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Transistor EvolutionTransistor Evolution
Beyond CMOS

Future
15 years 

Non-classical CMOS

source

Gate

drain

source

Gate

drain

Tomorrow Molecular Switches  ?                  
Nanowire Transistor ?Today

90 nm Node
Lg ~ 45 nm

Strain 
Enhanced Mobility

CMOS
pMOS FINFET

16 nm Node
Lg ~ 6 nmNew Materials

45 nm Node
Lg < 25 nm
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CMOS CMOS Switching Speed    τ ~ 1/Idsat
Role of Saturation Drive Current

In

Out

Vdd

Load

P Channel Transistor 
- Carriers = holes

N Channel Transistor
– Carriers = electrons

CMOS
Inverter

τ = Cload VDD / Idsat
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Switching Speed of Long Channel Switching Speed of Long Channel 
Transistor  Transistor  -- The Old DaysThe Old Days
Idsat ∝ ( 1/Lg )  ( µCarrier Mobility ) ( 1/EOT )

Transistor Gate Delay, τ, decreases as CD decreases but 
Gate Dielectric must also decrease in thickness.

Idsat as Lg gate length

Sounds Easy  
- Just decrease the Gate length &/or increase mobility

TROUBLE    As dielectric thickness decreases leakage  
current increases
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High Volume ICs use CMOS  High Volume ICs use CMOS  
w/ Locally Strained w/ Locally Strained SiSi
Strained Strained SiSi substrates not usedsubstrates not used

45 nm CD PMOS 
Compressive Strain 

increased hole mobility

45 nm CD NMOS 
Tensile Stress SiN Layer 

increased electron mobility

From T. Ghani, et al., IEDM 2003, p 978.  
Courtesy Intel
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Trend : Use Modeling to connect what you Trend : Use Modeling to connect what you 
want to measure with what you need to know want to measure with what you need to know 
Example: Metrology of Strained Channel DevicesExample: Metrology of Strained Channel Devices

MD Giles, et al, VLSI Symposium 
2004
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Near Term SolutionNear Term Solution New MaterialsNew Materials

Dielectric Material                 High k
Poly Si Gate                           Metal Gate
Transistor Channel               Strained Si

Interfacial Layer modelling
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Trend: Interfacial Measurement is Trend: Interfacial Measurement is 
Increasing in Difficulty & ImportanceIncreasing in Difficulty & Importance
Are Are EllipsometryEllipsometry and XRR limited??and XRR limited??
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Nanotransistors – The Future

Nano Transistors
Idsat ~ W Cox (VG – VT) νsat

Long Channel Behavior

Idsat ∝ ( 1/Lg )  ( µCarrier Mobility ) ( 1/EOT )?

Short

C dependence
A = Lg x W
Dopant Conc.

τ = Cload VDD / Idsat
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Change in Transistor BehaviorChange in Transistor Behavior
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Why measure CD for NanoTransistors
τ = Cload VDD / Idsat

1. CD impacts Capacitance C 
A = Lg x W
Dopant Conc.

2. CD impacts Threshold Voltage

Likharev has shown that below 10 nm CD, 
Threshold Voltage is very sensitive to CD

At CD = 5 nm   
Process range is 0.2 nm ~ 1 atom
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SiO2

BOXBOX

GateGate

DrainDrainSourceSource
SiOSiO22 SiOSiO22

SiO2

BOXBOX

GateGate

DrainDrainSourceSource
SiOSiO22 SiOSiO22

SOI

Ge nanowire

Nano-Sized Transistor Features

~ 5 nm
Buried Oxide

Source Drain

Gate

~ 5 nm
Buried Oxide

Source Drain

Gate

Buried Oxide

Source Drain

Buried Oxide

Source Drain

Gate

Nanowire Sized Si or Ge channel
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Transistor and Interconnect DelaysTransistor and Interconnect Delays
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From ITRS and Mark Bohr (Intel)
Figure from IBM
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Interconnect Delay: LOCAL LINE SCALINGInterconnect Delay: LOCAL LINE SCALING

w w

t

L

Local lines scale ≅ as the transistors shrink.

Transistor

Local conductor lines get smaller in cross-section, spacing & length.

RC Delay ≅ ρ ε L2

w2
Both L&W Scale

≅ the Same
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Interconnect Delay: GLOBAL LINE SCALINGInterconnect Delay: GLOBAL LINE SCALING

Global conductor lines getting smaller in cross-section
but NOT in length.  Signal delay is growing exponentially!

