

1. "DATA"

- 1. "DATA"
- 2. Interdisciplinary tools

- 1. "DATA"
- 2. Interdisciplinary tools
- 3. Effective optimizer

- 1. "DATA"
- 2. Interdisciplinary tools
- 3. Effective optimizer

Demands

- 1. "DATA"
- 2. Interdisciplinary tools
- 3. Effective optimizer

Demands

1. Low computational cost

- 1. "DATA"
- 2. Interdisciplinary tools
- 3. Effective optimizer

Demands

- 1. Low computational cost
- 2. Easy model-switching

A computational framework for designing Ni-based superalloy

<u>S. Li</u>, U. Kattner, C. Campbell, D. Wheeler, A. Reid

National Institute of Standards and Technology

May. 14 2015

- ***** Background: $\gamma \gamma'$ Ni Base Superalloy
- Computational Framework
 - Classical Nucleation, Growth and Coarsening Models
 - Elastic Deformation: Statistical tool, PyMKS
 - Plastic Deformation: Kocks-Mecking & energy conservation models
 - Optimization

 $\gamma - \gamma'$ Ni-Base Superalloy

required

Olson, 1997 Ahmadi et al., 2014 Le Baillif et al., 2014

b) Tensile tests at 850°C • γ and γ' microstructure b С a 700 600 • γ' strengthening Stress (MPa) 500 Ψ≈0⁶ • Chemistry & geometry 400 -300°C/min т properties affect performance 300 =120°C/min -30°C/min 200 0.0% 0.2% 0,4% 0,6% 0,8% • Optimum composition & $120^\circ \le \Psi_c \le 180^\circ$ $0^\circ < \Psi_c \le 120^\circ$ $\Psi_c = 0^\circ$ strain (mm/mm) Weak & shearable Strong & shearable Non-shearable precipitate precipitate precipitate **High Temperature Application** processing conditions are Precipitation hardening Performance Properties Structure Processing Microstructure 11

Homogeneous, NON-Steady-State Nucleation

$$\dot{N}(t) = Z\beta N_0 \exp\left(\frac{-\Delta G^*}{K_B T}\right) \exp\left(\frac{-\tau}{t}\right)$$

- Cluster size is estimated by Boltzmann distribution of total number of clusters, N₀
- Interface energy (E_{INT}) and N_0 are the remaining parameters
- β rate of atom jumps from matrix to precipitate
- Zeldovich factor, Z, is employed to correct the equation
- The parameters are calculated using Thermo-Calc with TCNI6 database

$$\Delta G^* = \frac{16\pi}{3} \frac{E_{INT}^3}{\Delta G_N^2}$$

$$\Delta G_N = \frac{\Delta G_{ch}}{V_m^{\gamma'}} = -\frac{RT}{V_m^{\gamma'}} \sum_i \bar{C}_i^{\gamma'} \ln \frac{a_i}{\bar{a}_i^{\gamma'}}$$

$$Z = \frac{V_M^\beta}{2\pi N_A r_0^2} \sqrt{\frac{E_{INT}}{K_B T}}$$

$$\beta = \frac{4\pi r_0^2}{a^4} \left[\sum_i \frac{\left(\bar{C}_i^{\gamma'} - \bar{C}_i^{\gamma}\right)^2}{\bar{C}_i^{\alpha} D_i} \right]^{-1}$$

$$r_0 = -\frac{2E_{INT} V_M^\beta}{\Delta G_N}$$

$$\tau = \frac{1}{\theta Z^2 \beta}$$

Rougier et al., 2013 Perez et al., 2008

 γ' growth

$$\frac{dR}{dt} = \frac{D_i^{\gamma}}{\left[1 - \lambda_j \sqrt{\pi} \exp(\lambda_j^2) \operatorname{erfc}(\lambda_j)\right] R} \frac{C_i^{\gamma} - \bar{C}_i^{\gamma}}{\left(\bar{C}_i^{\gamma'} - \bar{C}_i^{\gamma}\right)}$$

- $\bar{C}_i^{\gamma'}$ is taken as the equilibrium composition in γ'
- $\left[1 \lambda_j \sqrt{\pi} \exp(\lambda_j^2) \operatorname{erfc}(\lambda_j)\right] R$ stands the Effective Diffusion Distance

 γ' coarsening

$$\frac{dR}{dt} = \frac{8}{27} \frac{E_{INT} V_M^{\gamma'}}{R^2 N_A k_B T} \frac{D_i^{\gamma} \bar{C}_i^{\gamma}}{\bar{C}_i^{\gamma'} - \bar{C}_i^{\gamma}}$$

