Metrology for Nanoelectronics

Alain C. Diebold Senior Fellow SEMATECH Austin, Texas

Accelerating the next technology revolution.

"This is an AMRC Project presentation made possible, in part, by funding provided by SEMATECH."

AGENDA

- Evolution of Micro to Nanoelectronics
- Lithography Metrology Challenges
- Transistor (FEP) Metrology Challenges
- Interconnect Metrology Challenges
- The Future of Materials Characterization
- Nano Characterization and Metrology
- Trends & Conclusions

Transistor Evolution

Beyond CMOS

Future 15 years Non-classical CMOS

Nanowire Transistor ?

Molecular Switches ?

Today 90 nm Node Lg ~ 45 nm

Strain Enhanced Mobility

ADVANCED MATERIALS RESEARCH CENTER

New Materials

45 nm Node

Lg < 25 nm

CMOS pMOS FINFET

> 16 nm Node Lg ~ 6 nm

CMOS Switching Speed $\tau \sim 1/I_{dsat}$ Role of Saturation Drive Current

CMOS Inverter

Switching Speed of Long Channel Transistor - The Old Days

 $\textbf{I}_{dsat} \propto$ (1/Lg) ($\mu_{Carrier\ Mobility}$) (1/EOT)

Transistor Gate Delay, τ , decreases as CD decreases but Gate Dielectric must also decrease in thickness.

Sounds Easy - Just decrease the Gate length &/or increase mobility

TROUBLE As dielectric thickness decreases leakage current increases

High Volume ICs use CMOS w/ Locally Strained Si Strained Si substrates not used

45 nm CD PMOS Compressive Strain increased hole mobility 45 nm CD NMOS Tensile Stress SiN Layer increased electron mobility

From T. Ghani, et al., IEDM 2003, p 978. Courtesy Intel

Trend : Use Modeling to connect what you want to measure with what you need to know Example: Metrology of Strained Channel Devices

Near Term Solution New Materials

Dielectric Material Poly Si Gate Transistor Channel

High k Metal Gate Strained Si

ADVANCED

Trend: Interfacial Measurement is Increasing in Difficulty & Importance Are Ellipsometry and XRR limited??

Nanotransistors – The Future

Short Channel Behavior

 $I_{dsat} \propto (100) (\mu_{Carrie} ? bility) (100T)$

Nano Transistors $I_{dsat} \sim W C_{ox} (V_G - V_T) v_{sat}$

 $\tau = \mathbf{C}_{\mathsf{load}} \mathbf{V}_{\mathsf{DD}} / \mathbf{I}_{\mathsf{dsat}}$

C dependence A = Lg x W Dopant Conc.

Change in Transistor Behavior

Why measure CD for NanoTransistors $\tau = C_{load} V_{DD} / I_{dsat}$ 1. CD impacts Capacitance C $A = Lg \times W$ Dopant Conc. 2. CD impacts Threshold Voltage Likharev has shown that below 10 nm CD, Threshold Voltage is very sensitive to CD At CD = 5 nmProcess range is 0.2 nm ~ 1 atom

Nano-Sized Transistor Features

Nanowire Sized Si or Ge channel

Transistor and Interconnect Delays

SPEED / PERFORMANCE ISSUE The Technical Problem

Accelerating the next technology revolution.

130

Interconnect Delay: LOCAL LINE SCALING

Local conductor lines get smaller in cross-section, spacing <u>& length</u>.

RC Delay
$$\cong \rho \varepsilon \frac{L^2}{w^2}$$

Interconnect Delay: GLOBAL LINE SCALING

Global conductor lines getting smaller in cross-section but <u>NOT</u> in length. Signal delay is growing exponentially!

> LINEs get smaller But! <u>CHIPs</u> don't

Trend: Sidewall Control will become more Important

Line Edge Roughness impacts Interconnect Resistance and Line Width Roughness impacts Transistor Leakage Current

ADVANCEF

AGENDA

- Evolution of Micro to Nanoelectronics
- Lithography Metrology Challenges
- Transistor (FEP) Metrology Challenges
- Interconnect Metrology Challenges
- The Future of Materials Characterization
- Nano Characterization and Metrology
- Trends & Conclusions

Evolution of CD-SEM

Today 90/65 nm Node Lg < 45 nm

New Way

Measure several lines for local CD average

Tilt Beam for sidewall metrology

Accelerating the next technology revolution.

