a9 United States

Kuhn

US 20200348841A1

a2y Patent Application Publication (o) Pub. No.: US 2020/0348841 A1

43) Pub. Date: Nov. 5, 2020

(54) DATA BLOCK MATRIX

(71) Applicant: Government of the United States of

(72)

1)

(22)

(60)

America, as represented by the

Secretary of Commerce, Gaithersburg,

MD (US)
Inventor:
(Us)

Appl. No.: 16/861,309

Filed:

Apr. 29, 2020

Related U.S. Application Data

Provisional application No. 62/842,616, filed on May

3, 2019.

David Richard Kuhn, Columbia, MD

Client computing device

application [~28
e i
Security
driver
Out-parser ~36 44

v

validator

Data demux €

has 4

T :

1 Data demux

In-pavser

5
42

o [
X /

b driver

~32

| ¥

Network interface

'/»10

LR N 4 T

18~)
DNS
Lower-trust \\’: translator
database_r e

Publication Classification

(51) Int. CL
GOGF 3/06 (2006.01)
GOGF 21/62 (2006.01)
(52) US.CL
CPC GOGF 3/0604 (2013.01); GOGF 21/6218
(2013.01); GO6F 3/067 (2013.01); GO6F
3/0659 (2013.01); GO6F 3/0652 (2013.01)
(57) ABSTRACT

Provided is a process including: initializing a data block
matrix; making supra-diagonal nodes that include at most
one more node than sub-diagonal nodes; making a hash
nodes with a hash sequence length that is proportional to a
number of nodes in the row or column of nodes in which the
hash node is arranged; and writing data blocks in nodes of
the data block matrix such that a number of data blocks in
nodes in the data block matrix is less than (N>-N) for N
number of nodes in the data block matrix, wherein the data
block matrix has dispersed data blocks.

Client computing device

appiication

7 -
Security
driver
QOut-parser

!

validator

~12

Data derux (e

!

Data demux

— /

X /

Db driver

!

Network taterfoce

In-parses

264 Storage compute node

Storage compute node

Storage compute node

26H4 Storage compute node

Storage compute node

Storage compute node

;
H
. H
3
see :
.
.
¢
94

26

¥

M Storage compute node

Storage compute node

Storage compute node

fm——

24

Secure distributed storage 94 . :

Patent Application Publication

Nov. 5,2020 Sheet 1 of 16

US 2020/0348841 A1

[Pomo

Lower-trust
database

Storage compute node

Storage compute node

Storage compute node

Storage compute node

Storage compute node

Storage compute node

Client computing device 10 Client computing device
application ~28 V/ application
/[: 310 Vi 3 A
Security Security
driver driver
~12 ~12

Out-parser ~36 44 QOut-parser

l Data demux |« i Data demux [«

validator validator
¢ ~38 T eee ‘L 1‘
lo-parser fo-parser
—— Data demux % ~1~ Data demux
o [& N /
Db driver 32 Db driver
A 3 4 A
v ¢
» Network interface » Network interface
< ()
\ 2"‘ /“V
18~
14 < »| DNS

Storage compute node

Storage compute node

Storage compute node

......

US 2020/0348841 A1

Nov. 5,2020 Sheet 2 of 16

Patent Application Publication

|

e m—————————

US 2020/0348841 A1

Nov. 5,2020 Sheet 3 of 16

Patent Application Publication

¢ Dl

“TH . b
¥ M:Mv
\\Hi
R ’
I m e
Ao, o - s

-

NN

H
§
f
§
H

.

RN

BOXAPUL
UOTIE00] HWNjo;)

$apoU [BUOIBIP-gNS
uey; Joojq v1ep alou
BUO JSOW 18 SUTRIU0D
gsopou jeuodeip.-gadns
ATISAOT O0UBEq

saXopul

e TOTYBO0] M0

sapou

01 UeILIM

aaB §YO0[q

wIRp 1By JOpIO

US 2020/0348841 A1

Nov. 5,2020 Sheet 4 of 16

Patent Application Publication

P UWnjoo
UL §Y00[q vIBp [[8

TO ONIRA USSR Ui
Jo enyea ysvy yu

apou ysey umnjo))

5.

BIBp {{E jo onfea lsey .
YL 9poU Usuy Moy
() M0 UT SY00[q

eyep {{B Jo anjea ysey -
GIIm apou gsey Moy

WOTI0AITP [BUDSRIP-IOIUNO))

v OId

.vttt.!llttttii&tttttilittttiL

7 soxapul
UOTIBDO] UWN]O))

() Tunjo:

Ul SY00jq BIEp IV
JO enjBA YSBY Yim
SpOU Ysey uwnjor)

saxepul
. UOTIEI0] MUY

i............-.‘...&........e....,..........i

UOI3OBIP TRUOSRI(Y

g Old

US 2020/0348841 A1

2020 Sheet 5 of 16

(OTITI00000T000T1I0OTONS®Y
“SONTRA ¥D0]Y BIRP JO UOHBUSIRIUOD

<

H

Nov. 5

v ST jeY) enjea ysey sey Ty

uonpendurod ysey Arejdurexry

Patent Application Publication

9 Old

US 2020/0348841 A1

< UCIIRUSIVOUOD §1 | | axaym
Z { (OTTTYs®Y

= L1 (T000)US®BY

8 L1 (0010)useY

£ | { (0oTD)Ys®RY

Z

L1 (IOTOWSeY ysey =
SOUSRY Y00]([BNPIAIPUL JO UCTIRUSIRIUCD
¥ ST Jeip) ongea ysey sey Ty

uonpendwoo ysey sqaerdwoxy

Patent Application Publication

US 2020/0348841 A1

Nov. 5,2020 Sheet 7 of 16

Patent Application Publication

(0 =1 aepurod
WIEm SOpon wy T S8 uaard apdwexe

QY1 YA EIPOU JO SIUSTHOD 841 JO
UOTIBHeIROUca 2y woyy penduwo
81 enyea ysey swgderBoydias
‘noneyusmeydwy sty uy

