Metrology for Nanoelectronics:

The Impact of Nano-Sized Dimensions on Characterization and Metrology

Alain C. Diebold

Accelerating the next technology revolution.

TRS International Technology Roadmap for Semiconductors

AGENDA

- Evolution of Micro to Nanoelectronics
- Transistor (FEP) Metrology Challenges
- Nano Dimensions & Ultra Thin SOI
- Interconnect Metrology
- Patterning Metrology
- Trends & Conclusions

Transistor Metrology Evolution

Beyond CMOS

15 year Horizon Non-classical CMOS

Strain Metrology

Yesterday 90 nm ½ Pitch

Strain Enhanced Mobility

pMOS FINFET

Metrology For New Structures

New Materials

High K Dielectric

High κ /interface

Today

45 nm $\frac{1}{2}$ pitch

& Metal Gate

Metrology

Molecular Switches ? Nanowire Transistor ?

> Metrology For New Switches

Metrology R&D Rule #1

- Figure out what the next devices are and something about how they will work
 - Know just enough to be Dangerous!
 - Have Friends that Know The Field

Switching Speed of Long Channel Transistor - The Old Days

 $\mathbf{I}_{dsat} \propto$ (1/Lg) ($\mu_{Carrier\ Mobility}$) (1/EOT)

Transistor Gate Delay, τ , decreases as CD decreases but Gate Dielectric must also decrease in thickness.

Idsat 1 as Lg gate length

Sounds Easy
- Just decrease the Gate length &/or increase mobility

TROUBLE As dielectric thickness decreases leakage current increases

General Rules for CMOS Scaling

$$\frac{T_{ox}}{L} \cong \frac{1}{30}$$

Today - All Scaling Rules are Violated

Planar CMOS Evolution

New Transistor Devices (2006 ITRS)

The Future – the Ultimate NanoTransistor

Short Channel Behavior

 $I_{dsat} \propto (100) (\mu_{Carrie} ? bility) (100T)$

Nano Transistors $I_{dsat} \sim WC_{ox} (V_G - V_T) v_{sat}$

 $\tau = C_{load} V_{DD} / I_{dsat}$

C dependence A = Lg x W Dopant Conc.

See Lundstrom's publications

NanoTube Electronics (Avouris – Chen, Science)

18 um long Carbon nanotube

Ring Oscillator 5 CMOS inverters = 10 FETs

Nano-Sized Transistor Features require Materials Characterization

Nanowire Sized Si or Ge channel

Transistor and Interconnect Delays

SPEED / PERFORMANCE ISSUE The Technical Problem

Interconnect Delay: GLOBAL LINE SCALING

Global conductor lines getting smaller in cross-section but <u>NOT</u> in length. Signal delay is growing exponentially!

Future Interconnect (ITRS 2006)

• 3D Interconnect ?

Kreupl, Infineon

Carbon Nanotubes ?

2-µm

MARCO Center

4) Photo-detection

SiGe Photodetectors

Intel

5) Low Cost Assembly

6) Intelligence

CMOS

14

Optical Interconnect ?

AGENDA

- Evolution of Micro to Nanoelectronics
- Transistor (FEP) Metrology Challenges
 Extending Planar CMOS & Introducing Non-Planar CMOS
 - Stress and Film Thickness (& Sidewall)
- Nano Dimensions & Ultra Thin SOI
- Interconnect Metrology
- Patterning Metrology
- Trends & Conclusions

Today - ICs use Locally Strained Si Considerable Process Diversity

NMOS – SiN Stress Liner PMOS SiGe in Source & Drain

PMOS Compressive Strain increased hole mobility

High Stress Film

NMOS Tensile Stress SiN Layer increased electron mobility

From T. Ghani, et al., IEDM 2003, p 978. Courtesy Intel Dual Stress Liner NMOS – Tensile SiN PMOS – Compressive SiN

AMD Athelon[™] 350 Venice Micro - Chipworks Corner Dick James

Diversity in Dual Stress Liner Process Drives unique Metrology Solutions

NMOS

AMD Athelon[™] 350 Venice Micro - Chipworks Corner Dick James

PMOS

Reported AMD Process

N&P MOS Compressive Si Nitride layer Oxygen Implanted in NMOS area & Nitride becomes tensile OxyNitride IBM –MP from Xbox 360 Micro - Chipworks Corner Dick James

PMOS

NMOS

Reported IBM Process NMOS Spacer reduced PMOS Multilayer Compressive Nitride

Survey of Stress(Strain) Measurement Methods

Nano-Raman and CBED

Transistor Level Stress

Micro-Raman, XRD Photoreflectance Spectroscopy

Level Stres

Strain measurementConvergent Beam Electron Diffraction (CBED)HOLZ Line Fitting13 mrad CBED

HAADF-STEM Image

Lattice constants determined by least-squares (χ^2) fitting of experimental to simulated HOLZ line patterns for [340] zone.