LINEsLINEs
get smallerget smaller

But!But!
CHIPsCHIPs don’tdon’t

RC Delay ≅ ρ ε L2

w2
L
W

Stays Same

Decreases
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Trend: Sidewall Control will become Trend: Sidewall Control will become 
more Importantmore Important
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Line Edge Roughness impacts Interconnect Line Edge Roughness impacts Interconnect 
Resistance and Line Width Roughness Resistance and Line Width Roughness 
impacts Transistor Leakage Currentimpacts Transistor Leakage Current

Measured Cu resistivity
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Evolution of CD-SEM
Today

90/65 nm Node
Lg < 45 nm

New WayOld Way
FE source

Lens

Scanning 
coils

Sample Stage

wafer

Secondary 
Electron
Detector

Top Down
Image

Top Down
Image

Measure 
several lines 
for local CD 

average

Tilt Beam for 
sidewall 

metrology
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32 nm Node CD Evaluation
Bryan Rice (Intel), SPIE, 2004
CD-SEM and Scatterometry can reach 32 nm Node 
w/improvement – impact of SOI not tested

45 nm contact Holes
16 nm Lines -176 nm Pitch
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Recent Advances & Future Approaches

Scatterometry
Add VUV to evolve toward 

sub 32 nm node : Lg < 13 nm

CD-SEM 
Measure several lines for 

local CD average

Add ?? to scatterometry to 
enable LER???

aberration corrected
CD-SEM ?
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CD Variation for 193 nm Immersion 
Lithography

AltPSM 193nm immersion 
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Transistor Metrology EvolutionTransistor Metrology Evolution

Today
90 nm Node

Strain 
Enhanced Mobility

Tomorrow

CMOS
pMOS FINFET

Future
15 years 

Non-classical CMOS

Beyond CMOS

source

Gate

drain

source

Gate

drain

Molecular Switches  ?                  
Nanowire Transistor ?

New Materials

Strain
Metrology

High κ/interface
& Metal Gate
Metrology

Metrology
For New
Structures

Metrology
For New
Switches
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Cody-Lorentz optical model used for 
parametric modeling of gate dielectrics.

.2 ,)(
g

t EforEEEExp ≤⎥
⎦

⎤
⎢
⎣

⎡ −
∝

β
ε

.
2

2 ,)( gg EforEEE >−∝ε

*

* A.S. Ferlauto, et. al., J. Appl. Phys., 92, 2424 (2002).

J. Price, et. al, Appl. Phys. Letters, 85, 1701 (2004).
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Extend Extend EllipsometryEllipsometry by Optical Modeling by Optical Modeling 

Interfacial Layer modelling

Photon Energy (eV)
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Spectroscopic Ellipsometry Fundamentals:
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Thin film limits for SE:

For the thin film limit:
• β<<1

•Small angle approximation
jj

j

Sin

Cos

ββ

β
β

β

⎯⎯ →⎯

⎯⎯ →⎯
<<

<<

1

1

)(

1)(

1
)cos(

)cos(
1

~

~

,

j

jj

j

j
j

pj
in

n
i

P

θ
β

θ
β−

=

1)cos(

)cos(
1

~

~

,

jjj

jj

j

sj

ni

n

i

P

θβ

θ

β

==
⎯⎯ →⎯
<<1

lim
β

and

Is A above B   or   B above A??



29

Uniqueness and the need for 
complimentary techniques.

In order to separate the individual contributions, the 
characteristic phase factor, β, must be large enough:

Limits for Small Angle Approximation for HfO2

0.9988
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i
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1. Increase the thickness, d.

2. Decrease the wavelength, λ.

Otherwise, other complimentary techniques are 
needed (SHG,TEM,XRR, etc) in order to determine 
one of the variables, d or n

N = 2.0

Θ = 67 degrees

λ = 670nm

Lacking 
uniqueness
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How thin a film can be measured with ellipsometry?

• Drude Approximation In 1890, Drude observed that (for thin films) the 
change in the ellipsometric parameter Del, ∆, is linearly related to a 
change in film thickness*:

XC∆=∆−∆ 0

Here, ∆C , is a constant of proportionality and is a function of
the index of refraction, n, and X is the film thickness. 

1. P. Drude, Ann. Phys. Chem., 36, 865 (1889).

2. A.N. Saxena, J. Opt. Soc. Am., 55, 1061 (1965).

Del is the change in phase of 
the polarization after reflection.

