

UNIVERSITY AT ALBANY State University of New York

Metrology for Emerging Materials, Devices, and Structures: Graphene as an Example

Alain C. Diebold Center for Nanoscale Metrology (NC)3

Outline

- Characterization and Metrology
- Physical Properties of Graphene
- Optical Microscopy
- LEEM
- LEED
- HR-TEM
- Electrical Characterization
- Overriding Themes

Characterization and Metrology: Themes

Nano-Scale and Quantum Phenomena

• Familiar Methods show a "new light"

• New Methods always help

Advancements still Required

Properties of Graphene

- High Mobility
 - ~ 100,000 cm²/V sec (few degrees Kevin)
 - ~ 10,000 cm²/V sec (room temperature)
- Can carry high current density
- Robust Material

Energy

Graphene Band Structure

www.cem.msu.edu/~reusch/VirtualText/intro3.htm

 π state at *K*

 π bond and π^* anti-orbitals

Charlier et al REVIEWS OF MODERN PHYSICS, VOLUME 79, APRIL–JUNE 2007

Graphene Electrical Properties

Semiconductors

- Parabolic Dispersion of Energy vs momentum
- Effective Mass defined by change of E vs k

 $E = \frac{\hbar^2 k^2}{2m}$ $m^* = \frac{\hbar^2}{(d^2 E/d^2 k)}$

$$E^{\pm}(\delta \mathbf{k}) \simeq \pm (\sqrt{3}a/2) \gamma_0 \|\delta \mathbf{k}\|$$
$$v_F = \sqrt{3}a \gamma_0 / 2\hbar = \frac{3}{2}a_{\rm cc} \gamma_0 / \hbar$$

E = h c

• Graphene

- Linear Dispersion of energy levels vs momentum (wave vector k)
- light-like linear electronic band dispersion implies massless particles
- Particles called Dirac Fermions

Graphene

В

A

Bernal

Sources of Graphene

Exfoliation – Scotch tape & graphite

Reaction of SiC(0001)

Other

Bernal Stacking vs Misorientation

Single Layer Properties for misoriented (AA') No-Dirac Fermions for 2 to 4 layer Bernal

Inter-layer spacin 3.33 Å for *B* and 3.42 Å for turbostratic stacked bi-layer

Other mis-orientations possible

Latil, Meunier, and Henrard, PRB 76, 201402_R (2007) cnse.albany.edu

Optical Microscopy The magic 300 nm SiO₂ substrate

cnse.albany.edu

Graphine is modeled as a 0.34 nm thick graphite layer

Graphite refractive index constant Between 400 nm to 750 nm

n = 2.6 - i 1.3

Contrast dependence is a result of wavelength dependence of SiO₂ reflectivity

 SiO_2 reflectivity function of SiO_2 thickness

Blake, et al., Appl. Phys. Lett. 91, (2007), 063124

Nano Scale Optical Properties Optical Properties of Graphene defined solely by the Fine Structure Constant

- Dynamic Conductivity, $G = e^2/4h$, of Dirac Fermions
- Fine Structure Constant $\alpha = e^2/hc \approx 1/137$
- $T \equiv (1 + 2\pi G/c)^{-2} = (1 + \frac{1}{2} \pi \alpha)^{-2}$
- $R \equiv \frac{1}{4} \pi^2 \alpha^2 T$

Nair et al, Manchester group in Science 320, (2008), 1308

Remember Surface Analysis Methods - LEEM

Monolayer Sensitivity

Figures from J. Thorp /UVa, R. Hull (INDEX)/RPI, R. Tromp /IBM

3.5 eV

LEEM analysis of Multilayer Graphene

(b)

nm

(d)

Electron reflectivity from graphene on SiC(0001) shows quantized oscillations due to quantum well (QW) resonances.

a

4 eV

When the LEEM electron energy matches that of one of the QW states, the electron transmits through the film reducing the reflectivity

1 ML has one minimum in reflectance curve

Figure courtesy H. Hibino: Phys. Rev. B. 77, (2008), 075413.

Remember Surface Analysis Methods - LEED

Low Energy Electron Diffraction

NIST Surface Science Database & www.cem.msu.edu/~cem924sg/

LEED Analysis of Graphene

. 2 (a-d) Graphite, trilayer, bilayer, and monolayer graphene LEED patterns at 42 eV, respectively.

Knox (Osgood Group at Columbia) AVS 2009

LEED Analysis of Corrugation of Graphene

Thickness (ML)	$\Delta k_{\parallel} (\text{\AA}^{-1})$	$\Delta \theta_{norm} (deg)$	
1	0.70	6.1	
2	0.28	2.4	-
3	0.20	1.7	

Knox (Osgood Group at Columbia) AVS 2009

Remember Surface Analysis Methods – (AR)XPS

• ARXPS maps VB structure

- Bands not described by simple tight binding model
- Quasiparticles observed e.g., electrons surrounded by phonons
- Potassium Doping opens band gap
- May explain impact of substrate on graphene electrical properties

Ohta, Bostwick, Seyller, Horn, & Rotenburg, Science 313, (2006), p 951 & Nature Physics 3 (2007), p 36.