ASACS[™] software by Soft Imaging Systems Inc (from "STREAM" project).

3-D lattice fitting under constraints of plane strain approximation.

Armigliato, et al., Appl. Phys. Lett. 82, 2172 (2003). J. M. Zuo, Ultramicroscopy 41, 211 (1992)

TEM sampling will not be easy Differences in PMOS and NMOS mobility: iso vs Dense pMOS difference 14% nMOS difference 8% nMOS to pMOS difference ratio 22%

Much more complicated for real design

Trend : Use Modeling to connect what you want to measure with what you need to know Example: Metrology of Strained Channel Devices

Film Thickness at Nano-Dimensions

- Transistor Gate Dielectric
 - Complicated Dielectric Stack with SiO₂ Interface

- Metal Gate
 - Thin Metal Layer with Dual Work Functions for NMOS vs PMOS

Physical Film Thickness Metrology Spectroscopic Ellipsometry

Traditional High Precision SiO2 Thickness

- Single Wavelength Ellipsometry
- Optical constant at one wavelength only n needed - k close to zero in visible wavelength range
- Oxynitrides same principle works for thickness - nitrogen concentration not easy to pin down to 0.1 atomic % optically even with SE

Spectroscopic Ellipsometry Lab – Far IR to VUV In-line – Near IR to VUV $\langle {\cal E} \rangle$ Dielectric Properties are a function of wavelength of light Film data **Optical Model** $\langle \mathcal{E} \rangle$ (t, n, k, etc.)

regression

Cody-Lorentz optical model used for parametric modeling of gate dielectrics.

$$\varepsilon_2 \propto Exp\left[\frac{(E-E_t)}{\beta}\right], for E \leq E_g.$$

$$\varepsilon_2 \propto (E - E_g)^2, for E > E_g.$$

* A.S. Ferlauto, et. al., J. Appl. Phys., 92, 2424 (2002).
J. Price, et. al, Appl. Phys. Letters, 85, 1701 (2004).

New Optical Models Variability with Composition and Process See Jimmy Price's talk for SE of defects in High K

Optical Constants

Thin Metal film metrology

Dielectric function of a Metal film

Photon energy

Challenge : Stable Recipe over wide range of thickness

Wrap Around Gate Metrology FINFET (IBM)

Side Wall and Top Dielectric Thickness and Composition

Wrap Around Gate						
		-				
>	ת	←				
>	F	←				
	2	←				

NMOS -MOSFET PMOS -FINFET

MUGFET

- Fin line edge roughness,
- Fin thickness uniformity

Front End Metrology Other Measurements

AGENDA

- Evolution of Micro to Nanoelectronics
- Transistor (FEP) Metrology Challenges
- Nano Dimensions & Ultra Thin SOI
 - Example of SEMATECH Work (Price & Diebold)
- The Future of Materials Characterization
- Interconnect Metrology
- Patterning Metrology
- Nano Characterization and Metrology
- Trends & Conclusions

Optical Constants Properties:

- Bulk Si optical properties are well known
- Optical properties of nano-scale materials are not well known.
- Shifts in nano-scale SOI films can be observed at room temperature

Data Proves the Problem is Real:

3	native oxide	15.166 Å
2	bulk soi	101.78 Å
1	buried oxide layer (box)	1606.4 Å
0	silicon substrate	1 mm

Difference between optical model & data.

- 10 nm SOI 6.7 % Δ TEM
 - 8 nm SOI 15.1 % Δ TEM

4 nm SOI 18.5 % Δ TEM

2 nm SOI 19.8 % Δ TEM

Optical Absorption at Critical Points

Summary of techniques:

•Crystallinity \rightarrow no effect.

•P composition \rightarrow possible E₁ amplitude decrease for high P concentration.

•Strain \rightarrow Red shift for E₁ transition.

•Quantum confinement \rightarrow Blue shift for E₁ transition.

Other sources of shifts in the optical properties?

