFT algorithm:

•
$$Y(k) = \sum_{j=1}^{n} \underbrace{X(j)}_{Signal} W_n^{(j-1)(k-1)} \ni W_n = e^{\frac{(-2\pi i)}{n}} = one \ of \ n \ roots \ of \ unity$$

Creates a complex vector of data

•
$$AutoSpectrum = \frac{FFT(raw data) \cdot conj(FFT(raw data))}{Length of the Signal}$$


Vibrations Data Peaks' Finder

- Based on a user-defined RPM (for each channel), the conditioner function:
 - 1. looks for a frequency that matches the vane-pass frequency (VPF) within a certain accuracy

•
$$VPF = \frac{RPM}{60\left(\frac{sec}{min}\right)} \times N_{vanes}$$

- 2. finds the corresponding amplitude (principle peak)
- 3. circles the point
- Based on the principle peak, the same conditioner function:
 - 1. finds peaks @ VPF multiples (0.5X, 1X, 1.5X, 2.5X, 3X, 4X 10X)
 - 2. leaves x at each point

Vibrations Data Peaks' Finder

Vibrations Automatic Fault Detector (Conditioner)

Mechanical Looseness

- "Possible Looseness": There are too many 'x' marks (> 3 'x' marks).
- "Looseness detected": There are too many 'x' marks, and one of them has an amplitude higher than the principle peak.

Misalignment

- "Possible Misalignment": The \approx 2X peak is between 50% and 150% of the principle peak's amplitude.
- "Misalignment detected": The \approx 2X peak is more than 150% of the principle peak's amplitude.

Vibrations Automatic Fault Detector (Cont.)

Oil Whirl Instability

• "Possible Oil Whirl Instability": A peak at 0.2X to 0.8X is greater than the principle peak.

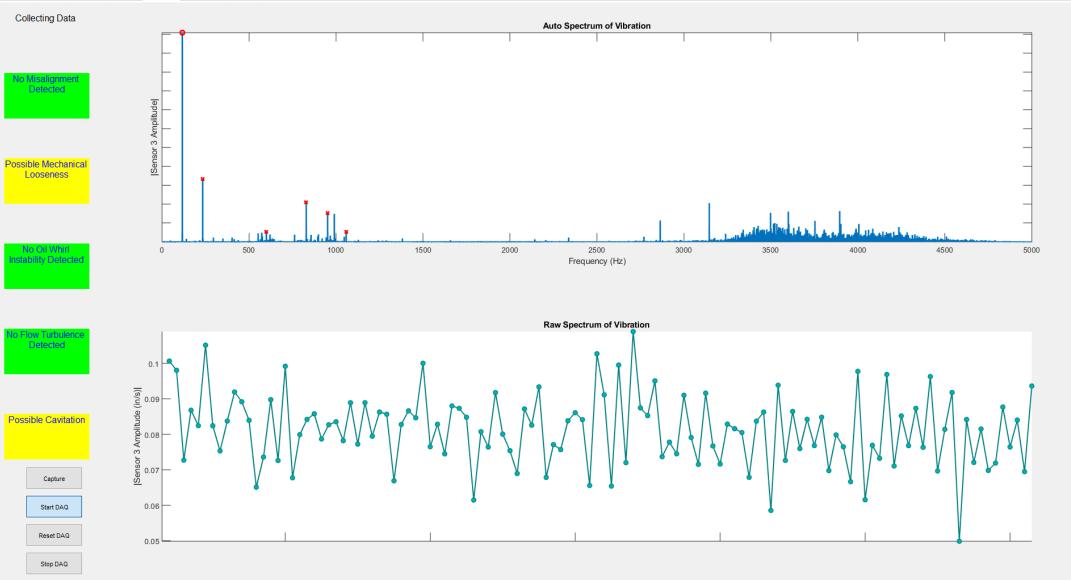
Flow Turbulence

 "Possible Flow Turbulence": There are several random low-frequency peaks that have an amplitude that of at least 4% of the principle peak's amplitude.