L O

“sangeeptppae rejnduns Burdjaepun oty uo

"

.wwm@wuww‘w«mw@wu ST SIURLIVNA om.@wm.mw@«um ¥ 10 jUaiiioa puw

TRULIO] [RIoR ey, ‘erpediqig Ul peou sy

A ye ofwinys ATOUISNI 0F X WINJJ 90UeIs]al ¥ 51
A o3 X woapaeyurod B ‘ST yBY], peppe

B6) []IM TR SOPOU I9YI0 0 SpOu M}

TWIOA] SHUI] I0 S1830I0d 9180Ipul sMoLry

1 Taejurod 0 TIBYO UL sepou

I ysey sumitoes 1 asyuod

wm,@m,wmwmw Ho0q s8]

ysER

&0
apoN

N

0 | 0’0
apoON apoN

US 2020/0348841 A1

Nov. 5,2020 Sheet 8 of 16

Patent Application Publication

,,w;ﬂwwwﬁg@m@Ww@mxmmwﬁ@m
a1y A0] paanys pur peindnos st seysey
[ENPIAIPUL @3 Jo ysey juenbasqns
V{0 =1 aeimod gt sepot 101 D
sr woatd aypdurexe sty un U mqud
J0] BN RA PAIRAIPUL B3 YITA 9pOU Yors
J0] Ajpenpraiput pogrulurno 81 enyra 1sRy
stydeadoydAxo ‘uonsyuewepdu STy Uy

8 DId

Jsrroeigsre aegndwos Buidprepun e uo
yuepusdep 51 sjgeriva Isquiod ¥ Jo JUOIN0D puw
wmﬁwow rengor iy, ‘erpadifia UL pajou sy
AR 2383015 SIOWHNT 01 X WINAY e0UALIJOI B 51
A 03 X woay aeprod v ‘1w, peppe

a4y T]1A% B[] SEPOU IHI0 03 BPOU A1)

HIOA] SYUL] 10 saejuiod 81edIpUl $M0LTY

T JO TRUD UL 9pOU 1oBs JO seysey
: 10 ;,f,.,fx;, TENPLATPUL JO USRI SUTEU00
i 2 I R ¢ wepund dop Yoopg gsel
70 R T uotydo Yoo Ysey
o g ’ g 4..{...{.?,....4... {...:....F...:?.. "
SBR[e e R
¥ ;ff?ff{; fe..,.éc.}zcsi i f.;ff:s.;

oo

E e m“, 0

ysel) SPON

e
st
e TPy §

0
SPON | R

Ey T

0'0
3PON

US 2020/0348841 A1

Nov. 5,2020 Sheet 9 of 16

Patent Application Publication

i

[

yseH

PEaT 03 Y201q BIV(] /

;.M
ysey

Jo
ysel

Nﬁ! .Mn.l OQ‘

ysey yseH ysey

e et le—0 | Tl] 0
apoN apoON aPON

] Elleh] Uil 01
, apoN |~ opoN opoN
e] 00] 0'0
apoN APON ApON

pesd ¥o01q eiv(]

Patent Application Publication Nov. 5,2020 Sheet 10 of 16 US 2020/0348841 A1

Read command for reading data block

receive a command to read block

-

7 Supra-diagonal data ™

N block? -
. ye
S v
Yes S //'/ No
N
Upper half computation of Lower half computation of
pointer_i, pointer_j pointer_i, pointer_j

N /

Follow pointer_i chain to pointer_j indexed node

3

Retrieve data in data block at target node

FIG. 10

11 "Old

US 2020/0348841 A1

4B [OS[R B = LS5, 8 = g T

Hmmﬁ%wﬁ.w‘,mwm_o&m = 8

-apod srpjduexy

Nov. 5,2020 Sheet 11 of 16

s .mm,wﬁmwmmwmwkwﬁm WL YAy ¥igp 10

O RInaios Jiei] oMoy

Patent Application Publication

s =lespp s s s

HT1+Hybsoo]] = §
sepoo Arepdwexy

2/ (v [~ D)~)

1T+ 518,84 F»g=

i
oy

ey

m%.m = 8

apou Teundelp-vrdns Ui Yooy Biep 10}

uonvInaImos [uy 2aay

US 2020/0348841 A1

Nov. 5,2020 Sheet 12 of 16

Patent Application Publication

J[00]q BIRP PAID[Op IO

paytpow yim apou (A 0"
a0y [Crequrod yimm YseH YseH
9pou YSBY UWN]O))
e] 4 18 e 0'g
yseh 2PON 9PON 9PON
A20[q BiEp pola[ep
10 paygipow
Y31 BpON
Tl | 01
9PON 9PON
20[q v1ep pojo[op
40 PIYJIpOW im
apou oy T xojurod “ole—] gl | vol] 00
YIM 9poU sBY M0y yseH BPON APON SPON

