# Impact of the ITRS Metrology Roadmap



# AGENDA

- ITRS Overview
- Metrology Roadmap Overview
- Lithography Metrology
- Front End Processes Metrology
- Interconnect Metrology
- Integrated Metrology
- Materials & Contamination Characterization









# **ITRS Focused Roadmaps**







Lithography

**Front End Processes** 

Interconnect



Process Integration, Devices. & Structures



Packaging



# **ITRS Cross-cut Roadmaps**



# **Three ITRS views of the future**

#### New Materials, Structures, & Process Timing



High/Low k, USJ, beyond CMOS

#### **New Process Tool Timing**



### Litho $\lambda$ , cluster, wafer size

TERNATIONAL

#### IC Node and Capability Timing



### Logic and DRAM, wireless, SOC

### ITRS High Level IC Timing Chip Frequency: Logic - 1999 ITRS



# **ITRS Roadmap Node Timing**

(from Litho TWG Summary



Minimum Feature Size (nm)

INTERNATIONAL SEMATECH



- ITRS Overview
- Metrology Roadmap Overview





### **No Single Business Model for New Metrology?**

Driver

**New Metrology** 

**Optical & Electrical Metrology** 

for High k, USJ, and low k

New Materials, Structures, & Process Timing







High Frequency testing of low k

### 157 nm Ellipsometry Sensors & Clustered Metrology

# ning

# **Microscopy is a critical need**

#### **Dense Lines 130nm**

INTERNATIONAL





### SEM Depth of Focus Issue

DoF = (resolution) / (convergence angle)



Today DoF ~ 0.4 micron 2 nm/0.005 rads = 400 nm

Tomorrow DoF ~ 0.02 micron 1 nm/0.050 rads = 20 nm

### SPM Probe Tip Issue

# High Aspect Ratios sub 100 nm trench and via widths



Dai, et al., Nature **384**, 147 (1996





David Joy, Univ. of TN

TERNATIONAL

### **Interface Control**





### **Barrier Layer / Cu**



Low k / barrier etch stop / low k



# **The Metrology Precision Roadblock**

| Year of First Product<br>Shipment<br>Technology Generation | 1999<br>180 nm | 2000 | 2001 | 2002<br>130 nm | 2003 | 2004 | 2003<br>100 nm | Driver                        |
|------------------------------------------------------------|----------------|------|------|----------------|------|------|----------------|-------------------------------|
| DRAM 1/2 Pitch                                             | 180            | 165  | 150  | 130            | 120  | 110  | 100            | D <sup>1</sup> / <sub>2</sub> |
| Logic Isolated Lines                                       | 140            | 120  | 100  | 85             | 80   | 70   | 65             | M Gate                        |
| Microscopy and Lithography                                 |                |      |      |                |      |      |                |                               |
| Microscopy resolution<br>(nm) for P/T=0.1                  | 1.4            | 1.2  | 1.0  | 0.85           | 0.8  | 0.7  | 0.65           | MPU                           |
| Wafer Gate CD<br>Control*                                  | 13             | 12   | 10   | 8.5            | 8    | 7    | 6.3            | MPU                           |
| Wafer CD Tool<br>Precision* P/T=.2<br>Isolated Lines**     | 2.6            | 2.4  | 2.0  | 1.8            | 1.6  | 1.4  | 1.3            | MPU                           |
| Mask Area Metrology<br>Tool Precision P/T=.2               | 4.8            | 4.2  | 3.4  | 2.8            | 2.6  | 2.4  | 2.2            | MPU                           |