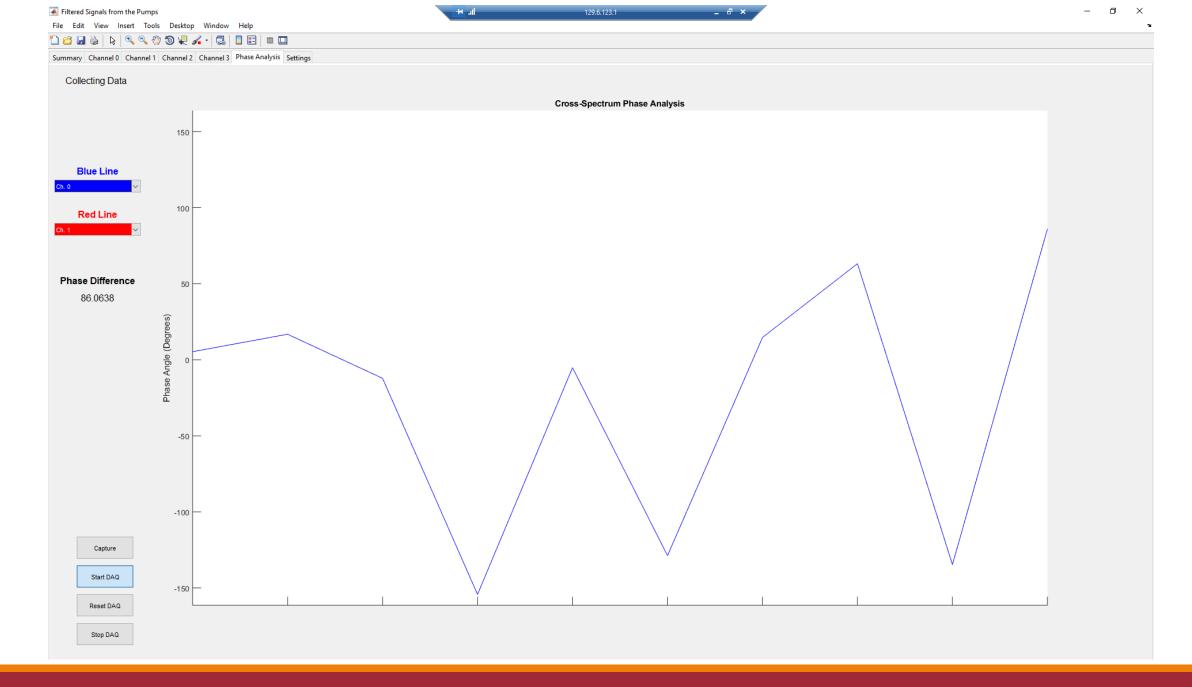
Cavitation

 "Possible Cavitation": There are several random high-frequency peaks that have an amplitude of at least 8% of the principle peak's amplitude.

承 Filtered Signals from the Pumps


File Edit View Insert Tools Desktop Window Help

– 0 ×


🎦 🖆 🛃 🍇 | 🗞 | 🔍 🤍 🖑 🕲 🐙 🔏 - | 🛃 | 🗉 💷 🛄

Summary Channel 0 Channel 1 Channel 2 Channel 3 Phase Analysis Settings

Phase Analysis

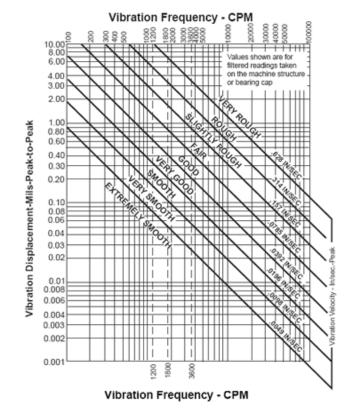
- Used for further verification of faults such as misalignment, soft foot, etc....
 - Utilizes phase angle difference
- Compares two channels (A & B):
 - Cross-Spectrum:
 - $XS_{AB} = FFT(A) \cdot FFT(B)$
 - Displays phase angle of *XS_{AB}*:
 - $\theta = \tan^{-1}\left(\frac{R}{M}\right) \ni XS_{AB} = R + iM$
 - angle() command in MATLAB
- Finds phase angle difference between signals from channels A and B.