Raman of Graphene

See for example: Ni Raman spectroscopy and imaging of graphene

Raman of Graphene

The molecular picture

D band attributed to the breathing modes of sp2-bonded atoms in rings

Benzene Breathing Mode

Graphene's Phonon Dispersion

2D band is at ~2700 cm⁻¹ due to a 2 phonon double resonant process involving π band

J. Maultzsch et al, Phys. Rev. Lett. 92, (2004) 075501

Raman 2D Band Sensitive to # graphene layers

Figure Courtesy Robert Geer CNSE (INDEX)

Raman:: Defects & Stacking Configuration

cnse.albany.edu

Electron irradiation induced defect density

L⁻¹ proportional to Ratio of the intensities of G band to D band

Poncharal, Phys. Rev. B 78, 113407 2008

Geer Group unpublished

NanoCharacterization of Nanotubes Aberration Corrected HR-TEM Imaging

Not Corrected

Heavy atom (lodine) atomic columns are imaged

Focal Series Corrected

Atomic Columns

Both K and I atomic columns are imaged

Sloan, et al, MRS Bulletin, April 2004

Multi-Slice Simulations of Graphene Stacking

Carbon Nanofilm

Horiuchi, et al.

*C5=5mm, 0.15 Convergence angle

Trilayer Graphene at 80kV, 0 C_S

F. Nelson (INDEX) this conference

College of Nanoscale Science & Engineering

Aberration Corrected TEM First Images of Single Layer Graphene showing atomic structure

Simulated HR TEM Image at 300 keV with Cs = 0

Figure Courtesy C. Kisielowski - Nano Lett.8, (2008), 3582–3586

Observation of Corrugation: TEM Nano-Diffraction

J.C. Meyer, Nature 446, (2007), 60.

College of Nanoscale Science & Engineering

UNIVERSITY AT ALBANY State University of New York

2009 – Aberration Corrected TEM of Stacking 2 – Layers with 30° Misorientation

FFT

Warner, et. al. (Briggs), Nano Letters (2009), 102 cnse.albany.edu

Hall Measurements

Carrier Sheet Density $N_{\rm S}$ = IB / (q|V_{\rm H}|)

Quantum Hall Effect

 $\sigma = v e^{2}/h - conductivity$ where v is either and integer or rational fraction

Graphene Mobility Data

Zhang, et al, Nature 438, 201 (2005)

Bolotin et al Sol. State Com. 146, (2008), 351-355

Quantum Hall Effect

- In a Magnetic Field the Electrons have circular cyclotron orbits $\omega_{\rm C} = (eB/mc)$
- When orbits are treated QM they have discrete energy levels
 - Landau Levels $E_n = (h/2\pi)\omega_c(n+1/2)$
- At certain values of field, energy levels a filled up to N and there is no electron scattering
- Conductivity σ will have discrete steps $g_s e^2/h$ where g_s is the degeneracy factor (spin & sublevels) $\sigma \sim N e^2/h$
 - J_x (Hall current) = $\sigma_{xy} E_y$ J_y (current) = $\sigma_{yy} E_y$

Quantum Hall Effect in Graphene $\sigma \sim (n+1/2)e^2/h$

Stormer and Kim - QHE proves Dirac nature of carriers

Zhang, et al, Nature 438, 201 (2005)

Berry Phase – angle of vector quantities in closed

http://www.mi.infm.it/manini/berryphase.html

Nanoscale Quantum Phenomena The Berry Phase (angle) in Graphene confirms Dirac particle

- At low magnetic fields, Shubnikov de Hass oscillations in the resistance Rxx perpendicular to current flow.
- $\Delta R_{xx} = A \cos[2\pi (B_F/B + \frac{1}{2} + \beta)]$
- β (Berry Phase) = ½ for Dirac particles
- B_F is frequency SdH oscillations
- B is magnetic field strength

Berry Phase, β , refers to correction to semiclassical dynamics – not needed when a full QM theory is used.

Zhang, et al, Nature 438, 201 (2005)

Single Electron Microscopy Electron Hole Puddles – Are they due to Graphene Corrugation from SiO₂?

The intrinsic disorder length scale in graphene is ~ 30 nm.

"The SET tip is capable of measuring the local electrostatic potential with microvolt sensitivity and a high spatial resolution close to its size."

J. Martin, et al, Nature Physics, 4, (2008), 144-148.

Observation of Graphene Corrugation by STM

Corrugation has a height variation of 5 A over an area of 30 30 nm².

Lateral extent of these corrugations ~ few nanometers

Corrugation mimics the SiO₂ surface

Deshpande, Bao, Miao, Lau, and LeRoy, Spatially resolved spectroscopy of monolayer graphene on SiO2

STM Observation of Stacking Misorietation

AA'A''

ABA' (A' face)

turbostratic AA'A'' supercell

mixed ABA' supercell

3 layer graphene on SiC

Latil, Meunier, and Henrard, PRB 76, 201402_R (2007)

Graphene Ribbons Can We Measure properties of Ribbons?

Fig. 6. GNR edges. (a) Zigzag edge, (b) armchair edge

Width of Graphene NanoRibbon

Han, et al (Kim's Group), PRL 98, 206805 (2007)

What we can Measure

- Where graphene is (for some samples)
- Number of graphene layers & orientation
- Corrugation

• Electrical – mobility, carrier density, conductance

Conclusions

 Graphene displays novel properties due to nanoscale dimensions and unique electronic structure

 Metrology must continue to advance to meet needs of new materials such as graphene

• Despite these advances- metrology and device fabrication are amazingly difficult

Acknowledgements

- Florence Nelson and Tianhao Zhang
- Christian Kisielowski
- Theme VI team
 - Ray Ashouri, Karl Berggren, Robert Geer, Julia Greer, Tony Heinz, Robert Hull, Philip Kim, Charlie Marcus
- NRI NERC INDEX Funding