### **Front End Processes**

| Logic Dielectric Thick Precision $1_{\sigma}$ (nm) <sup>B</sup> | 0.0025 | <mark>0.0024</mark> | 0.0021 | 0.0017 | 0.0016 | 0.0013 | 0.0012 | MPU<br>Gate |
|-----------------------------------------------------------------|--------|---------------------|--------|--------|--------|--------|--------|-------------|
| 2D Dopant Profile<br>Spatial Resolution (nm)                    | 3      | 3                   | 3      | 2      | 2      | 2      | 1.5    | MPU<br>Gate |

| Interconnect                                                             |                   |                   |                   |                   |                    |                  |                  |     |
|--------------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|--------------------|------------------|------------------|-----|
| Barrier layer<br>Thick (nm)<br>process range (± 3σ)<br>Precision 1σ (nm) | 23<br>20%<br>0.08 | 19<br>20%<br>0.06 | 16<br>20%<br>0.05 | 13<br>20%<br>0.04 | 11<br>20%<br>0.035 | 7<br>20%<br>0.02 | 3<br>20%<br>0.01 | MPU |





- ITRS Overview
- Metrology Roadmap Overview
- Lithography Metrology & New Structures from PIDS



- Front End Processes Metrology
- Interconnect Metrology



- Integrated Metrology
- Materials & Contamination Characterization



The Future



INTERNATIONAL SEMATECH

# **Lithography Metrology**



**Rafi Kleiman** 



### Focus / Exposure Matrix A routine setup metrology requirement



INTERNATIONAL SEMATECH

### Lithography Metrology Improve CD-SEM thru 100 nm node



top down CD-SEM

### 2D / 3D Information



**NEED: Determine CD from Fundamental Model** 



Microscopy Issues: CD and Detection require new microscopy

- SEM with resolution required for sub 100 nm has poor Depth of Focus
- 3D Information Required
- Improved throughput required



### Today : Depth of focus > 1 micron





With Future Resolution: Depth of focus << 1 micron





# **Offset from CD-SEM by Angle**





- ITRS Overview
- Metrology Roadmap Overview
- Lithography Metrology



Front End Processes Metrology
 & New Structures from PIDS



Interconnect Metrology



- Integrated Metrology
- Materials & Contamination Characterization



• The Future

### **Key FEP CMOS Scaling Challenges**



INTERNATIONAL SEMATECH

# **Impact of New FEP Materials**

### Issue: Control of Oxynitride, Silicon dioxide/Silicon nitride stacks and high k with oxynitride interfacial layers



### **Should Future In-Line Ellipsometers include IR or VUV**



# Junction Depth Measurement in the FAB

#### **Carrier Illumination**



### **Correlation to drive current** (0.18 μm NMOS)



#### AMD and Boxer-Cross

Example of new technology from a Startup : Boxer-Cross

MATECH

### **Transistor Evolution ?**





### **Transistor and Capacitor Metrology New Transistor Designs vs Metrology**

Gate

Drain

 $\succ$ Vertical, dual channel Transistor sub 100nm



Drain

1000 Å

Gate Oxide

- CD done by film thickness
- >Doping in LDD by diffusion





Rafi Kleiman (Lucent)

### **Transistor and Capacitor Metrology** Vertical Transistor : Gate Dielectric is vertical



INTERNATIONAL SEMATECH

### Front End Process Metrology In-Situ Needs vs Integrated Metrology Trend



# AGENDA

- ITRS Overview
- Metrology Roadmap Overview
- Lithography Metrology
- Front End Processes Metrology
- Interconnect Metrology
- Integrated Metrology
- Materials & Contamination Characterization
- The Future









### Interconnect Challenges due to Clock Frequency: How long will Copper / low k work?



Technology Node (nm)





Low k / barrier etch stop / low k



# **Impact on Metrology**

Thickness Measurement New Optical Models for each low κ stack CMP Control R&D for each new low κ stack



Low  $\kappa$  Porosity



**Gradient in % Porosity** 





### Metal Film Thickness and CMP Control 3 methods



-25

0

25

Time (ns)

50

75

100

INTERNATIONAL SEMATECH

# **Depth of Focus Requirements for Litho** CMP Metrology tool should measure what litho tool "sees"



# AGENDA

- ITRS Overview
- Metrology Roadmap Overview
- Lithography Metrology
- Front End Processes Metrology
- Interconnect Metrology
- Integrated Metrology
- Materials & Contamination Characterization
- The Future