J[00[q BIBP JO (SWOIRZ YSNOIYI) UOHSIP 10 UOLIBOYIPOIA

Patent Application Publication Nov. 5,2020 Sheet 13 of 16 US 2020/0348841 A1

Computer system
1000
Processor | ’ Netw‘/{o rk 3 -
10103 «——> <> Intertace < P network
1040
Processor | ~ Iill?tgff;f: ’ IO device(s)
1010b 1030 1060
: O System memory
™ Interface 1020
1050 Program
Processor Instructions
10100 [- 1100
Data
1110

FIG. 13

Patent Application Publication Nov. 5,2020 Sheet 14 of 16 US 2020/0348841 A1

FIG. 14

Patent Application Publication Nov. 5,2020 Sheet 15 of 16 US 2020/0348841 A1

FIG. 15

US 2020/0348841 A1

91 D4

(s I = = =

A I O
yseH yse YseH

4 0
ysey UseH ey

4 ' 1'% 0% A 0 18 0z
ysegg [« spox [spox [1 spox gseg [©] apon [spon [opon

Nov. 5,2020 Sheet 16 of 16

1 ! T e 1 01 ! Al 'l 01
e [opon [opon [T opont geep [opon [T opon [opon
0 g0 10 00 0 &0 10 0’0
ysey apox [apox [opont geey [opon [opon [opox
A
4004 1°00%
A 4
apou ur vigp u parodag 3 proasy 1 piooag xigeat o
. [BMBIPYIIM Axyue perny
14 uedpnaed e < BIEP (B fes o] BIEPELD le— BIBP[OL] i€ I00[q BIRD UL BIBD |e—
2 [y [BTUly 4 X B
a97a(] juednnasg juedoiligg yusdronaeq 11d tuedonaed Jojuy

Patent Application Publication

XLEIBIU 00 BIBP B YIIM [BLI) [BOTUI[D B 40} €1ep SuwiSeus]y

US 2020/0348841 Al

DATA BLOCK MATRIX

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] The application claims priority to U.S. Provisional
Patent Application Ser. No. 62/842,616 filed May 3, 2019,
the disclosure of which is incorporated herein by reference
in its entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

[0002] This invention was made with United States Gov-
ernment support from the National Institute of Standards and
Technology (NIST), an agency of the United States Depart-
ment of Commerce. The Government has certain rights in
the invention. Licensing inquiries can be directed to the
Technology Partnerships Office, NIST, Gaithersburg, Md.,
20899; voice (301)-975-2573; email tpo@nist.gov; refer-
ence NIST Docket Number 19-028US1.

BRIEF DESCRIPTION

[0003] Disclosed is a tangible, non-transitory, machine-
readable medium storing instructions that when executed by
one or more processors effectuate operations comprising:
performing, with one or more processors, initialization for
making a data block matrix and writing data blocks in nodes
of the data block matrix, wherein: the data block matrix
holds nodes that are arranged in rows and columns of the
data block matrix; a size of the data block matrix is nxm with
the number of rows is n, and the number of columns is m
each node has location indexes location row.r and location
column.c and pointer indexes pointer row. and pointer
column.j, wherein r, c, i, and j independently are integers;
the location indexes provide a row indicated by integer r and
column indicated by integer ¢ at which the node is located
in the data block matrix, and the pointer indexes provide
references, from a selected node to a first node and a second
node, with pointer row.i being a pointer from the selected
node to the first node that is in the same location row.r=i as
the selected node and with pointer column.j being a pointer
from the selected node to the second node that is in the same
location column.c=j as the node; (location row.0, location
column.0) of the data block matrix holds a primary node;
each (location row.0, location column.1 . . . m-1) of the data
block matrix holds a column edge node; each (location row.1
... n-1, location column.0) of the data block matrix holds
a row edge node; the data block matrix holds diagonal nodes
at each (location row.r=c, location column.c) except for
(location row.r=n, location column.m, for n=m) and; each
row r of the data block matrix terminates at (location row.r,
location column.m) that holds a hash row node r,_; and each
column c¢ of the data block matrix terminates at (location
row.n, location column.c) that holds a hash row node _,c, the
initialization comprising: receiving, with one or more pro-
cessors, an initialization command to prepare the one or
more processors for writing the primary node at (location
row.0, location column.0) as a first diagonal node; produc-
ing, with one or more processors in response to receiving the
initialization command, the primary node at (location row.0,
location column.0) and having pointers comprising (pointer
row.0, pointer column.0), wherein the primary node does not
include a null data block; and storing the primary node in
memory; writing, with one or more processors, a first null

Nov. 5, 2020

data block comprising: receiving a write command to write
a first null data block; writing the first null data block to the
primary node; making edges nodes by: making a first
column edge node proximate to the row edge node and
writing a first data block to the first column edge node; and
making a first row edge node proximate to the row edge
node and writing a second data block to the first row edge
node; making additional diagonal nodes with null data
blocks and additional edge nodes and interior nodes with
data blocks by iteratively: firstly making another edge
column node and writing another data block to said edge
column node; secondly making another edge row node and
writing another data block to said edge row node; thirdly and
successively making interior nodes along a counter-diagonal
direction of the data block matrix and writing another data
block to each of the interior nodes upon creation of each of
said interior node; and fourthly making another diagonal
node and writing another null data block to said diagonal
node; making a hash row node r,_ at location column.m at
a terminus of each row and writing another data block to
each said hash row node r,_ and making a hash column node
_,c at location row.n at a terminus of each column and
writing another data block to said hash column node _c,
wherein: each hash row node comprises a hash of nodes in
the row containing said hash row node; each hash column
node comprises a hash of nodes in the column containing
said hash column node; the data block matrix provides
deletion of an arbitrary data block while preserving hash-
based integrity assurance that other data blocks are
unchanged; and the data block matrix provides modification,
with hash values, of an arbitrary data block.