Shows Importance of cross-method characterization

- 1. Confirmed Crystallinity → TEM
- 2. Dopant Profiles → SIMS

(No Oxidation induced P Buildup at Interface)

- 3. No Strain Observed → Raman and XRD
- 4. Quantum Confinement Observation → SE

SE results for UTB-SOI films:

•Clearly, quantum confinement effects are observed with decreasing thickness of the silicon layer.

•Provided the thickness values are fixed by independent means (eg. TEM), data inversion method is able to extract optical constants for quantum confined silicon.

AGENDA

- Evolution of Micro to Nanoelectronics
- Transistor (FEP) Metrology Challenges
- Nano Dimensions & Ultra Thin SOI
- Interconnect Metrology
- Patterning Metrology
- Trends & Conclusions

Modeled Effective Dielectric Constants

If bulk dielectric = 2.6 (SiLK*) then $k_{eff} = 2.94$ If bulk dielectric = 2.2then $k_{eff} = 2.57$ If bulk dielectric = 1.5then $k_{eff} = 1.96$ If bulk dielectric = 1.0 (Air)then $k_{eff} = 1.5$

* SiLK Semiconductor Dielectric, Trademark of the Dow Chemical Company

Thanks to Navjot Chhabra

Example of Need for Multiple Methods Low K Stack (STEM-EELS)

Optical Metrology SE analysis: Single Layer Model

Unable to detect interfaces

43

Still Method of Choice for Manufacturing due to small Spot size

44

XRR analysis: multi-layer and interfaces

Total thickness

- XRR Thickness =99.0 nm and SE Thickness= 99.8 nm
- XRR shows three interfaces

FFT thickness

Three Layers have higher density

	Formular	Thickness (A)	Density (g/cm3)	Roughness (A)
Layer#1	:SiCN;	254.7	2.049	4
Layer#2	:SiCN;	27.4	2.272	2.1
Layer#3	:SiCN;	217.8	2.024	4
Layer#4	:SiCN;	25	2.224	1.7
Layer#5	:SiCN;	176.1	1.99	1.1
Layer#6	:SiCN;	23.7	2.228	0.7
Layer#7	:SiCN;	265.4	2.012	5.4
Layer#8	:Si;	: -1.0;	2.33 ₄₅	3.7

AGENDA

- Evolution of Micro to Nanoelectronics
- Transistor (FEP) Metrology Challenges
- Interconnect Metrology
- Patterning Metrology
- Trends & Conclusions

Dual patterning for contacts (two exposures with etch steps) overlay control

Overlay Metrology Requirements

- $OL = sqrt((OL1)^2 + (OL2)^2)$
- OL = 70% single exposure OL

Courtesy Bart Rijpers

Low Energy SEM for CD Measurements Sec E D **CD-SEM** is Extendable to 32 nm Node Sc waf Thanks to David Joy

Scatterometry for CD Measurements

Scatterometry is Extendable to 32 nm Node

Potential New CD Methods also apply To Other Areas & Beyond CMOS

Win – Li Wu NIST

He Ion Microscope New Imaging Physics

Alis Corp. (part of Zeiss)

CD Control Range – will it be relaxed?

- Vt behavior already dominates gate length for circuit performance and functionality
- Performance fluctuations due to CD will be dominated by leakage power and not by gate delay/speed
 - Frequency range of 30-35% == leakage spread of 20X
 - Borkar (Intel), 2002
- Ongoing ITRS Design TWG Discussion

Conclusions

- CMOS Extension and Beyond CMOS both Require Characterization and Metrology at the NanoScale
- Interfacial Measurement is Increasing in Difficulty & Importance
- Sidewall Control will become more important
- New Problems often require New Methods such as Optical Second Harmonic Generation
- Dimensional Confinement and Surface State Effects must be included in Optical Modeling

Acknowledgements

- Jimmy Price and PY Hung
- Hugo Celio (now at Jordan Valley)
- Ehrenfried Zschech (AMD Dresden)
- Prof. Brian Korgel
- Prof. Mike Downer
- Prof. David Joy
- ITRS Metrology Team <u>especially</u> <u>Steve Knight</u>
- Christian Kisielowski, Dave Muller, and Steve Pennycook
- Peter Zeitzoff

 SEMATECH, the SEMATECH logo, AMRC, Advanced Materials Research Center, ATDF, the ATDF logo, Advanced Technology Development Facility, ISMI and International SEMATECH Manufacturing Initiative are servicemarks of SEMATECH, Inc. All other servicemarks and trademarks are the property of their respective owners.