### SENSOR based Integrated Metrology Comments on : Advanced Process Control - Advanced Equipment Control

> AEC/APC GOAL : Add-On **S1 S2** Sensors model based predictive control Factory million of the CIM A1 based on process and metrology ( Share a start of the start of connection models using in-situ and in-line SECS-II **CIM Framework** Compatible measurements uoncenoo Embedded **Real-Time** MIMO Momentum Shift ? Equipment FDC & MBPC Add-On Control algorithm Sensors System execution

> Process Chamber

> > Sensor

Actuators

Now suppliers advocate Integrated Metrology

# AGENDA

- ITRS Overview
- Metrology Roadmap Overview
- Lithography Metrology
- Front End Processes Metrology
- Interconnect Metrology
- Integrated Metrology
- Materials & Contamination Characterization
- The Future







### **New Microcalorimeter X-ray detector** Industry needs accelerated commercialization



### **Electron Energy Loss & HA-ADF STEM** Interfacial State changes in O and Si K edge



#### **High Angle - Annular Dark Field STEM**

Dave Muller - Lucent in G. Temp et al, IEDM 98, p615



### **2D Dopant Profiling** Requires Improved Spatial Resolution

### SCM



R. Kleiman - Lucent

SSRM



### Nanopotentiometry



**IMEC - W. Vandervorst** 

# TEM Electron Holography gate source drain 180 nm Rau and Ourmazd et al., IHP



### GI-XRR at NIST - R. Deslattes, et al



# AGENDA

- ITRS Overview
- Metrology Roadmap Overview
- Lithography Metrology
- Front End Processes Metrology
- Interconnect Metrology
- Integrated Metrology
- Materials & Contamination Characterization







# **Metrology Funding Types**

### ~10%

#### Innovation Driven

- Entrepreneurial
- High Market Risk
- Longer Dev. Time
- Can precede requirement
- "Classic funding"
- Self Risk Mitigation

### ~30%

#### Application Driven

- Equipment Supplier "Customer" Driven
- Medium Market Risk
- Shorter Dev. Time
- Specific Process
  requirement
- Joint funding with Process tool supplier
- Co-Risk Mitigation

~ 60%

#### Market Driven

- ex post facto IC "Customer" Driven
- Low Market Risk
- Market Window
- Specific Process requirement
- Possible Joint funding with IC Manufacturer
- Self Risk Mitigation



### 157 nm ellipsometry



Barrier/Metal Thickness ISTS & Picosecond acoustics

NTERNATIONAL

### Will Market Risks allow for innovation?

#### Metrology M&A's Have Slowed in 1999



**Dave Perloff** - Veeco

INTERNATIONAL SEMATECH



**IN-LINE** 

### **OFF-LINE / AT-LINE**







# 2000 Metrology Roadmap

| Europe | Alec Reader   | (Philips)       |  |  |  |  |
|--------|---------------|-----------------|--|--|--|--|
| -      | Wilfried Vand | lervorst (IMEC) |  |  |  |  |

- Japan Fumio Mizuno (Hitachi)
- TaiwanHenry Ma (EPISIL)George Yen (ProMOS)
- US Bob Scace (NIST) Alain Diebold (SEMATECH)

International Technology Roadmap for Semiconductors



# **Acknowledgements**

- Will Chism, Jesse Canterbury, Lizz Judge
- Curt Richter and countless others at NIST
- US Metrology TWG
- Metrology and Analytical Lab Managers Councils
- ISMT Litho images Dan Holladay
- Images of Litho tools John Canning and Chris Van Peski - International SeMaTech
- FEP overhead Mike Jackson, Howard Huff, Ed Strickland, Rinn Cleavelin





# Junction Depth Measurement in the FAB

#### **Carrier Illumination**



### Correlation to drive current (0.18 μm NMOS)



#### AMD and Boxer-Cross

Example of new technology from a Startup : Boxer-Cross

INTERNATIONAL