[0004] Disclosed is a method comprising: performing,
with one or more processors, initialization for making a data
block matrix and writing data blocks in nodes of the data
block matrix, wherein: the data block matrix holds nodes
that are arranged in rows and columns of the data block
matrix; a size of the data block matrix is nxm with the
number of rows is n, and the number of columns is m each
node has location indexes location row.r and location col-
umn.c and pointer indexes pointer row.i and pointer column.
j, wherein r, c, i, and j independently are integers; the
location indexes provide a row indicated by integer r and
column indicated by integer ¢ at which the node is located
in the data block matrix, and the pointer indexes provide
references, from a selected node to a first node and a second
node, with pointer row.i being a pointer from the selected
node to the first node that is in the same location row.r=i as
the selected node and with pointer column.j being a pointer
from the selected node to the second node that is in the same
location column.c=j as the node; (location row.0, location
column.0) of the data block matrix holds a primary node;
each (location row.0, location column.1 . . . m-1) of the data
block matrix holds a column edge node; each (location row.1
... n-1, location column.0) of the data block matrix holds
a row edge node; the data block matrix holds diagonal nodes
at each (location row.r=c, location column.c) except for
(location row.r=n, location column.m, for n=m) and; each
row r of the data block matrix terminates at (location row.r,
location column.m) that holds a hash row node r,_; and each
column ¢ of the data block matrix terminates at (location
row.n, location column.c) that holds a hash row node _,c, the
initialization comprising: receiving, with one or more pro-
cessors, an initialization command to prepare the one or
more processors for writing the primary node at (location

US 2020/0348841 Al

row.0, location column.0) as a first diagonal node; produc-
ing, with one or more processors in response to receiving the
initialization command, the primary node at (location row.0,
location column.0) and having pointers comprising (pointer
row.0, pointer column.0), wherein the primary node does not
include a null data block; and storing the primary node in
memory; writing, with one or more processors, a first null
data block comprising: receiving a write command to write
a first null data block; writing the first null data block to the
primary node; making edges nodes by: making a first
column edge node proximate to the row edge node and
writing a first data block to the first column edge node; and
making a first row edge node proximate to the row edge
node and writing a second data block to the first row edge
node; making additional diagonal nodes with null data
blocks and additional edge nodes and interior nodes with
data blocks by iteratively: firstly making another edge
column node and writing another data block to said edge
column node; secondly making another edge row node and
writing another data block to said edge row node; thirdly and
successively making interior nodes along a counter-diagonal
direction of the data block matrix and writing another data
block to each of the interior nodes upon creation of each of
said interior nodes; and fourthly making another diagonal
node and writing another null data block to said diagonal
node; making a hash row node r,_ at location column.m at
a terminus of each row and writing another data block to
each said hash row node r,_; and making a hash column node
_,c at location row.n at a terminus of each column and
writing another data block to said hash column node _,c,
wherein: each hash row node comprises a hash of nodes in
the row containing said hash row node; each hash column
node comprises a hash of nodes in the column containing
said hash column node; the data block matrix provides
deletion of an arbitrary data block while preserving hash-
based integrity assurance that other data blocks are
unchanged; and the data block matrix provides modification,
with hash values, of an arbitrary data block.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The following description cannot be considered
limiting in any way. With reference to the accompanying
drawings, like elements are numbered alike.

[0006] FIG. 1 shows a logical and physical architecture
block diagram for a computing environment in which opera-
tions herein can be implemented;

[0007] FIG. 2 shows data block matrix 200;

[0008] FIG. 3 shows an order of writing data blocks in
data block matrix 200;

[0009] FIG. 4 shows a plurality of hash node 214 that
includes hash row node 218 and hash column node 217,

[0010] FIG. 5 shows details for computation of a hash;
[0011] FIG. 6 shows details for computation of a hash;
[0012] FIG. 7 shows details for computation of a hash;
[0013] FIG. 8 shows details for computation of a hash;
[0014] FIG. 9 shows details for reading a data block in a
node;

[0015] FIG. 10 shows reading a data block in a node;
[0016] FIG. 11 shows details for reading a data block in a
node;

[0017] FIG. 12 shows details for modifying or deleting a
data block in a node;

Nov. 5, 2020

[0018] FIG. 13 shows is a physical architecture block
diagram of a computing device to implement operations
herein;

[0019] FIG. 14 shows a data block matrix;

[0020] FIG. 15 shows details for modifying or deleting a
data block in a node; and

[0021] FIG. 16 shows managing data for a clinical trial
with a data block matrix.

DETAILED DESCRIPTION

[0022] A detailed description of one or more embodiments
is presented herein by way of exemplification and not
limitation.

[0023] It has been discovered that a data block matrix
herein provides a data structure that supports addition of
hash-linked data blocks and deletion of arbitrary data blocks
from the data block matrix, preserving hash-based integrity
assurance that other data blocks are unchanged. The data
block matrix includes an array of nodes that include the data
blocks, and the rows and columns of the data block matrix
each terminate in a hash node. The hash nodes have hash
values for the data in the data blocks for the particular row
or column that the hash node terminates so that a selected
data block can be deleted or modified, assuring that other
blocks have not been affected. Advantageously, the data
block matrix can be implemented in a decentralized system
to provide data replication among peers and can be incor-
porated in an application for integrity protection that con-
ventionally uses a permissioned blockchain.