	Experimental		Data Regression		
	Composition, %	<i>Т</i> _р , К	reference	E _{int} , mJ/m ²	N ₀ , 1/m ²
Kt1	Ni-7.5Al-8.5Cr	873	Booth-Morrison et al., 2008	15	1.5x10 ²⁶
Kt2	Ni-9.8Al-8.3Cr	1073	Sudbrack et al., 2008	24	5x10 ²⁷
Kt3	Ni-6.5Al-9.5Cr	873	Booth-Morrison et al., 2010	18	4.0x10 ²⁶

	Experimental			Data Regression	
	Composition, %	<i>Т</i> _р , К	reference	E _{int} , mJ/m ²	N ₀ , 1/m ²
Kt1	Ni-7.5Al-8.5Cr	873	Booth-Morrison et al., 2008	15	1.5x10 ²⁶
Kt2	Ni-9.8Al-8.3Cr	1073	Sudbrack et al., 2008	24	5x10 ²⁷
Kt3	Ni-6.5Al-9.5Cr	873	Booth-Morrison et al., 2010	18	4.0x10 ²⁶

Nishizawa et al., 2001 Li et al., 2002

Nishizawa et al., 2001

$$E_{int} = \alpha | \Delta H^{\gamma \to \gamma'}$$

$$E_{int} \& |\Delta H^{\gamma \to \gamma'}|$$

$$\mathbf{a} = f(T_p)$$

$$\mathbf{a} = (3.75 \times 10^{-2}T_p - 2.23) \times 10^{-6}$$

	Experimental		Computation	Parameter		
	Composition %	T _p Kelvin	<i>ΔΗ^{γ→γ′}</i> 10⁴ J/mol	<mark>E_{int}</mark> mJ/m²	α 10 ⁻⁶ mol/m²	E_{int,cal} mJ/m ²
Kt1	Ni-7.5Al-8.5Cr	873	1.52	15	0.99	15.
Kt2	Ni-9.8Al-8.3Cr	1073	1.34	24	1.80	24
Kt3	Ni-6.5Al-9.5Cr	873	1.64	18	1.10	17.1

$$E_{int} = (3.75 \times 10^{-2} T_p - 2.23) \times 10^{-6} |\Delta H^{\gamma \to \gamma'}|$$

Yield Stress

Thomas et al., 2006 Roth et al., 1997 Reed., 2006 Collins et al., 2014

$$\sigma_{YS} = \sigma_0 + \sigma_{SS} + \sigma_{H-P} + \sqrt{\sigma_{\rho,0}^2 + \sigma_p^2}$$

- Calculations using results from previous steps: $Vf_{\gamma'}, r_{\gamma'}$, and composition of matrix
- Lattice friction (σ_0), solid solution (σ_{SS}) and Hall-Petch effect (σ_{H-P}) to yield stress is estimated [Roth97].
- σ_P follows the minimum value among $\sigma_{wc} \sigma_{sc}$ and σ_{or} .
- *E*_{APB} is calculated

$$\sigma_{wc} = M \frac{E_{APB}}{2b} \left[\left(\frac{6\bar{R}^{\gamma'} E_{APB} V_f^{\gamma'}}{\pi L_T} \right)^{0.5} - V_f^{\gamma'} \right]$$
$$\sigma_{sc} = 0.22M \left(\frac{\mu b}{\bar{R}^{\gamma'}} \right) \left(\frac{\pi \bar{R}^{\gamma'} E_{APB} V_f^{\gamma'}}{L_T} - V_f^{\gamma'} \right)^{0.5}$$
$$\sigma_{or} = M \frac{\mu b}{\bar{R}^{\gamma'}} \sqrt{\frac{V_f^{\gamma'}}{\pi}}$$

APB Energy

 $W_{13} = \frac{3\Delta H^{FCC} + \Delta H^{ORD} \frac{\left(1 - \bar{C}_{s}^{\gamma'}\right)}{\bar{C}_{s}^{\gamma'}}}{24Rc\left(1 - \bar{C}_{s}^{\gamma'}\right)}$

 $= W_1 + 2W_3$

• Chemical property of <u>Ni-Al-Cr</u> gives

 $E_{APB,[111]} = 0.06 - 0.18 \text{ J/m}^2$

Chemical properties are obtained at T_s

equilibrium condition at T_p

28

<i>C_{Al}</i> , %	13.62
C _{cr} , %	17.46
T_p , Kelvin	1230
$V_{f,max}^{\gamma'}$, %	43.89
E_{int} , mJ/m ²	25.51
E_{APB} , mJ/m ²	118