Vibrations Severity Detector (RawConditioner)

Average Raw Vibrations (every \approx 30 seconds):

0 – 0.005 in/s 0.005 – 0.01 in/s 0.01 – 0.02 in/s 0.02 – 0.04 in/s 0.04 – 0.08 in/s

0.32 - 0.64 in/s

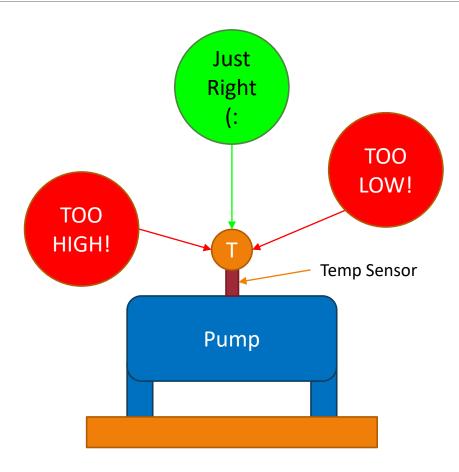

> 0.64 in/s

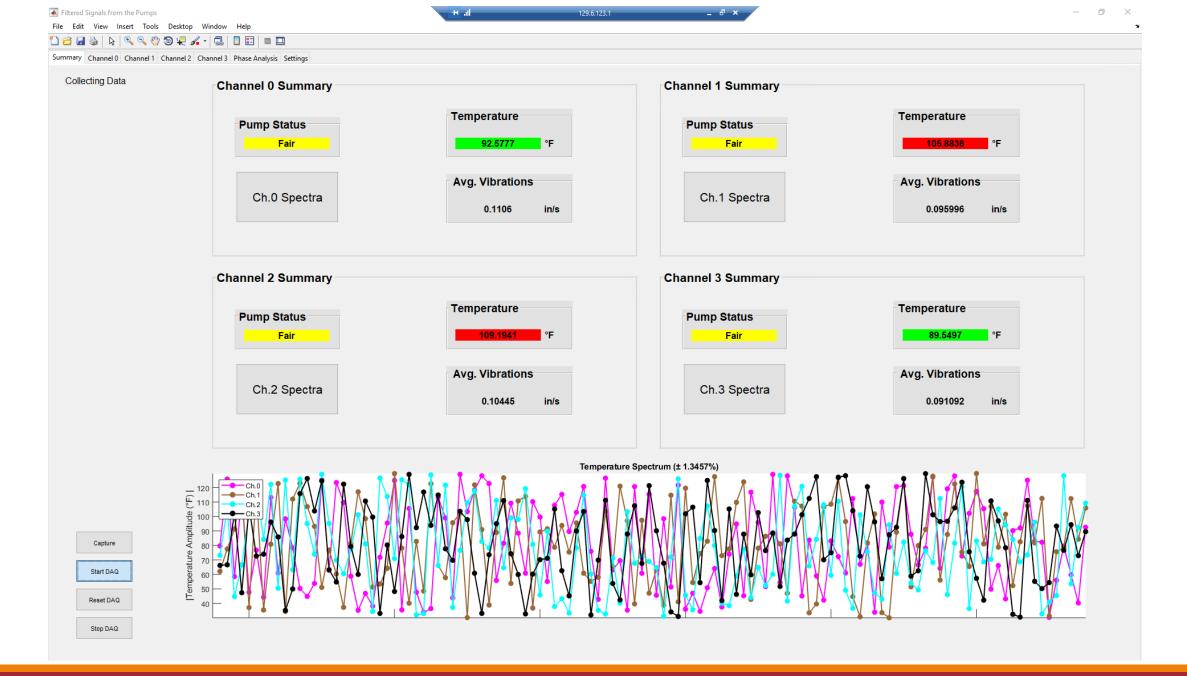
- 0.02 0.04 in/s
 V

 0.04 0.08 in/s
 G

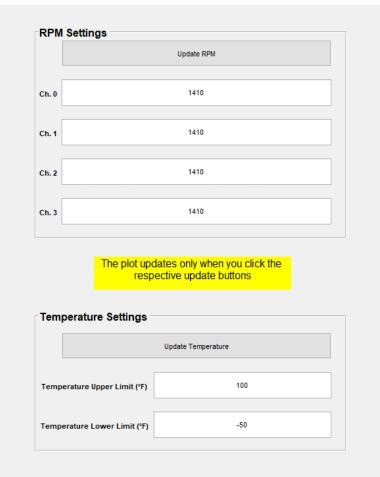
 0.08 0.16 in/s
 F

 0.16 0.32 in/s
 S
- Extremely Smooth Very Smooth Smooth Very Good Good Fair Slightly Rough Rough Very Rough