Old Way

32 nm Node CD Evaluation

Bryan Rice (Intel), SPIE, 2004 CD-SEM and Scatterometry can reach 32 nm Node w/improvement – impact of SOI not tested

45 nm contact Holes

16 nm Lines -176 nm Pitch

Recent Advances & Future Approaches

CD-SEM Measure several lines for local CD average

Scatterometry

Add VUV to evolve toward

sub 32 nm node : Lg < 13 nm

Add ?? to scatterometry to enable LER???

SEMATECH Accelerating the next technology revolution

aberration corrected CD-SEM ?

CD Variation for 193 nm Immersion Lithography

AltPSM 193nm immersion

AGENDA

- Evolution of Micro to Nanoelectronics
- Lithography Metrology Challenges
- Transistor (FEP) Metrology Challenges
- Interconnect Metrology Challenges
- The Future of Materials Characterization
- NanoCharacterization & Metrology
- Trends & Conclusions

Transistor Metrology Evolution

Beyond CMOS

Future 15 years Non-classical CMOS

Molecular Switches ? **Nanowire Transistor?**

> Metrology For New Switches

NiSi I.E. 35nm

Strain **Enhanced Mobility**

SiGe

SiGe

Strain

Metrology

Today

90 nm Node

New Materials

& Metal Gate

Tomorrow

Metrology

High κ /interface (100)UTSOI MOSFET Gate -**FinFET** (110)**CMOS**

pMOS FINFET

Metrology For New Structures

Cody-Lorentz optical model used for parametric modeling of gate dielectrics.

$$\varepsilon_2 \propto Exp\left[\frac{(E-E_t)}{\beta}\right], for E \leq E_g$$

 $\varepsilon_2 \propto (E - E_g)^2$, for $E > E_g$.

cl_hfo2 Optical Constants

* A.S. Ferlauto, et. al., J. Appl. Phys., 92, 2424 (2002).

J. Price, et. al, Appl. Phys. Letters, 85, 1701 (2004).

Extend Ellipsometry by Optical Modeling

Accelerating the next technology revolution.

Spectroscopic Ellipsometry Fundamentals:

For multiple films, use Abeles* matrix method to extract

thickness and refractive index of each film:

 $r_p \propto \chi_{0,P}(\prod_{i=1}^{n} P_{i,p}) \chi_{sub,p}$

 $r_s \propto \chi_{0,s} (\prod_{i=1}^N P_{i,s}) \chi_{sub,s}$

 P_{i}

X is the characteristic dielectric matrix for the ambient (0) or substrate (sub).

$$I_{j,p} = \begin{vmatrix} \cos(\beta_j) & -i\sin(\beta_j) \frac{\cos(\theta_j)}{\tilde{n}_j} \\ \tilde{n}_j & \tilde{n}_j \\ i\sin(\beta_j) \frac{n_j}{\cos(\theta_j)} & \cos(\beta_j) \end{vmatrix} P_{j,s} = \begin{vmatrix} \cos(\beta_j) & \frac{i\sin(\beta_j)}{\tilde{n}_j\cos(\theta_j)} \\ \tilde{n}_j\cos(\theta_j) & \tilde{n}_j\cos(\theta_j) \\ \tilde{n}_j\sin(\beta_j)\cos(\theta_j) & \cos(\beta_j) \end{vmatrix}$$

$$\beta_{i} = \frac{4\pi d_{i} n_{i} \cos \theta_{i}}{\lambda}$$

$$\beta_{i} = \frac{4\pi d_{i} n_{i} \cos \theta_{i}}{\lambda}$$
*F. Abeles, Ann de Physique 5:596, 1950. 27
$$d_{i} = \text{thickness of ith film}$$

$$n_{i} = \text{index of refraction of ith film}}{\lambda}$$

$$\beta_{i} = \frac{4\pi d_{i} n_{i} \cos \theta_{i}}{\lambda}$$

$$\beta_{i} = \frac{4\pi d_{i} n_{i} \cos \theta_{i}}{\lambda}$$

Thin film limits for SE:

For the thin film limit:

• $\beta <<1$ • Small angle approximation \longrightarrow $Sin(\beta_j) \xrightarrow{\beta <<1} 1$ $Sin(\beta_j) \xrightarrow{\beta <<1} \beta_j$ $in_j \beta_j \cos(\theta_j)$ and $P_{j,p} = \begin{vmatrix} 1 & -i\beta_j \frac{\cos(\theta_j)}{\tilde{n}_j} \\ \vdots \\ \frac{in_j \beta_j}{\cos(\theta_j)} \\ \frac{in_j \beta_j}{\cos(\theta_j)} \end{vmatrix}$

Is A above B or B above A??