[0024] The data block matrix provides deletion or modi-
fication of a selected data block with hash values, assuring
that other data blocks are unaffected. Accordingly, integrity
of data blocks that have not been deleted or modified is
assured. A data block can be deleted by overwriting data in
a node with zeroes or other values. Moreover, the data block
matrix has data balance, wherein supra-diagonal nodes
include at most one more node than sub-diagonal nodes. It
is contemplated that a hash sequence length can be a number
of blocks in a row or column hash that is proportional to N
for a matrix with N data blocks by a balance property of
writing data blocks to the nodes. Moreover, a total number
of data blocks in the data block matrix can be N*>-N because
data in diagonal nodes are null. Further, the data block
matrix provides data block dispersal in the nodes, wherein
no consecutively written data blocks are written in nodes
that are in the same row or column of the data block matrix.
[0025] 1t should be appreciated that conventional block-
chain or other distributed ledger technology provide data
management with cryptographically-based integrity guaran-
tees. However, conventional blockchains and DLT do not
allow for changes or deletions of information in data blocks
such that conventional technologies can prevent implemen-
tation in privacy-sensitive applications or systems that
adhere to privacy regulations that involve provision of data
modification. Data block matrix 200 provides for modifica-
tion or deletion of data blocks via hash nodes. In an
embodiment, with reference to FIG. 1 and FIG. 2, data block
matrix 200 can be implemented by computing environment
10. Here, computing environment 10 is an exemplary com-
puting architecture in which the present operations can be
implemented. In some embodiments, the present operations
are implemented as a multi-tenant distributed application in
which some computing hardware is shared by multiple
tenants that access resources on the computing hardware in

US 2020/0348841 Al

computing devices controlled by those tenants, e.g., on
various local area networks operated by the tenants. In some
embodiments, a single tenant executes the computational
entities on privately-controlled hardware with multiple
instances of computing environment 10 existing for different
organizations. Some embodiments implement a hybrid
approach in which multi-tenant computing resources (e.g.,
computers, virtual machines, containers, microkernels, or
the like) are combined with on-premises computing
resources or private cloud resources. In some embodiments,
computing environment 10 include or extend upon security
features of a computing environment.

[0026] In an embodiment, computing environment 10
includes a plurality of client computing devices 12, lower-
trust database 14, secure distributed storage 16, domain
name service 18, and translator server 20 (or elastically
scalable collection of instances of translator servers disposed
behind a load balancer). In some embodiments, these com-
ponents can communicate with one another via Internet 22
and various local area networks in some cases. In some
embodiments, communication can be via virtual private
networks overlaid on top of the public Internet. In some
embodiments, the illustrated components can be geographi-
cally distributed, e.g., more than 1 kilometer apart, more
than 100 kilometers apart, more than 1000 kilometers apart,
or further, e.g., distributed over the content event of North
America or the world. In some embodiments, the compo-
nents are co-located and hosted within an air-gapped or
non-air-gapped private network. In some embodiments, the
illustrated blocks that connects to Internet 22 can be imple-
mented with computing devices described below with ref-
erence to FIG. 13.

[0027] Insomeembodiments, client computing devices 12
independently can be one of a plurality of computing
devices operated by users or applications of an entity that
wishes to securely store data. For example, a given business
or governmental organization can have more than 10, more
than 100, more than 1,000, or more than 10,000 users and
applications, each having associated computing devices that
access data stored in lower-trust database 14 (or a collection
of such databases or other types of datastores) and secure
distributed storage 16. In some embodiments, multiple enti-
ties access the system in environment 10, e.g. more than five,
more than 50, more than 500, or more than 5000 different
entities access shared resources with respective client com-
puting devices or can have their own instance of computing
environment 10. In some embodiments, some client com-
puting devices 12 are end-user devices, e.g., executing a
client-side component of a distributed application that stores
data in lower-trust database 14 and secure distributed stor-
age 16, or reads such data. Client computing devices can be
laptops, desktops, tablets, smartphones, or rack-mounted
computing devices such as servers. In some embodiments,
the client-computing devices are Internet-of-things appli-
ances, like smart televisions, set-top media payers, security
cameras, smart locks, self-driving cars, autonomous drones,
industrial sensors, industrial actuators such as electric
motors, in-store kiosks, or the like. In some embodiments,
some client computing devices 12 are headless computing
entities, such as containers, microkernels, virtual machines,
or rack-mounted servers that execute a monolithic applica-
tion or one or more services in a service-oriented applica-

Nov. 5, 2020

tion, such as a micro services architecture, that stores or
otherwise accesses data in lower-trust database 14 or secure
distributed storage 16.

[0028] In some embodiments, lower-trust database 14 and
secure distributed storage 16 each store a portion of data
accessed with client computing devices 12, in some cases
with pointers therebetween stored in one or both of these
datastores. In some embodiments, as described below, this
data is stored in a manner that abstracts away secure
distributed storage 16 from a workload application through
which data is accessed (e.g., read or written). In some
embodiments, data access operations store or access data in
lower-trust database 14 and secure distributed storage 16
with a workload application that is not specifically config-
ured to access data in secure distributed storage 16, e.g., one
that is configured to operate without regard to whether
secure distributed storage 16 is present, and for which the
storage of data in secure distributed storage 16 is transparent
to the workload application storing content in lower-trust
database 14 and secure distributed storage 16. In some
embodiments, such a workload application can be config-
ured to, and otherwise designed to, interface only with
lower-trust database 14 when storing this data and, in some
embodiments, wrap interfaces for lower-trust database 14
with additional logic that routes some of data to secure
distributed storage 16 and retrieves that data from secure
distributed storage 16 in a manner that is transparent to the
workload application accessing content, i.e., data written or
read by the workload application.

