Metrology Requirements and the Limits of Measurement Technology for the Semiconductor Industry

Based on the

International Technology Roadmap for Semiconductors **AIRS**

Alain C. Diebold

Measurements Today Atomic Dimensions Nanowire Transistor & Interconnection

SFMALECH

AGENDA

- The ITRS Challenge
- Litho Metrology
- FEP Metrology
- Interconnect Metrology
- Materials Characterization

ITRS Challenge

Process control Is based on Statistical Significance

If Distribution is Centered

What are you Measuring?

single value from distribution

One Aspect of the Solution: Average over large area & Amplify Signal from Microscopic Changes

AGENDA

- How to control microscopic features
- Litho Metrology
- FEP Metrology
- Interconnect Metrology
- Materials Characterization

Litho Metrology

CD Control Starts at the Mask

9 nm physical line width

Litho Metrology

193 nm EUV Technology Node 130 nm 90nm 65 nm 45 nm 32 nm 22 nm Driver Lithography Metrology Printed Gate CD Control (nm) 5.3 3 2 1.5 1.1 0.7 MPU Wafer CD 3σ Precision P/T=0.2 1.1 0.6 0.4 0.3 0.2 0.1 MPU 1.3 0.9 0.65 Line Edge Roughness (nm) 4.5 2.7 1.8 MPU Precision for LER 0.9 0.54 0.36 0.26 0.18 0.13

157

nm

Reticle stage C4 element Projection optics Wafer stage EUV EUV Spectral purity filter

Drive laser

Low Energy SEM for CD Measurements

Thanks to David Joy

Limits of SEM for CD Measurements

Loss of Depth of Field

DoF = (resolution)/(convergence angle)

Thanks to David Joy

Challenges: Round Top Resist & LER

Lithography CD Metrology Improve CD-SEM thru 65 nm node

High Voltage CD-SEM

Comparison of conventional SE (left) and Low Loss (right) images of copper interconnects. Note the greatly enhanced surface detail and lack of edge brightness in the Low Loss image.

Low loss detector

Micrograph courtesy of O C Wells

Figures from David Joy

3D CD Metrology SEM – Scatterometry – CD-AFM

Commercially available

Software comparison of top down line scan of edge to golden image

Tilt Beam SEM

Scatterometry

CD-AFM

Dual Beam FIB (destructive)

Software to convert top down image to 3D image

Scatterometry for CD Measurements

Real Time Calculation of line width & shape Eliminates Libraries

CD-AFM Limited by Probe Tip

Carbon Nanotube Probe tips

Average vs Individual

- CD-SEM measures one line at a time
- Scatterometry gives an average over many lines
- Reports indicate a large number (80 different lines) CD-SEM measurements in test area required to match scatterometry average
- Lose individual line information

Hi-thruput CD Potential Solutions

	2001	2002	2004	2007	2010	2013	2016	
Leading Production Technology Node = DRAM ½ Pitch	130 nm	115 nm	90nm	65 nm	45 nm	32 nm	22 nm	Driver
MPU / ASIC ½ Pitch (nm)	150	130	90	65	45	32	22	
MPU Printed Gate Length (nm)	90	75	53	35	25	18	13	
MPU Physical Gate Length (nm)	65	53	37	25	18	13	9	

AGENDA

- How to control microscopic features
- Litho Metrology
- FEP Metrology
- Interconnect Metrology
- Materials Characterization

Front End Metrology

FEP : High κ Metrology

Technology Node	130 nm	90nm	65 nm	45 nm	32 nm	22 nm	Driver		
Front End Processes Metrology									
High Performance Logic EOT equivalent oxide thickness (EOT) nm	1.3-1.6	0.9-1.4	0.6-1.1	0.5–0.8	0.4–0.6	0.4–0.5	MPU		
Logic Dielectric EOT Precision 3σ (nm)	0.005	0.004	0.0024	0.0024	0.0016	0.0016	MPU		
Metrology for Ultra-Shallow Junctions at Channel Xj (nm)	26	14.8	10	7.2	5.2	3.6	MPU		

High k near UV light absorption Makes thin interfacial layer difficult to measure

"Out of the Furnace" High D_{it} = Error in EOT

Optical/X-ray vs Electrical Measurement

C-V Structures receive Further Processing Optical thickness vs electrical EOT

Capacitance of a very thin interface can have big effect

SPC requires measurement to Average Gate Dielectric over large area

Light source (Xe, D₂, lasers)

2002 ALMC concensus method for TEM

New Optical Models for higher κ

In-Line Metrology Suppliers continue to use older damped oscillator models

Simplified X-ray Path for X-ray reflectometer

NIST + ISMT : C-V Full Curve Fits for Tox=1nm

Extra reflection from SOI Wafers Impacts Optical Measurements and Light Scattering

Quantum confinement for sub 20 nm silicon Need SOI Optical Constants

Beyond Classical CMOS

Bulk MOSFET

Partially-Depleted SOI

Ultra-Thin Body SOI

AGENDA

- How to control microscopic features
- Litho Metrology
- FEP Metrology
- Interconnect Metrology
- Materials Characterization

Interconnect Metrology

Pattern Low κ Control Line width/depth and shape

Low k / barrier etch stop / low k

Gaps in Interconnect Metrology

Technology Node	130 nm	90nm	65 nm	45 nm	32 nm	22 nm
Interconnect Metrology						
Barrier layer thick (nm) process range (±3 σ) Precision 1 σ (nm)	13 20% 0.04	10 20% 0.03	7 20% 0.02	5 20% 0.016	4 20% 0.013	
Void Size for 1% Voiding in Cu Lines	87	52	37	26	18	12
Detection of Killer Pores at (nm) size	6.5	4.5	3.25	2.25	1.6	1.1