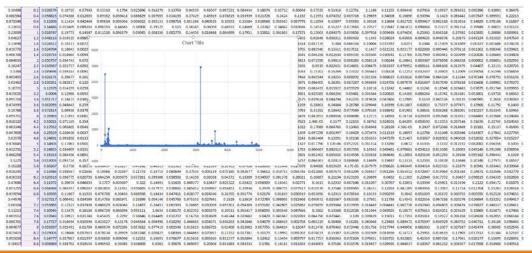



https://www.engineersedge.com/vibration/vibration_s everity_chart_13658.htm

Temperature Conditioner (RawConditioner)

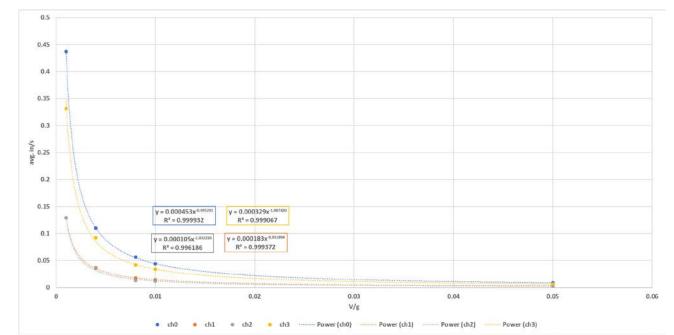

• Using set temperature limits $(T_{low}, \text{ and } T_{high})$:

- $T_{sensor} \ge T_{high} \mid T_{sensor} \le T_{low} \rightarrow \frac{T_{sensor}}{T_{sensor}}$
- $T_{high} > T_{sensor} > T_{low} \rightarrow T_{sensor}$



Human-machine Interface (Settings tab)

Output File


- Generated every hour
 - .csv file
 - 20 25 MB
 - Each channel
 - FFT data with the peaks' frequencies
 - Enables further manual analysis