[0029] Content stored in lower-trust database 14 and
secure distributed storage 16 can be created or accessed with
a variety of different types of applications, such as mono-
lithic applications or multi-service distributed applications
(e.g., implementing a microservices architecture in which
each service is hosted by one of client computing devices
12). Examples include email, word processing systems,
spreadsheet applications, version control systems, customer
relationship management systems, human resources com-
puter systems, accounting systems, enterprise resource man-
agement systems, inventory management systems, logistics
systems, secure chat computer systems, industrial process
controls and monitoring, trading platforms, banking sys-
tems, and the like. Such applications that generate or access
content in database 14 for purposes of serving the applica-
tion’s functionality are referred to herein as “workload
applications,” to distinguish those applications from infra-
structure code by which present operations are implemented,
which is not to suggest that these bodies of code cannot be
integrated in some embodiments into a single workload
application having infrastructure functionality. In an
embodiment, several workload applications (e.g., more than
2, more than 10, or more than 50), such as selected among
those in the preceding list, share resources provided by the
infrastructure code and functionality described herein.

[0030] In some embodiments, lower-trust database 14 is
one of various types of datastores described above. In an
embodiment, lower-trust database 14 is a relational data-
base, having a plurality of tables, each with a set of columns
corresponding to different fields, or types of values, stored in
rows, or records (e.g., a row in some implementations) in the
table, in some embodiments, each record, corresponding to
arow can be a tuple with a primary key that is unique within
that respective table, one or more foreign keys that are
primary keys in other tables, and one or more other values

US 2020/0348841 Al

corresponding to different columns that specify different
fields in the tuple. According to an embodiment, the data-
base is a column-oriented database in which records are
stored in columns with different rows corresponding to
different fields. In some embodiments, lower-trust database
14 is a relational database configured to be accessed with
structured query language (SQL) commands such as com-
mands to select records satisfying criteria specified in the
command, commands to join records from multiple tables,
or commands to write values to records in these tables.
[0031] In an embodiment, lower-trust database 14 is
another type of database, such as a noSQL database, like
various types of non-relational databases. In some embodi-
ments, lower-trust database 14 is a document-oriented data-
base such as a database storing a plurality of serialized
hierarchical data format documents, like JAVASCRIPT
object notation (JSON) documents, or extensible markup
language (XML) documents. Access requests can be an
xpath or JSON-path command. In some embodiments,
lower-trust database 14 is a key-value data store having a
collection of key-value pairs in which data is stored. Accord-
ing to an embodiment, lower-trust database 14 is any of a
variety of other types of datastores, e.g., instances of docu-
ments in a version control system, memory images, a
distributed or non-distributed file-system, or the like. A
single lower-trust database 14 is shown but other some
embodiments include more instances, such as more than
two, more than five, or more than 10 different databases. In
some embodiments, some of lower-trust databases 14 are a
database of a software-as-a-service application hosted by a
third party and accessed via a third-party application pro-
gram interface via exchanges with a user’s web browser or
another application. In some embodiments, lower-trust data-
base 14 is a mutable data store or an immutable data store.
[0032] In an embodiment, access to data in lower-trust
database 14 and corresponding access to corresponding
records in the secure distributed storage 16 is designated in
part with roles and permissions stored in association with
various user accounts of an application used to access that
data. In some embodiments, these permissions are modified,
e.g., revoked, or otherwise adjusted.

[0033] Database 14 is labeled as “lower-trust.” The term
“lower-trust” does not require an absolute measure of trust
or a particular state of mind with respect to a party but
distinguishes database 14 from secure distributed storage 16
that has certain security features in some embodiments that
can be referred to as a “higher-trust” database.

[0034] In an embodiment, some of the data that an appli-
cation writes to or has written to in lower-trust database 14
is intercepted or moved to secure distributed storage 16.
Further, access requests from a workload application to
lower-trust database 14 can be intercepted, or responses
from such access request can be intercepted so that data from
lower-trust database 14 can be merged with data from secure
distributed storage 16 that is responsive to the request before
being presented to the application. Further, read requests can
be intercepted, modified, and iteratively executed in a man-
ner that limits how much information in the secure distrib-
uted storage is revealed to a client computing device at any
one time, as described below.

[0035] In an embodiment, secure distributed storage 16
includes data centers 24 that are distributed geographically
and are heterogeneous architectures. In an embodiment, data
centers 24 are various public or private clouds or on-

Nov. 5, 2020

premises data centers for organization-users, such as tenants
of computing environment 10. In an embodiment, data
centers 24 are geographically distributed over the United
States, North America, or the world, in some embodiments
with different data centers more than 100 or 1,000 kilome-
ters apart, and in some embodiments with different data
centers 24 in different jurisdictions. In an embodiment, each
of data centers 24 include a distinct private subnet through
which computing devices, such as rack-mounted computing
devices in the subnet communicate, e.g., via wrap top-of-
rack switches within a data center, behind a firewall relative
to Internet 22. In some embodiments, each of data centers
24, or different subsets of data centers 24, are operated by a
different entity, implementing a different security architec-
ture and having a different application program interface to
access computing resources, examples including AMAZON
WEB SERVICES, AZURE from Microsoft, and RACK
SPACE. Three different data centers 24 are shown, but
embodiments can include more data centers, such as more
than five, more than 15, or more than 50. In an embodiment,
the datacenters are from the same provider but in different
regions.