Uniqueness and the need for complimentary techniques.

In order to separate the individual contributions, the characteristic phase factor, β , must be large enough:

$$\beta_i = \frac{4\pi d_i \, n_i \cos \theta_i}{\lambda}$$

1. Increase the thickness, d.

2. Decrease the wavelength, λ .

Otherwise, other complimentary techniques are needed (SHG,TEM,XRR, etc) in order to determine one of the variables, d or n Θ = 67 degrees λ = 670nm

How thin a film can be measured with ellipsometry?

 <u>Drude Approximation</u> In 1890, Drude observed that (for thin films) the change in the ellipsometric parameter Del, Δ, is linearly related to a change in film thickness*:

$$\Delta - \Delta^0 = C_{\Delta} X$$

Here, C_{Δ} , is a constant of proportionality and is a function of the index of refraction, n, and X is the film thickness.

- 1. P. Drude, Ann. Phys. Chem., 36, 865 (1889).
- 2. A.N. Saxena, J. Opt. Soc. Am., 55, 1061 (1965).

Del is the change in phase of the polarization after reflection.

$$\Delta = \delta_1 - \delta_2$$

Ellipsometric sensitivity to changes in thickness.

For accurate ellipsometers, we can measure Del with 0.01 degree resolution. Therefore, theoretically, we are capable of measuring 0.1nm films independent of a user-defined model...

Accelerating the next technology revolution.

ADVANCED

Mobility vs Transistor Drive Current How sensitive is process to stress variation?

Equation from Taur&Ning, p. 151

ADVANCED

Wrap Around Gate Metrology

FINFET

Side Wall and Top Dielectric Thickness and Composition

AGENDA

- Evolution of Micro to Nanoelectronics
- Lithography Metrology Challenges
- Transistor (FEP) Metrology Challenges
- Interconnect Metrology Challenges
- The Future of Materials Characterization
- Nano Characterization and Metrology
- Trends & Conclusions

Interconnect Metrology

Control Film Stack Thickness, Line width/depth and shape

Low k / barrier etch stop / low k

Deposit barrier and copper Control barrier/copper & voiding

Chemical Mechanical Polishing Control Flatness

XRR spectra of porous Low κ 1 and Low κ 2 2 Layer Model

Models with additional interfaces are needed to adequately describe the envelope of the fringes for porous low κ 1 and low κ 2 films.

XRR analysis: surface roughness

XRR spectrum of porous stack: Low κ 1 and Low κ 2

<u>Multi-layered model is</u> also needed to measure the properties of the film stack composed of the porous Low κ 1 and Low κ 2 films

AGENDA

- Evolution of Micro to Nanoelectronics
- Lithography Metrology Challenges
- Transistor (FEP) Metrology Challenges
- Interconnect Metrology Challenges
- The Future of Materials Characterization
- Nano Characterization and Metrology
- Trends & Conclusions

The Future of Materials Characterization Trend : 3D Atomic Imaging

Pennycook, et al, Aberration Corrected STEM Hf atoms in High K – Si Interface

The Future of Materials Characterization Trend : 3D Atomic Imaging

Kelly, et al, Local Electrode Atom Probe

ADVANC

SEMATECH

The Future of Materials Characterization Trend : New Problems often require New Methods such as Optical Second Harmonic Generation

SPECTROSCOPIC ELLIPSOMETRY: surfaces & buried interfaces are perturbations to the bulk response

SH SPECTROSOPY:

surfaces & buried interfaces are the primary source regions

AGENDA

- Evolution of Micro to Nanoelectronics
- Lithography Metrology Challenges
- Transistor (FEP) Metrology Challenges
- Interconnect Metrology Challenges
- The Future of Materials Characterization
- Nano Characterization and Metrology
- Trends & Conclusions

NanoCharacterization of Nanotubes Aberration Corrected TEM Imaging

Not Corrected

Heavy atom (lodine) atomic columns are imaged

Focal Series Corrected

Atomic Columns

Both K and I atomic columns are imaged

Sloan, et al, MRS Bulletin, April 2004

Imaging atomic columns & spectroscopy of one atom in column

Requirement

Aberration Corrected **TEM/STEM**

ADVANCED

La seen in ELS and STEM image of CaTiO₃

Accelerating the next technology revolution.