							-	4	Ch0, THou	29.6123.1	Low + Excel		8 × /					Wess, Abd	ulleh G. (Assoc)		
	Home Inse	ot PageLay				♀ Tell me who	et you want to do									1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997				<i>.</i>	8
8 & 4 1 B (Calibri		· · = = =		Wrap Text	General	- 1		Normal	Bad	Good		sutral	Calculatio		m m F	E ΣAuto	Z T		
^{te} ∳f	ormat Painter			A . = = =		Merge & Center	5.5,	Formal	tional Format as tting * Table *	check cell	Explanator		Ur	ixed cell	Note		insert Delete Fo	🗸 🥜 Clea			
Cipo	card G		Font	5	Alignment		6 Number	6				Styles					Cets		Edting		
7	* 1 2	< \ _ fr	0.009925																		
1	A	в	С	D	E	F	G	н	1.1	J	К	L	N	4	N	0	P	Q	R	S	
0	30498	0.2	0.026579	0.10715	0.57392	0.33313	0.1794	0.025696	0.016279	0.13763	0.0453	9 0.435	07 0.093	7231 0.0	084434	0.1807	0.3571	2 0.506	94 0.575	35 0.51	416
0.0	80584	0.4	0.098823	0.074588	0.012655	0.09382	0.039418	0.088829	0.007055	0.014193	0.37429	9 0.459	19 0.07	8815 0.0	033939 (0.02172	0.242	4 0.11	62 0.219	51 0.074	052
0.0	71948	0.6	0.13208	0.11424	0.042464	0.09814	0.005056	0.006022	0.002131	0.098714	0.05116	6 0.0405	25 0.10	0553 0	.25584 (0.02656	0.05556	3 0.0577	76 0.120	54 0.10	897
0	21611	0.8	0.14486	0.015609	0.089263	0.098193	0.44665	0.38908	0.29125	0.115	0.3834	5 0.060	59 0.40	6931 0	.14669	0.2374	0.3404	2 0.0106	96 0.145	32 0.11	227
0	23069	1	0.018747	0.19773	0.14647	0.011526	0.093279	0.03045	0.008236	0.005773	0.1445	6 0.0184	48 0.004	4899 0	.17951	0.1581	0.06160	3 0.172	71 0.150	63 0.034	075
0	04627	1.2	0.048116	0.010315	0.098501	0.032817	0.13644	0.045199	0.040035	0.12173	0.1046	2 0.011	65 0.019	9815 0.0	008618	0.03024	0.04863	3 0.0093	02 0.028	48 0.036	311
0	13598	1.4	0.024312	0.10311	0.007255	0.062992	0.11799	0.12289	0.003762	0.011888	0.049203	3 0.0075	19 0.06:	1048 0.0	020031	0.016664	0.1011	7 0.16	14 0.0571	75 0.	004
0.0	30776	1.6	0.024784	0.18043	0.002014	0.17179	0.030317	0.13078	0.04545	0.038105	0.00661	1 0.120	0.03	2032	0.1735 (0.03639	6 0.02972	6 0.0837	05 0.0839	46 0.15	611
0.0	06706	1.8	0.019733	0.018664	0.009443	0.000859	0.039092	0.024074	0.050956	0.03762	0.02132	8 0.181	67 0.074	4419 0.0	027022	0.0035	0.02175	2 0.0426	41 0.0462	58 0.012	634
0.0	64833	2	0.050757	0.034743	0.07264	0.02855	0.007727	0.013861	0.039311	0.048111	0.09741	5 0.199	45 0.072	2703 0.0	064128 0	0.04725	0.08108	8 0.0388	13 0.0715	98 0.04	813
0	18247	2.2	0.010567	0.023737	0.029267	0.011915	0.060233	0.025671	0.08705	0.081524	0.0238	9 0.179	99 0.049	9185 0	.13571 (0.01173	0.01415	9 0.0423	05 0.05	19 0.022	621
	0.1368	2.4	0.089698	0.039243	0.009134	0.012695	0.002864	0.094685	0.055149	0.003708	0.08766	4 0.363	99 0.1	7677 0.0	077053	0.09008	0.02049	3 0.30	33 0.151	02 0.16	269
0.0	05405	2.6	0.026171	0.20577	0.16119	0.08862	0.31582	0.052612	0.22021	0.18513	0.4356	1 0.0237	99 0.024	8987 0	.12387 (0.001914	0.0050	2 0.174	68 0.0459	44 0.14	255
0	01462	2.8	0.030251	0.082817	0.12041	0.042355	0.01013	0.1897	0.11559	0.076138	0.1615	7 0.0246	61 0.03	6005 0	.03231 (0.03067:	0.0618	9 0.09	71 0.0964	05 0.26	201
0	18771	3	0.12376	0.014359	0.025898	0.084711	0.054826	0.17141	0.041	0.10662	0.04809	0.115	48 0.00	6152 0.0	032261	0.02144	0.1338	3 0.185	09 0.0624	33 0.013	622