[0036] Inan embodiment, each of data centers 24 includes
a plurality of different hosts exposed by different computa-
tional entities, like microkernels, containers, virtual
machines, or computing devices executing a non-virtualized
operating system. Each host can have an Internet Protocol
address on the subnet of respective data center 24 and can
listen to and transmit via a port assigned to an instance of an
application by which data is stored in a distributed ledger. In
an embodiment, each storage compute node 26 can corre-
spond to a different network hosts, each network coast
having a server that monitors a port, and configured to
implement an instance of with hash pointers, examples of
which include block chains and related data structures. In
some cases, these storage compute nodes 26 can be repli-
cated, in some cases across data centers 24, e.g., with three
or more instances serving as replicated instances, and some
embodiments can implement operations to determine con-
sensus among these replicated instances as to state of stored
data. Further, an embodiment can elastically scale the num-
ber of such instances based on amount of data stored,
amounts of access requests, or the like.

[0037] In an embodiment, a domain name service (DNS)
18, such as a private DNS, maps uniform resource identifiers
(such as uniform resource locators) to Internet Protocol
address/port number pairs, e.g., of storage compute nodes
26, translator 20, and in some cases other client computing
devices 12 or other resources in computing environment 10.
In an embodiment, client computing device 12, storage
compute node 16, database 14, or translator 20 encounters a
uniform resource identifier, such as a uniform resource
locator, and that computing entity can be configured to
access DNS 18 at an IP address and port number pair of
DNSs 18. The entity can send a request to DNS 18 with the
uniform resource identifier, and DNS 18 can respond with a
network and process address, such as Internet Protocol
address and port number pair corresponding to the uniform
resource identifier. As a result, underlying computing
devices can be replaced, replicated, moved, or otherwise
adjusted, without impairing cross-references between infor-
mation stored on different computing devices. In an embodi-
ment, computing environments achieve such flexibility
without using domain name service 18, e.g., by implement-

US 2020/0348841 Al

ing a distributed hash table or load-balancing that consis-
tently maps data based on data content, e.g., based on a
prefix or suffix of a hash based on data or identifiers of data
to the appropriate computing device or host. In an embodi-
ment, a load balancer routes requests to storage compute
nodes 26 based on a prefix of a node identifier, such as a
preceding or trailing threshold number of characters.
[0038] In an embodiment, a virtual machine or container
manager is configured to orchestrate or otherwise elastically
scale instances of compute nodes and instances of translator
20, e.g., automatically applying corresponding images to
provisioned resources within data center 24 responsive to
need and spinning down instances as need diminishes.
[0039] In an embodiment, translator 20 is configured to
execute a routine that translates between an address space of
lower-trust database 14 and an address space of secure
distributed storage 16. In an embodiment, translator 20 can
receive one or more records from client computing device
12 that is going to be written to lower-trust database 14, or
can receive such records from lower-trust database 14, and
those records can be mapped to segment identifiers or other
pointers, such as other node identifiers in secure distributed
storage 16. Translator 20 can then cause those records to be
stored in secure distributed storage 16 and segment identi-
fiers to be stored in place of those records in lower-trust
database 14, such as in place of individual values in records.
In an embodiment, translation occurs at the level of indi-
vidual values corresponding to individual fields in indi-
vidual records, like rows of a table in database 14. In an
embodiment, larger collections of data, e.g., accepting entire
records, like entire rows, or plurality of columns, like a
primary key and an individual value other than the primary
key in a given row are translated. In an embodiment, files or
other binary larger objects (BLOBS) are accepted. Transla-
tor 20 can replace those values in lower-trust database 14
with a pointer, like a segment identifier in the secure
distributed storage and then cause data to be stored in secure
distributed storage 16. In an embodiment, documents are
stored, which can be relatively small stand-alone values to
binary large objects encoding file-system objects like word-
processing files, audio files, video files, chat logs, com-
pressed directories, and the like. According to an embodi-
ment, a document corresponds to an individual value within
a database, or a document corresponds to a file or other
binary large object. In an embodiment, documents are larger
than one byte, 100 bytes, 1 kB, 100 kB, 1 MB, or 1 GB. In
an embodiment, documents correspond to messages in a
messaging system, or printable document format docu-
ments, text-editable documents, audio files, video files or the
like.

[0040] In an embodiment, translator 20 includes code that
receives requests from drivers and facilitates translation of
data. In an embodiment, translator 20 is an elastically scaled
set of translators 20 remotely hosted in a public or private
cloud.

[0041] According to an embodiment, with reference to
FIG. 1, FIG. 2, FIG. 3, FIG. 4, FIG. 5, FIG. 6, FIG. 7, FIG.
8, FIG. 9, FIG. 10, FIG. 11, FIG. 12, and FIG. 13, translator
20 or other component of the environment shown in FIG. 1
includes a tangible, non-transitory, machine-readable
medium that stores instructions that, when executed by one
or more processors, effectuate operations including: per-
forming, with one or more processors, initialization for
making data block matrix 200 and writing data blocks 216