E loss (eV)

Aberration Corrected HR-TEM Korgel Group Si Nanowire

NanoMetrology & Optical Methods Trend : Metrology Models MUST INCLUDE OPTICAL RESPONSE DUE TO DIMENSIONAL CONFINEMENT:

AGENDA

- Evolution of Micro to Nanoelectronics
- Lithography Metrology Challenges
- Transistor (FEP) Metrology Challenges
- Interconnect Metrology Challenges
- The Future of Materials Characterization
- Nano Characterization and Metrology
- Trends & Conclusions

Trends and Conclusions

- Use Modeling to connect what you want to measure with what you need to know
- Interfacial Measurement is Increasing in Difficulty & Importance
- Sidewall Control will become more important
- 3D Atomic Imaging
- New Problems often require New Methods such as Optical Second Harmonic Generation
- Trend : Dimensional Confinement and Surface State Effects must be included in Optical Modeling

Acknowledgements

- PY Hung, Jimmy Price, Hugo Celio
- Peter Zeitzoff + Howard Huff
- Ken Monnig
- TEM Community Brendan Foran, Christian Kisielowski, Dave Muller, Steve Pennycook, John Silcox, Suzanne Stemmer
- Dan Wack KLA-Tencor

CMOS Switching Speed $\tau \sim 1/I_{dsat}$ Role of Saturation Drive Current

Leakage Current Increases as SiO₂ Gate Dielectric Thickness Decreases

Accelerating the next technology revolution.

Evolution CD-SEM Applied Materials CD-SEM

Old Way

New Way

Measure several lines for local CD average

Tilt Beam for sidewall metrology

The CD-SEM of the Future??? Migration of TEM LENS Technology to SEM

Tilt Beam for sidewall metrology

Tomorrow

Spectroscopic Ellipsometry Fundamentals:

· 0

-> SE extracts the thickness and index of refraction from a film stack using the Fresnel reflection coefficients:

$$r_p = \frac{r_{01,p} + r_{12,p}e^{-i\beta}}{1 + r_{01,p}r_{12,p}e^{-i\beta}}$$

$$r_{s} = \frac{r_{01,s} + r_{12,s}e^{-i\beta}}{1 + r_{01,s}r_{12,s}e^{-i\beta}}$$

Where,
$$\beta_i = \frac{4\pi d_i n_i \cos \theta_i}{\lambda}$$

• Here, the first indices is the incident medium, and the second indices is the subsequent medium (e.g. 0 = air, 1 = top film).

•P and S are the polarization states parallel and perpendicular to the plane of incidence.

• β is the phase factor for the ith layer.

 d_i = thickness of ith film

- n_i = index of refraction of ith film
- θ_i = incident angle
 - ℓ = incident wavelength

DVANCED For multiple films, this can become very complicated...

Spectroscopic Ellipsometry Fundamentals:

•For multiple films, use Abeles* matrix method:

 $r_p \propto \chi_{0,P} (\prod_{i=1}^{N} P_{i,p}) \chi_{sub,p}$

 $r_s \propto \chi_{0,s} (\prod_{i=1}^N P_{i,s}) \chi_{sub,s}$

X is the characteristic dielectric matrix for the ambient (0) or substrate (sub).

Where,

 $i\sin(\beta_j)$ $\cos(\beta_j) -i\sin(\beta_j) \frac{\cos(\theta_j)}{\tilde{z}}$ $\cos(\beta_j)$ $\tilde{in_j}\sin(\beta_j)\cos(\theta_j)$ $P_{j,s} = |$ $n_j \cos(\theta_j)$ n_i $P_{j,p} =$ $\cos(\beta_j)$ $\cos(\beta_i)$ $i\sin(\beta_j)\frac{n_j}{\cos(\theta_j)}$ ADVANC *F. Abeles, Ann de Physique 5:596, 1950.

Accelerating the next technology revolution.

THE PROBLEM IS RC - HOW FAR CAN YOU GO?

A Theoretical Ideal

Aluminum (alloy) >>> Copper, R reduction ofResistivity 3.21.81.8 x

SiO2 >>>>>> Air, C reduction of Dielectric 4.2 1.0 4.2 x Constant

RC Reduction of 7.5

Thanks to Navjot Chhabra

MODELED EFFECTIVE DIELECTRIC CONSTANTS

If bulk dielectric = 2.6 (SiLK*) then k_{eff} = 2.94If bulk dielectric = 2.2then k_{eff} = 2.57If bulk dielectric = 1.5then k_{eff} = 1.96If bulk dielectric = 1.0 (Air)then k_{eff} = 1.5

SiLK Semiconductor Dielectric, Trademark of the Dow Chemical Company

Thanks to Navjot Chhabra

ADVANCED

Accelerating the next technology revolution.

·\|[](

Drive current response to strain uniformity