0.0	39025	3.2	0.0004	0.12968	0.055572	0.20062	0.21097	0.10034	0.077822	0.1263	0.1331	8 0.0499	09 0.000	6483 0.0	012523	0.02838	0.09024	1 0.148	51 0.0255	89 0.066	256
0.0	95718	3.4	0.091717	0.18473	0.038581	0.1277	0.019522	0.5092	0.16496	0.021964	0.02505	5 0.0621	97 0.034	6813 0	.26313	0.1126	0.01848	3 0.0975	75 0.0396	24 0.044	294
0.0	74393	3.6	0.062093	0.048643	0.25902	0.069526	0.016485	0.8708	0.31281	0.71023	0.2720	1 0.0069	26 0.3	1696 0.0	002978	0.03615	0.0695	4 0.0812	09 0.288	61 0.04	884
0	15768	3.8	0.072314	0.00938	0.037886	0.007751	0.14723	0.158	0.12229	0.086691	0.3627	7 0.181	05 0.20	6624 0.0	016842	0.02364	0.08481	1 0.0507	63 0.311	92 0.19	642
0.0	99751	4	0.16963	0.21893	0.008189	0.22665	0.070686	0.046096	0.054567	0.1168	0.3133	5 0.203	72 0.13	3136 0	.16742	0.1074	0.00620	4 0.0264	78 0.0476	52 0.088	656
0.0	28322	4.2	0.92021	0.071169	0.35407	0.036899	0.35452	0.48971	0.062221	0.12575	0.03569	9 0.487	97 0.074	4334 0	.49217	1.819	0.3703	6 0.0076	23 2.44E-	05 0.5	577
	03346	4.4	0.17552	0.005805				0.16998	0.22115	0.21024		8 0.0063			.21925	0.295		4 0.0010		89 0.064	765
0.0	47808	4.6	0.25529	0.020436	0.003734	0.008164	0.034266	0.009113	0.15525	0.055214	0.1468	8 0.0428	84 0.023	3974 0	.19179	0.1980	0.3307	4 0.113	09 0.0972	56 0.001	997
0	03978	4.8		0.093858		0.1051				0.065261	0.1585						0.05976		43 0.0634		
	76845	5	0.14603			0.030387			0.034075					4904 0.0		0.2957			27 0.0177		
-	32731	5.2	0.14855	0.034009						0.081078									63 0.0064		
	68258	5.4	0.15219	0.084456	0.065144	0.065983	0.1311		0.023398										01 0.0524		
	0.1225	5.6		0.093724		0.029657			0.055562			8 0.0333							57 0.0643		
	10228	5.8	0.10267	0.5738		0.036497			0.40519	0.25515					.07926			8 0.0170		88 0.019	
		lour 20180717		(+)									4								
	Cite_ite			•														10	a 10 m		
96	0.34461	4999	2 1.67	04 2.70	21 2.94	91 1.13	309 1.22	52 0.88	606 4.6	168 1.0	531 0.8	8312 0	72956	0.07718	6 4.71	54 4	.4466	2.8959 0	.091473	1.181	0.5
97	0.014752	4999	.4 3.52	78 3.36	99 4.2	245 2.01	1.23	74 0.0110	683 0.57	463 1.3	404 1.	4824	1.8239	0.83838	8 0.430	075 0.5	52299	2.5079	0.4949	1.0365	1.
98	0.88229	4999	6 0.608	63 5.2	22 0.54	1.39	971 2.32	39 1.92	243 0.65	252 0.28	225 0.4	1733	4.0872	3.056	7 0.479	0.0	88343 0	12799	2.1038	0.89602	0.4
999	3.0288	4999	.8 2.13	24 2.38	27 0.191	161 2.11	137 0.442	06 0.396	669 0.46	807 3	8.54 1.	2024 0	11184	4.7418	5 1.45	16 1	.4009 0.0	21984	0.6359	0.97246	0.9
000	0.29798	500	0.0004	82 1.38	17 0.882	3.03	308 10.5	07 0.82	136 6.7	677 0.23	323 0.01	4827 0	38413	2.175	3 4.97	52 0.3	27808 0	69776	0.71174	1.2107	2.
01	0)	0	0	0	0	0	0	0	0	0	0	0	(D	0	0	0	0	0	
02	0)	0	0	0	0	0	0	0	0	0	0	0	(D	0	0	0	0	0	
03	116.6	1340	9 110	5.6 110	5.6 11	6.6 11	6.6 11	5.5 11	6.6 11	6.6 11	6.5	115.6	116.6	116.0	5 11	5.6	116.6	116.6	116.6	116.6	1
04	233.4		3 23	3.4 23	3.4 21	6.8 23	3.4 21		3.4 23	3.2 23	33.4	213.8	233.4	233.4	4 23	3.4	233.2	214	233.2	233.4	2
005	698.2						4.8 69						4162.3	194.8			194.8	194.8	698.2	194.8	1
006	194.8			0		5.2 64.4				0	0	0	0					48.003	796.6	271.8	2
007	0		0	0	0	0	0 19			ō	0	0	0		-	0	0	0.000	194.8	906.08	
008	0		0	0	0	0	0 29			0	0	0	0			0	0	0	194.0	0	
008			0	0	0	0	0 29	0	0	0	0	0	0		-	0	0	0	0	0	
010	0	-	0	0	0	0	0	0	0	0	0	0	0		-	0	0	0	v	0	