- VOID Detection in Copper lines
- Killer Pore Detection in Low κ
- Barrier / Seed Cu on sidewalls
- Control of each new Low κ

R-C test structures of new low κ **Prior to manufacture**

սուսու

Resistance Test

Capacitance Test

XRR for low κ **process control**

Pore Size Distribution Diffuse (small angle) x-ray scattering

AGENDA

- How to control microscopic features
- Litho Metrology
- FEP Metrology
- Interconnect Metrology
- Materials Characterization

Method Dependent Observation of Film Properties

TEM Imaging of the Interface

TEM of thin gate dielectric Simulation and Experimental Data show ADF-STEM and HR-TEM give same thickness

Consensus method uses 50 nm thick sample & ADF-STEM

Thanks to Dave Muller

Local Electrode Atom Probe

Metrology & New Structures

Memory

STORAGE MECHANISM	BASELI. TECHNO	NE 2002 DLOGIES	MAGNEZ	TIC RAM	PHASE CHANGE MEMORY	NANO FLOATING GATE MEMORY	SINGLE/FEW ELECTRON MEMORIES	MOLECULAR MEMORIES
						Gab Englifiered barrier CIIII and CIIII Si		
DEVICE TYPES	DRAM	NOR FLASH	PSEUDO- SPIN- VALVE	MAGNETIC TUNNEL JUNCTION	OUM	-ENGINEERED TUNNEL BARRIER -NANOCRYSTAL	SET	-BISTABLE SWITCH -MOLECULAR NEMS -SPIN BASED MOLECULAR DEVICES

Logic

		Saw Suras Dun	*	•••• ••••		-0-0-
DEVICE	Resonant Tunneling Diode – FET	Single Electron Transistor	RAPID SINGLE Quantum Flux Logic	Quantum Cellular Automata	Nanotube Devices	Molecular Devices
Types	3-terminal	3-terminal	Josephson Junction +inductance loop	-Electronic QCA -Magnetic QCA	FET	2-terminal and 3-terminal

Metrology & Molecular Electronics

James Heath, Fraser Stoddart, and Anthony Pease

Metrology & Molecular Electronics

Paul Weiss's Group – STM of Conductance Switching

Nanowire Transistors and Interconnect

10 nm p-Si core diameter & 10 nm i- Ge layer

L.J. LAUHON, M.S. GUDIKSEN, D. WANG & CHARLES M. LIEBER Nature 420, 57 - 61 (2002)

Conclusions

Measure Microscopic Features

- New Methods
- Look for a Signal that reflects Microscopic Change

Improve Statistical Significance

- Average over Large AREAS
- Use Statistical Metrology When Possible

Do these trends Conflict with smaller scribe line ?

Metrology Roadmap 2002 Update

Europe	Ulrich Mantz (Infineon)
	Alec Reader (Philips Analytical)
	Mauro Vasconi (ST)

- Japan Masahiko Ikeno (Mitsubishi) Fumio Mizuno (Meisei University) Toshihiko Osada (Fujitsu) Akira Okamoto (SONY) Yuichiro Yamazaki (Toshiba)
- Korea DH Cho (Samsung)
- Taiwan Henry Ma (EPISIL)
- US Steve Knight (NIST) Alain Diebold (Int. SEMATECH)

International Technology Roadmap for Semiconductors

Metrology Roadmap 2002 Update

John Allgair Alain Diebold Drew Evan David Joy Steve Knight Kevin Monahan Noel Poduje Heath Pois Bhanwar Singh Andras Vladar Motorola Int. SEMATECH CEA Univ. of Tenn NIST KLA-Tencor ADE Thermawave AMD NIST

Speakers

US

Michael Gostein PY Hung Tom Kelly Heath Pois Benzi Sender

Philips Analytical Int. SEMATECH Amigo Thermawave Applied Materials

International Technology Roadmap for Semiconductors _

New Methods

3 - Probe beam diffracted as wave travels parallel to surface **SEN**

Metrology & Molecular Electronics

 $NH_4OH \begin{bmatrix} 1, Z = SCOCH_3 \\ T', Z = S^{-}, 4,4'-di(ethynylphenyl)-1-benzenethiolate$

 $NH_4OH \begin{bmatrix} 2, Z = SCOCH_3 \\ 2', Z = S^-, 4,4'-di(ethynylphenyl)-2'-nitro-1-benzenethiolate$

Use of HRTEM for Calibration High Resolution TEM (Phase Contrast) has a ~ 10% error for Thickness Determination Due to Cs

Specimen Thickness A	Specimen Tilt (mrad)	Defocus	Cs (mm)	Oxide Model Thickness	Oxide Measured Thickness	% Error
154	0	-425	0.5	10.56	9.84	-6.8
154	0	-156	0.5	10.56	11.4	8
154	0	-20	0.5	10.56	10.44	-1.1
154	12.6	-425	0.5	10.56	9.12	-13.6
154	25	-425	0.5	10.56	10.68	1.1
154	0	-425	0.5	10.56	8.88	-15.9

HRTEM Image Simulations for Gate Oxide Metrology

S. Taylor, J. Mardinly, M.A. O'Keefe, and R. Gronsky

Characterization and Metrology for ULSI Technology 2000

