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Outline

o Characterization and Metrology

* Physical Properties of Graphene
e Optical Microscopy

e LEEM

e LEED

« HR-TEM

 Electrical Characterization

e Overriding Themes
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Characterization and Metrology: Themes

 Nano-Scale and Quantum Phenomena
e Familiar Methods show a “new light”
 New Methods always help

 Advancements still Required
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Properties of Graphene

« High Mobility
~ 100,000 cm?/V sec (few degrees Kevin)
~ 10,000 cm?/V sec (room temperature)

e Can carry high current density

e Robust Material




Graphene Band Structure
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Graphene Electrical Properties

« Semiconductors
— Parabolic Dispersion of Energy vs momentum E =*k*/2m

m” = h2 /(d? E/d?k)
— Effective Mass defined by change of E vs k

* Graphene E*(8Kk) = £ (y3a/2) y| k]|
— Linear Dispersion of energy levels vs _ ,
momentum (wave vector k) ve=v\3ayy/2h=3a. y/h
— light-like linear electronic band dispersion E=hc

Implies massless particles

— Particles called Dirac Fermions
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Graphene

c)

turbostratic AA” supercell Bernal AB supercell

38.21°
Sources of Graphene Bernal Stacking vs Misorientation

Exfoliation — Scotch tape & graphite  Single Layer Properties for misoriented (AA’)
No-Dirac Fermions for 2 to 4 layer Bernal

Reaction of SiC(0001)
Inter-layer spacin 3.33 A for B and
Other 3.42 A for turbostratic stacked bi-layer

Other mis-orientations possible
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Optical Microscopy
The magic 300 nm SiO, substrate

Graphine is modeled
as a 0.34 nm thick graphite layer

410am A 70nm 830nm S80nm GS0nm i=710nm

fayaooam SIOHE " () F—AH—L S Graphite refractive index constant
: | Between 400 nm to 750 nm

n=26-11.3
4= 860nm whita light
Contrast dependence is a result of
wavelength dependence of
410am A F0nm SMnm S90nm SE0mm A= F10nm

SiO, reflectivity

SiO, reflectivity function
of SiO, thickness
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Nano Scale Optical Properties
Optical Properties of Graphene defined solely by
the Fine Structure Constant

Dynamic Conductivity, G= e?/4h, of Dirac Fermions

Fine Structure Constant a = e2/hc =1/137

T = (1 +21G/c)2 = (1 + % na)2

e R=V4m2a2T
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Figure i:
Schematic
P2 illuctration
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Monolayer Sensitivity
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.. Electron reflectivity from
. graphene on SiC(0001) shows
~ | quantized oscillations due to

-.-_ . quantum well (QW) resonances.

When the LEEM electron energy |

.1 matches that of one of the QW

" through the film reducing the
. reflectivity
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12/30v98
Sl <11i>
SE1Z217-1
from J. Pelz

Low Energy Electron Diffraction

G1 G2 G3 Screen
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Intensity (a.u.)

3.0 2.5 40 45
k(A

2 2.5

2 1 0 1
k (A

- 2 (a-d) Graphite, trilayer, bilayer. and monolayer graphene LEED patterns at 42 eV, respectively.
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Remember Surface Analysis Methods — (AR)XPS
« ARXPS maps VB structure

» Bands not described by simple
tight binding model

Binding energy (eV)
& A b o

* Quasiparticles observed — e.g.,
electrons surrounded by phonons

Momentum

» Potassium Doping opens band
Momentum gap

» May explain impact of substrate
on graphene electrical properties

Ohta, Bostwick, Seyller, Horn, & Rotenburg, Science 313, (2006), p 951 & Nature Physics 3 (2007), p 36.
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Raman of Graphene

532nm
G-band

2D-band

Graphite )\

Intensity

Single layer graphene!
1500 2000 zéqF 3000
Wavenumber(cm )
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Raman of Graphene
The molecular picture