Sensitivity Analysis & Observations

- Performed to pick reasonable sensitivities (V/g) for the channels
 - Average in/s at various sensitivities
 - Referenced to transmitters' values
 - Best-fit functions & trial-error revealed appropriate sensitivities for channels
- Different Sensitivity for each channel
 - Channels should have same sensitivity
 - Calibration needed
- \uparrow Sampling rate $\equiv \downarrow$ in/s

Conclusion

- A working CBM system was developed and implemented successfully
- A corresponding custom software was developed and implemented successfully
- Documentation (including a manual) were put together for the software analysis

Future Work

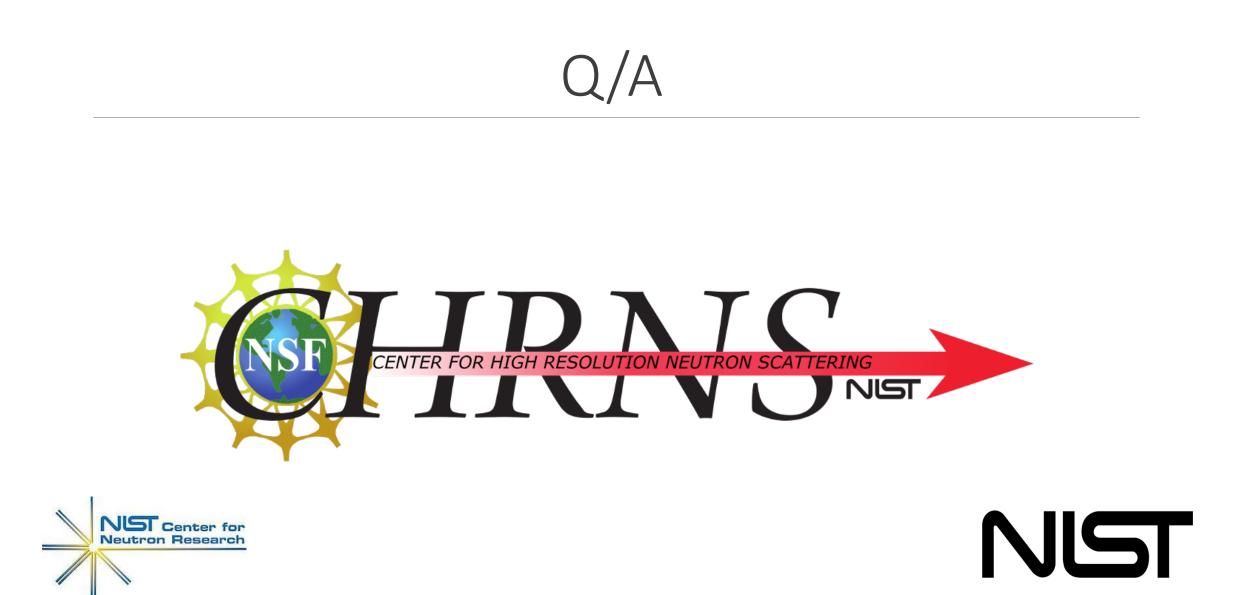
- Calibrate accelerometers
- Improve GUI
- Installation of CBM system on primary pumps
- Additional Noise Analysis Applications:
 - Crack detection (for fuel channels analysis)
 - Power Noise

Acknowledgements

Muhammad Afridi, PhD
Richard Allen
Scott Arneson
Julie Borchers, PhD
Heather Chen-Mayer, PhD
Joseph Dura, PhD
Steven Fick, PhD
Sam MacDavid
Mitchell Stansloski, PhD, PE
Danyal Turkoglu, PhD
All of the members of Reactor Ops and Engineering at the NCNR
NIST Research Library

Acknowledgements

Acknowledgements


Dağistan Şahin, PhD

Marcus Schwaderer, MBA, COR II, PM II Katie Behnert, National Golf Champion (GoogleMe)

