

Routes for Rapid Synthesis of CuIn_xGa_{1-x}Se Absorbers

R. Krishnan, W. K. Kim, S. Kim, C.H. Chang, M. Ider, B.J. Stanbery, O.D Crisalle, J. Shen, E. A. Payzant, V. Craciun, C. Campbell, and T. J. Anderson

Why Should We Build Solar Cells?

Why do you rob banks, Willy?

"Cause that's where the money is!"

Willy Sutton Bank Robber

Because That Is Where the Energy Is!

Classification of Solar Cells

Most Promising Thin Film Absorber Material

- Direct band gap (Eg $\sim 1.2 \text{ eV}$)
- High optical absorption coefficient: $\sim 2 \ \mu m$
- High radiation resistance
- High reliability
- Lower cost per Watt installed
- High conversion efficiency: cell: 20% and module: 13%
- Efficient in low-angle & low-light conditions
- Flexible substrates possible (BIPV, cheaper substrates?)
- Positive response under concentration

Chalcopyrite structure

Key Issue: Cost Reduction - \$/W_p

Materials Costs (~50%) Material efficient deposition – Lower substrate cost (e.g. BIPV) » Lower temperature Processing Costs Capitalization largest cost » Process intensification » Increase process yield (e.g., process control) » Increase throughput (e.g., scale-up, reduce absorber thickness, high rate deposition/rapid reaction pathway/lower temperature) Increase Cell Efficiency – For advanced technologies: Module level <</p> Champion cell ~ Predicted

Comparison of Simulated and Reported *Photo- J-V* and Quantum Efficiency

NREL 3-stage Process: Champion Cell

DICTRA Atomic Mobilities Chemical Potentials

Approach to Developing Phase Diagrams

Comparison of Calculated Cu-Se Phase Diagram with Experimental Data

Phase	Model		
Liquid	Ionic two sub-lattice model		
	(Cu+1,Cu+2)p(Se-2,Va,Se)q		
α -Cu _{2-x} Se	Sub-lattice model (3 sub-lattices)		
	$(Cu, Va)_1(Se, Va)_1(Cu)_1$		
β-Cu _{2-x} Se	Sub-lattice model (3 sub-lattices)		
	$(Cu, Va)_1(Se, Va)_1(Cu)_1$		
Fcc (Cu)	Regular solution model		

Se₂ Partial Pressure

Phase Diagram of Cu-In-Se

Isothermal section at 500 °C (18 phases)

Region	Equilibrium phases		
1	α -CISe ₂ + α -Cu + β -Cu ₂ Se		
2	α -CISe ₂ + α -Cu + Cu ₇ In ₃		
3	α -CISe ₂ + Cu2In + Cu ₇ In ₃		
4	α -CISe ₂ + Cu2In + In ₄ Se ₃		
5	α -CISe ₂ + InSe + In ₄ Se ₃		
6	α -CISe ₂ + InSe + δ -CuInSe ₂		
7	α -CISe ₂ + β -CuIn ₃ Se ₅ + δ -CuInSe ₂		
8	α -CISe ₂ + β -CuIn ₃ Se ₅ + Liquid		
9	α -CISe ₂ + β -Cu ₂ Se + Liquid		

Chemical Potential Diagram

Reg.	Equilibrium phases	
1	α -ClSe ₂ + α -Cu + β -Cu ₂ Se	
2	α -CISe ₂ + α -Cu + Cu ₇ In ₃	
3	α -CISe ₂ + Cu ₂ In + Cu ₇ In ₃	
4	α -CISe ₂ + Cu ₂ In + In ₄ Se ₃	
5	α -CISe ₂ + InSe + In ₄ Se ₃	
6	α -CISe ₂ + InSe + δ -CuInSe ₂	
7	α -CISe ₂ + β-CuIn ₃ Se ₅ + δ-CuInSe ₂	
8	α -CISe ₂ + β -CuIn ₃ Se ₅ + Liquid	
9	α -CISe ₂ + β -Cu ₂ Se + Liquid	

DICTRA Atomic Mobilities Chemical Potentials

UF PMEE Reactor System

- ➔ Ultra high vacuum system
- → Operating pressure : ~ 10^{-8} Torr

- Rotating platen with 9 substrates (2×2 inches)
- Sequential deposition

→High Temperature Materials Laboratory (ORNL)

Graphite Dome

Pathway Studies

Binary Metal-Se Precursors

- -Co-deposited Se-M/glass
- Bilayer Se/M/glass

Ternary Precursors

- -Metal Selenization
- -Co-deposited
- -<u>Bilayer Compounds: e.g.</u> <u>CuSe/GaSe/glass</u>
- Quaternary Precursors
- Nanopowders

Ga+Se Precursor Annealing

Se/Ga Precursor Annealing

Ga-Se Phase Diagram

Pathways for Binary Precursor Structures

Temperature Ramp Anneal

Isothermal annealing

TEM-EDS Analysis

Glass/GaSe/CuSe Precursor

TEM-EDS Analysis

Glass/GaSe/CGS/CuSe annealed for 30 min, at 300 °C

Isothermal annealing

Solid-state Growth Models

Parabolic growth model

Before reaction

Nucleation at A-B interface

Diffusion thru product & reaction (ex. D_{BC} > D_{AC})

Avrami growth model

Kinetic Analysis

Avrami model

 $\alpha^2 \sim \mathbf{k} \cdot \mathbf{t}$

 $\ln[-\ln(1-\alpha)] = n \ln(t+t^*) + n \ln k$

➔ Analysis suggests one-dimensional diffusion controlled reaction

CuInSe₂ Formation Pathway

$CuSe + InSe \rightarrow CuInSe_2$

 $(E_a=66 \text{ kJ/mol})$

CulinSe₂ Formation Pathway

CuSe + In_2Se_3 \rightarrow CuInSe_2 + Se (E_a=162 kJ/mol)

CulinSe₂ Formation Pathway

(E_a=100 ~ 124 kJ/mol)

CulinSe₂ Formation Pathway

$Cu + In + Se \rightarrow CuInSe_2$

Very fast !! No intermediate phase No diffusion barrier !!

Reaction rate

Avrami model

	Precursors	Activation energy (kJ/mol)	
		Avrami	Parabolic
1	InSe/CuSe	66	65
2	CuSe/In ₂ Se ₃	N/A	162 (±5)
3	Cu-In + Se(vapor)	124 (±19)	100 (±14)
4	GaSe/CuSe	118 (±22)	107 (±15)
5	Cu-Ga + Se(vapor)	108	N/A
6	Cu/In/Ga + Se(vapor)	144	N/A

U. Farva & C. Park

Cu-Se Phase Diagram

How Can We Synthesize High Quality CIGS Rapidly?

Sutton's law states that in attempting to diagnose a problem, one should first do the experiment that can confirm the most likely diagnosis. "When you hear hoof beats in Texas, think horses, not zebras."

Conclusions

Pathways are dependent on precursor structure

- In phase particularly important
- Most paths are diffusion limited
- High-rate processes are possible
 - Film quality needs assessed
 - Liquid phase assisted growth
- Point defect chemistry helpful (low disordering energy)
 - Enhance diffusivity, defect compensation, type-inversion, impurity passivation