<i>C_{Al}</i> , %	13.62
C _{cr} , %	17.46
T_p , Kelvin	1230
$V_{f,max}^{\gamma'}$, %	43.89
E_{int} , mJ/m ²	25.51
E_{APB} , mJ/m ²	118

Average radius

$$\bar{R}^{\gamma'} = \frac{\sum N_c R_c^{\gamma'}}{\sum N_c}$$

<i>C_{Al}</i> , %	13.62
C _{cr} , %	17.46
T_p , Kelvin	1230
$V_{f,max}^{\gamma'}$, %	43.89
E_{int} , mJ/m ²	25.51
E_{APB} , mJ/m ²	118

Average radius

$$\bar{R}^{\gamma'} = \frac{\sum N_c R_c^{\gamma'}}{\sum N_c}$$

<i>C_{Al}</i> , %	14.05
C _{cr} , %	10.16
T_p , Kelvin	1328
$V_{f,max}^{\gamma'}$, %	26.31
E_{int} , mJ/m ²	27.47
E_{APB} , mJ/m ²	157

Statistical/machine learning tool correlating microstructure with properties by linear function

- By employing machine learning technique, • PyMKS can reproduce the FEM calculations in a more efficient way
- For the microstructure with high volume ٠ fraction of γ' , the representative volume element is created for PyMKS calculation

6

Machine Learning Tech for Elastic Deformation – PyMKS

Fast et al., 2011 Kalidindi, 2012

The evolution of the <u>dislocation density</u> (ρ) is calculated as increasing strain based on non-equilibrium thermodynamics and Kocks-Mecking model using <u>shear modulus</u> (μ), <u>burger's vector</u> (b), <u>mean free path</u> of dislocation (l), <u>vibration frequency</u> (v_0), <u>energy barrier</u> of dislocation annihilation (ΔG_{ρ}) and <u>model constant</u> (C, α)

$$\rho_{in,\varepsilon + \Delta\varepsilon} = \rho_{in,\varepsilon} + \frac{(\mu b^2 + \tau bl)\frac{\nu_0}{\dot{\varepsilon}}exp\left(-\frac{\Delta G_{\rho}}{kT}\right)\rho_{in,\varepsilon} - \tau_{\rho}}{\frac{1}{2}C\alpha\mu b^2 - (\mu b^2 + \tau bl)}\Delta\varepsilon$$

$$\Delta\varepsilon$$

$$\Delta\varepsilon$$

$$M\tau = \sigma_0 + \sigma_{SS} + \sigma_{H-P} + \sqrt{\sigma_{\rho}^2 + \sigma_{p}^2}$$

36

Plastic Deformation Model

	$V_f^{\gamma'}$	σ_{ys} , MPa	ε _{ys} , %
PD1	0.323	450	0.29
PD2	0.296	560	0.33
PD3	0.278	570	0.36

•
$$T_s = 1123K$$

• PD1 is used for calibration

•
$$\Delta G_{\rho} = 3.08 \text{ eV}$$
 and
 $C = -180$ provide the
best agreement to PD1

Plastic Deformation Model

	$V_f^{\gamma'}$	σ_{ys} , MPa	ε _{ys} , %
PD1	0.323	450	0.29
PD2	0.296	560	0.33
PD3	0.278	570	0.36

- $T_s = 1123K$
- PD1 is used for calibration
- $\Delta G_{\rho} = 3.08 \text{ eV}$ and C = -180 provide the best agreement to PD1

Input conditions

	<i>C_{Al}</i> ,%	C _{Cr} ,%	T_p , К
Min	10	10	1123
Max	25	20	1473

- Objective: high work to necking (E_{WTN}) at $T_s = 1123K$
- Pass the calculations while $\bar{V}_{f}^{\gamma'} < 0.4$
- 6 bits of memory is utilized for 1 variable
- 6 samples are selected in 1 generation and 10 generations are calculated

Optimization

Optimization

42

Optimization - WTN

60

<i>C_{Al}</i> , %	0.231
<i>C_{Cr}</i> , %	0.195
T_p , Kelvin	1450
σ_{UTS} , MPa	394
ε_{UTS} , %	12.98

- The optimization of Ni-Al-Cr ternary system is demonstrated.
- With proper E_{INT} and N_0 , nucleation-growth-coarsening models successfully approach γ' precipitation in binary and ternary system.
- The yield stress and young's modulus are calculated by empirical formulas and PyMKS package, respectively.
- The IRT model is implemented to simulating the plastic deformation.
- To optimize the chemical composition, Genetic Algorithm is used as the close loop of process-structure-properties.

Optimization