21 δδ −=∆
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Ellipsometric sensitivity to changes in thickness.Ellipsometric sensitivity to changes in thickness.
Silicon, Oxide, and Nitride HfO2 and it’s silicates

For accurate ellipsometers, we can measure Del with 0.01 
degree resolution.  Therefore, theoretically, we are capable 
of measuring 0.1nm films independent of a user-defined 
model…

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7

 

 

 Si3N4
 SiON
 SiO2

∆−∆ο

Th
ic

kn
es

s,
 A

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7

 

 

 HfO2
 20 %
 40 %
 60 %

∆−∆ο
Th

ic
kn

es
s,

 A



32

Mobility vs Transistor Drive Current  
How sensitive is process to stress 
variation?
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Equation from Taur&Ning, p. 151
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Wrap Around Gate Metrology

Side Wall and Top Dielectric 
Thickness and CompositionFINFET

FIN

Wrap Around GateSiO2

BOXBOX

GateGate

DrainDrainSourceSource
SiOSiO22 SiOSiO22

SiO2

BOXBOX

GateGate

DrainDrainSourceSource
SiOSiO22 SiOSiO22
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Interconnect MetrologyInterconnect Metrology
Pattern Low κ

Low k / barrier
etch stop / low k

Deposit barrier and copper

Chemical Mechanical Polishing

Control Film Stack Thickness, 
Line width/depth and shape

Control barrier/copper & voiding

Control Flatness
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Thin film Thickness & DensityThin film Thickness & Density 2t∆θ =
λ

2tsinθ= nλ
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Si with native oxide
T= 6.6 nm, D=0.979 g/cm3

T= 7.6 nm, D=0.956 g/cm3
T= 35.9 nm, D=0.73 g/cm3

Si with native oxide
T= 6.2 nm, D=1.01 g/cm3

T=226 nm; D=0.931 g/cm3

Porous low κ 2

fit
exp’t

x50

Total thickness = 50.1 nm

Porous low κ 1

XRR spectra of porous  Low XRR spectra of porous  Low κκ 1 and Low 1 and Low κκ 22
2 Layer Model

Low κ 2

Low κ 1

Total thickness= 232.2 nm
Models with additional interfaces are needed to adequately describe 
the envelope of the fringes for porous low κ 1 and low κ 2 films. 
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XRR analysis: surface roughness
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θ = 0.15°

AFM
200 nm scan 20 micron scan

Formula thickness(nm) Density(g/cm3) Rrms (nm) Rrms (nm)  Rrms (nm)
SiCOH 226.7 0.952 2.3 1.07 0.89

Si thick 2.33 0.25 0.2 0.1

XRR

The magnitude of the roughness
from XRR is ~2x greater than 
from the  AFM data

Porous Low κ 3
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XRR spectrum of porous stack: Low κ 1 and Low κ 2XRR spectrum of porous stack: Low κ 1 and Low κ 2

Si with native oxide
T= 5.1 nm, D=1.10 g/cm3

T=226.2 nm; D=0.985 g/cm3

T= 5.0 nm, D=0.954 g/cm3
T= 36.7 nm, D=0.726 g/cm3
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Multi-layered model is also needed to measure the properties of the 
film stack composed of the porous Low κ 1 and Low κ 2 films
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The Future of Materials CharacterizationThe Future of Materials Characterization
Trend : 3D Atomic Imaging Trend : 3D Atomic Imaging 

Pennycook, et al, Aberration Corrected STEM
Hf atoms in High K – Si Interface
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The Future of Materials CharacterizationThe Future of Materials Characterization
Trend : 3D Atomic Imaging Trend : 3D Atomic Imaging 

Kelly, et al, Local Electrode Atom Probe

x
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Vex

VaccelVaccel
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Ni

Si

CoFe

Seed Layer

O
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The Future of Materials CharacterizationThe Future of Materials Characterization
Trend : New Problems often require Trend : New Problems often require 
New Methods such as Optical Second New Methods such as Optical Second 
Harmonic GenerationHarmonic Generation

WHITELIGHT
SPECTRO-

METER

ARRAY DETECTOR

SPECTROSCOPIC ELLIPSOMETRY:
surfaces & buried interfaces are 
perturbations to the bulk response

skin depth

10 fsLASER
SPECTRO-

METER

ARRAY DETECTOR

SH SPECTROSOPY:
surfaces & buried interfaces

are the primary source regions

2ωω
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NanoCharacterizationNanoCharacterization of of NanotubesNanotubes
Aberration Corrected TEM ImagingAberration Corrected TEM Imaging

Not Corrected

Focal Series Corrected
I   K
K  I
I   K
K  I
I   K

Atomic Columns

Both K and I atomic columns are imaged

Heavy atom (Iodine) atomic columns are imaged

Sloan, et al, MRS Bulletin, April 2004
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Imaging atomic columns & 
spectroscopy of one atom in column

Varela, et al, PRL 92, 2004, p 106802 

Requirement 

Aberration 
Corrected 
TEM/STEM

La seen in ELS and STEM image 
of CaTiO3
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Aberration Corrected HR-TEM 
Korgel Group Si Nanowire