D band attributed to the breathing modes of sp2-bonded atoms in rings

Benzene
Breathing Mode
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Graphene’s Phonon Dispersion
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Raman 2D Band Sensitive to # graphene layers

Intens%ty (a.u) v

v

2600 2700 2800
Raman Shift (cm1)
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NanoCharacterization of Nanotubes
Aberration Corrected HR-TEM Imaging

Not Corrected
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Carbon Nanofilm
[@ . '_.:.“'.‘ ;:

Horiuchi, et al. Trilayer Graphene at 80kV, 0 Cg
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Length ~ 25 nm

Height ~1 nm
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2009 — Aberration Corrected TEM of Stacking
2 — Layers with 30° Misorientation
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Hall Measurements

Carrier Sheet Density
Ns= 1B / (q|Vyl)

Determine the sheet resistance Rg using Magnetic Field
a van der Paw test structure

V=0

=)

current

Mobility ::>

H = [Vyl/(RsIB) = L/(qNgRs).

Hall Voltage

Quantum Hall Effect

o = v e?/h - conductivity
where v is either and integer or rational
fraction

cnse.albany.edu
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Quantum Hall Effect

* In a Magnetic Field the Electrons have
circular cyclotron orbits
oc = (eB/mc)

Magnetic Field

o)

« When orbits are treated QM they have Y
discrete energy levels Hall Voltage

— Landau Levels E,, = (h/2n)w:(n+1/2)

« At certain values of field, energy levels a

filled up to N and there is no electron I DI B I
scattering poc 1o ' iy
k(¥sq 25F qos h,ez

201

e Conductivity o will have discrete steps
g.e?/h where g, is the degeneracy factor
(spin & sublevels) ¢ ~ N e?/h ] | \

6§ 3 10 1z 14 N
Magnetic Field (T)

Jy (Hall current) = o, B, J, (current) = o, E,

cnse.albany.edu
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R, (k)

Stormer and Kim - QHE proves Dirac nature of carriers
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Berry Phase — angle of vector quantities in closed
loop path

http://www.mi.infm.it/manini/berryphase.htmi
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Nanoscale Quantum Phenomena
The Berry Phase (angle) in Graphene confirms Dirac particle

At low magnetic fields,
Shubnikov de Hass oscillations
in the resistance Rxx
perpendicular to current flow.

« AR = A cos[2n(B./B + ¥ + B)]

R, (B)/R,,(0)

B (Berry Phase) = for Dirac
particles

 Bgisfrequency SdH
oscillations

B is magnetic field strength

Berry Phase, (3, refers to correction to semiclassical dynamics
— not needed when a full QM theory is used.

cnse.albany.edu
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Single Electron Microscopy
Electron Hole Puddles —
Are they due to Graphene Corrugation from SiO,?

The intrinsic disorder length scale in graphene is ~30 nm.

Single Electron Transistor

0.3K

X
“The SET tip is capable of measuring the local electrostatic potential with microvolt

sensitivity and a high spatial resolution close to its size.”

cnse.albany.edu
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Observation of Graphene Corrugation by STM

Corrugation has a height variation of
5 Aover an areaof 30 30 nm>2.

Lateral extent of these corrugations ~
few nanometers

Corrugation mimics the SiO, surface

0 i s X

04 -02 00 02 04
i Tip Voltage (V)

- 5 Cree— s 0.2n S
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STM Observation of Stacking Misorietation

turbostratic AA'A" supercell mixed ABA" supercell

3 layer graphene on SiC
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Graphene Ribbons
Can We Measure properties of Ribbons?

(a)
]
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What we can Measure

 Where graphene iIs (for some samples)
 Number of graphene layers & orientation
« Corrugation

o Electrical — mobility, carrier density, conductance
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Conclusions

« Graphene displays novel properties due to
nanoscale dimensions and unigue electronic
structure

« Metrology must continue to advance to meet
needs of new materials such as graphene

e Despite these advances- metrology and
device fabrication are amazingly difficult
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