Electron Optics in Graphene Heterostructures with Nanopatterning

Scott Dietrich¹, Shaowen Chen^{1,2}, Zheng Han^{1,7}, Mirza M. Elahi³, K. M. Masum Habib³, Lei Wang⁴, Bo Wen^{1,8}, Huan Hu⁸, Yuanda Gao⁵, Takashi Taniguchi⁶, Kenji Watanabe⁶, James Hone⁵, Avik W. Ghosh³, and Cory Dean¹

¹Department of Physics, Columbia University, New York, NY 10027, USA. ²Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA. ³Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA. ⁴Department of Physics, Cornell University, Ithaca, NY 14853, USA. ⁵Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA. 6National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0047, Japan. ⁷Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China. ⁸IBM Thomas J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA. USA.

Agenda

- Background
 - Electron optics in conventional semiconductors
 - Current state of graphene FETs and the Veselago lens
- Metrology of split-gate junctions
 - Quantifying device quality
 - Transverse magnetic focusing experiments
 - Snell's Law
 - Measuring effective junction width
- Band structure engineering through superlattice gating
 - Dielectric modulation technique
 - Device design
 - Application to a split-gate graphene FET

Ballistic electron refraction

$$l_{mfp} = \tau \cdot v_F > L_{device}$$

Spector, et al. *Appl. Phys. Lett.* 56 (1990) 967. Spector, et al. *Appl. Phys. Lett.* 56 (1990) 2433.

Ballistic electron optics

2DEG ballistic transport

- Snell's Law
- Electron optics "lens"

Analog of an optical convex lens

Conserve transverse momentum

Spector, et al. Appl. Phys. Lett. 56 (1990) 967.

Ballistic p-n junctions in graphene

Cheianov, et. al. Science 315 (2007).

Veselago lens

Ballistic p-n junction Negative refraction Perfect lens (p = n)

Cheianov, et. al. Science 315 (2007): 1252-1255.

Electronic switches

Theoretical n-p-n junction beam splitter

Graphene field effect transistors (gFETs)

Bilayer (non-ballistic)

Sawtooth gated ballistic monolayer

Morikawa, et al. arXiv:1702.04039 (2017)

Previous work: beam splitter

Rickhaus, et al. APL 107.25 (2015)

Previous work: angular-dependent transmission

Sutar, et al. Nano letters 12.9 (2012)

PNP junctions

Background by normal incident electrons

Yet to be observed

Challenges in achieving a sharp edge

Smooth junction edge (compared with λ_{F})

Rough edge refracts electron randomly

Angle dependent transmission (sharp junction)

Sajjad, et al. Phys. Rev. B 86, 155412 (2012)

Advances in graphene device fabrication

van der Waals Transfer

1D Edge Contacts PDMS BN BN graphene **BN-G-BN** BN Si/Si02 G Si/SiO, etch Е mask 20 15 metal (um) 10 leads edge contact 5 T = 1.7 K0 15 0 5 10 20 device size (µm) **COLUMBIA UNIVERSITY**

.

IN THE CITY OF NEW YORK

Wang, L., et al. Science 342.6158 (2013)

Metallic gates

STM study of local potential Zhu, X., et al. unpublished

Metric for device quality

Straight edge junction

S. Chen, Z. Han, et al. Science 353 1522 (2016).

Measurement configuration

Large background

Achieving a smaller incident angle

Zero magnetic field

Transverse magnetic focusing (TMF)

Transverse magnetic focusing in 2DEGs

Spector, et al. Springer Berlin Heidelberg, 1992. 66-77.

Transverse magnetic focusing in graphene

Resonance condition:

p is integer

$$B_{\rm f}^{(p)} = \left(\frac{2\hbar k_{\rm F}}{eL}\right)p = \left(\frac{2\hbar\sqrt{\pi n}}{eL}\right)p$$

Taychatanapat, Thiti, et al. Nature Physics 9.4 (2013)

Matched density TMF

TMF across junctions

TMF across junctions

Experiment vs. Simulation

Explanation of kinks

Compare different modes

Extract 1st order peaks:

 $p_1 = 6.76e11 \text{ cm}^{-2}$

S. Chen, et al. Science (2016).

Snell's law for ballistic electrons

$$k_1 \sin \theta_1 = \pm k_2 \sin \theta_2$$

Angular dependent transmission

S. Chen, et al. *Science* (2016). Sajjad, Redwan N., et al. *Phys. Rev. B* **86** (2012): 155412. V_o

Toward sharper junctions

S. Chen, et al. unpublished

Back to zero field

Room temperature devices

Challenges with ballistic split-gate transistors

- Diffusive scattering due to roughness at device edges and gates boundaries
- Imperfect collimation of transport at first gate

Deeper solution: band structure engineering

Wilmart, et al. 2D Materials 1.1 (2014) Morikawa, et al. arXiv:1702.04039 (2017)

Graphene superlattices: Hofstadter

Dielectric-modulated electrostatic gating

Si Gate

SiO₂ patterning

Square 35nm pitch

Triangular 40nm pitch

Triangular superlattice

- Highly customizable
- Switchable
- Interesting physics at easily-achieved B-field (3.5T rather than 35T)
- Significantly altered electronic properties

One-dimensional superlattices

⁶⁰nm pitch SiO₂ trenches

Measuring anisotropic transport

Application to split-gate gFETs

Proposed device design

- Superlattice parameters tuned to suppress perpendicular conduction $(\sigma_{\perp} \sim v_{\perp} \rightarrow 0)$
- Right-angle junction to further collimate ballistic electrons
- Angled junction to switch on/off

Summary

- High-quality ballistic graphene junction
 - Negative refraction
 - Angular dependent transmission
- Band structure engineering
 - 2D superlattice gating achieved
 - 1D superlattices near
- Future of electron optics switch
 - Sharper junction
 - Angled-gate with anisotropic transport
 - Scaling for room temperature applications

Acknowledgements

We thank P. Kim, A. Pasupathy and J.-D. Pillet for helpful discussion, and R. Ribeiro for fabrication assistance.

This work is supported by the Semiconductor Research Corporation's NRI Center for Institute for Nanoelectronics Discovery and Exploration (INDEX).

Thank you.