Au dot structure
&

Nanowire Twinning
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NanoMetrology & Optical Methods
Trend : Metrology Models MUST INCLUDE OPTICAL 
RESPONSE DUE TO DIMENSIONAL CONFINEMENT:

2D: 
QuantumWell

1D: 
NanoWire

3D: Bulk Film
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Imaginary part of the dielectric function 
at the direct band-edge



49

AGENDAAGENDA

• Evolution of Micro to Nanoelectronics

• Lithography Metrology Challenges

• Transistor (FEP) Metrology Challenges

• Interconnect Metrology Challenges

• The Future of Materials Characterization

• Nano - Characterization and Metrology 

• Trends & Conclusions



50

Trends and Conclusions

•• Use Modeling to connect what you want to measure Use Modeling to connect what you want to measure 
with what you need to knowwith what you need to know

•• Interfacial Measurement is Increasing in Difficulty & Interfacial Measurement is Increasing in Difficulty & 
ImportanceImportance

•• Sidewall Control will become more importantSidewall Control will become more important
•• 3D Atomic Imaging3D Atomic Imaging
•• New Problems often require New Methods such as New Problems often require New Methods such as 

Optical Second Harmonic GenerationOptical Second Harmonic Generation
•• Trend : Dimensional Confinement and Surface State Trend : Dimensional Confinement and Surface State 

Effects must be included in Optical ModelingEffects must be included in Optical Modeling
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CMOS CMOS Switching Speed    τ ~ 1/Idsat
Role of Saturation Drive Current

VDD – voltage supply

P Channel Transistor - Carriers = holes

N Channel Transistor – Carriers = electrons

VoutVin

Idsat

τ = Cload VDD / Idsat
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Leakage Current Increases as SiOLeakage Current Increases as SiO22
Gate Dielectric Thickness DecreasesGate Dielectric Thickness Decreases
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Evolution CD-SEM
Applied Materials CD-SEM

New WayOld Way
FE source

Lens

Scanning 
coils

Sample Stage

wafer

Secondary 
Electron
Detector

Top Down
Image

Top Down
Image

Measure 
several lines 
for local CD 

average

Tilt Beam for 
sidewall 

metrology
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The CD-SEM of the Future???
Migration of TEM LENS Technology to SEM

TomorrowToday
FE source

Lens

Scanning 
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Sample Stage

wafer

Secondary 
Electron
Detector

Top Down
Image

Top Down
Image FE source

Lens

Scanning 
coils

Sample Stage

wafer

Secondary 
Electron
Detector

Aberration 
correction 

LENes

Tilt Beam 
for 

sidewall 
metrology
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Optical Constants

Photon Energy (eV)
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Spectroscopic Ellipsometry 
Fundamentals:
-> SE extracts the thickness and index of refraction from a film stack using the 
Fresnel reflection coefficients:
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• Here, the first indices is the incident medium, 
and the second indices is the subsequent 
medium (e.g. 0 = air, 1 = top film).

•P and S are the polarization states parallel and 
perpendicular to the plane of incidence.

• β is the phase factor for the ith layer.

in
~

iθ
λ

id = thickness of ith film

= index of refraction of ith film

= incident angle

= incident wavelength

Where, 

For multiple films, this can become very complicated…



58

Spectroscopic Ellipsometry 
Fundamentals:
•For multiple films, use Abeles* matrix method:
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=
Π∝

Χ is the characteristic dielectric matrix 
for the ambient (0) or substrate (sub).
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=

*F. Abeles, Ann de Physique 5:596, 1950.
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THE PROBLEM IS RC THE PROBLEM IS RC -- HOW FAR CAN   HOW FAR CAN   
YOU GO?YOU GO?

A Theoretical Ideal

Aluminum (alloy) >>> Copper,  R reduction of 
Resistivity   3.2 1.8 1.8 x

SiO2 >>>>>>>>>>> Air,     C reduction of 
Dielectric     4.2 1.0 4.2 x
Constant

RC Reduction of
7.5

Thanks to Navjot Chhabra
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MODELED EFFECTIVE DIELECTRIC CONSTANTSMODELED EFFECTIVE DIELECTRIC CONSTANTS

0.14uM

0.26uM

50nM SiC

50nM SiC

Bulk Dielectric

Cu Cu
k1

Bulk Dielectric

If bulk dielectric = 2.6 (SiLK*)  then   keff =  2.94
If bulk dielectric = 2.2               then   keff =  2.57
If bulk dielectric = 1.5               then   keff =  1.96
If bulk dielectric = 1.0 (Air)       then   keff =  1.5

* SiLK Semiconductor Dielectric, Trademark of the Dow Chemical Company

Thanks to Navjot Chhabra
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Drive current response to strain 
uniformity
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