Nov. 5, 2020

in nodes of data block matrix 200, wherein: data block
matrix 200 holds nodes that are arranged in rows and
columns of data block matrix 200; a size of data block
matrix 200 is nxm with the number of rows is n, and the
number of columns is m; each node has location indexes
location row.r and location column.c and pointer indexes
pointer row.i and pointer column.j, wherein r, c, i, and j
independently are integers; the location indexes provide a
row indicated by integer r and column indicated by integer
¢ at which the node is located in data block matrix 200, and
the pointer indexes provide references, from a selected node
to a first node and a second node, with pointer row.i being
a pointer from the selected node to the first node that is in
the same location row.r=i as the selected node and with
pointer column.j being a pointer from the selected node to
the second node that is in the same location column.c=j as
the node; (location row.0, location column.0) of data block
matrix 200 holds primary node 201; each (location row.0,
location column . . . m-1) of data block matrix 200 holds
column edge node 215; each (location row.l . . . n-1,
location column.0) of data block matrix 200 holds row edge
node 209; data block matrix 200 holds diagonal nodes 211
at each (location row.r=c, location column.c) except for
(location row.r=n, location column.m, for n=m) and; each
row r of data block matrix 200 terminates at (location row.r,
location column.m) that holds hash row node r,_ 218; and
each column ¢ of data block matrix 200 terminates at
(location row.n, location column.c) that holds hash column
node _,c 217, the initialization including: receiving, with
one or more processors, an initialization command to pre-
pare the one or more processors for writing primary node
201 at (location row.0, location column.0) as first diagonal
node 211.1; producing, with one or more processors in
response to receiving the initialization command, primary
node 201 at (location row.0, location column.0) and having
pointers 206 comprising (pointer row.0, pointer column.0),
wherein primary node 201 does not include null data block
204; and storing primary node 201 in memory; writing, with
one or more processors, first null data block 204.1 including:
receiving a write command to write first null data block
204.1; writing first null data block 204.1 to primary node
201; making edges nodes (209, 215) by: making first column
edge node 215.1 proximate to primary node 201 and writing
first data block 216.1 to first column edge node 215.1; and
making a first row edge node 209.1 proximate to primary
node 201 and writing second data block 216.2 to first row
edge node 209.1; making additional diagonal nodes 211 with
null data blocks 204 and additional edge nodes (209, 215)
and interior nodes 210 with data blocks 216 by iteratively:
firstly making another edge column node 215 and writing
another data block 216 to said edge column node 215;
secondly making another edge row node 209 and writing
another data block 216 to said edge row node 209; thirdly
and successively making interior nodes 211 along a counter-
diagonal direction of data block matrix 200 and writing
another data block 216 to each of interior nodes 211 upon
creation of each of said interior node 211; and fourthly
making another diagonal node 211 and writing another null
data block 204 to said diagonal node 211; making hash row
node r,_ 217 at location column.m at a terminus of each row
and writing another data block 216 to each of said hash row
node r,_ 217; and making a hash column node _,c 217 at
location row.n at a terminus of each column and writing
another data block 216 to said hash column node _,c 217,

US 2020/0348841 Al

wherein: each hash row node 218 includes a hash of the
nodes in the row containing said hash row node 218; each
hash column node 217 includes a hash of the nodes in the
column containing said hash column node 217; data block
matrix 200 provides deletion of an arbitrary data block 216
while preserving hash-based integrity assurance that other
data blocks 216 are unchanged; and data block matrix 200
provides modification, with hash values, of an arbitrary data
block.

[0042] In an embodiment, in the medium, the operations
further include: receiving a delete command to delete the
arbitrary data block 216; and deleting the arbitrary data
block 216 while preserving hash-based integrity assurance
that other data blocks 216 are unchanged. According to an
embodiment, in the medium, the operations further include:
receiving a modification command to modify the arbitrary
data block 216; and modifying the arbitrary data block 216
while preserving hash-based integrity assurance that other
data blocks 216 are unchanged.

[0043] In an embodiment, in the medium, the operations
further include: receiving a read command to read data block
216; determining a node in which data block 216 is written;
computing a pointer row index and a pointer column index
for the node in which data block 216 is written; and
following the pointer row index and the pointer column
index for the node in which data block 216 is written to a
target node linked by the pointer row index and the pointer
column index; and retrieving data block 216 written in the
target node.

[0044] Data block matrix 200 has numerous advantageous
and unexpected benefits and uses. In an embodiment, a
process for providing arbitrary modification or deletion of a
data block in includes: performing, with one or more pro-
cessors, initialization for making data block matrix 200 and
writing data blocks 216 in nodes of data block matrix 200,
wherein: data block matrix 200 holds nodes that are
arranged in rows and columns of data block matrix 200; a
size of data block matrix 200 is nxm with the number of
rows is n, and the number of columns is m; each node has
location indexes location row.r and location column.c and
pointer indexes pointer row.i and pointer column.j, wherein
1, ¢, 1, and j independently are integers; the location indexes
provide a row indicated by integer r and column indicated by
integer ¢ at which the node is located in data block matrix
200, and the pointer indexes provide references, from a
selected node to a first node and a second node, with pointer
row.i being a pointer from the selected node to the first node
that is in the same location row.r=i as the selected node and
with pointer column.j being a pointer from the selected node
to the second node that is in the same location column.c=j
as the node; (location row.0, location column.0) of data
block matrix 200 holds primary node 201; each (location
row.0, location column . . . m-1) of data block matrix 200
holds column edge node 215; each (location row.1 . . . n-1,
location column.0) of data block matrix 200 holds row edge
node 209; data block matrix 200 holds diagonal nodes 211
at each (location row.r=c, location column.c) except for
(location row.r=n, location column.m, for n=m) and; each
row r of data block matrix 200 terminates at (location row.r,
location column.m) that holds hash row node r,_ 218; and
each column ¢ of data block matrix 200 terminates at
(location row.n, location column.c) that holds hash column
node _c 217, the initialization including: receiving, with one
or more processors, an initialization command to prepare the

Nov. 5, 2020

one or more processors for writing primary node 201 at
(location row.0, location column.0) as first diagonal node
211.1; producing, with one or more processors in response
to receiving the initialization command, primary node 201 at
(location row.0, location column.0) and having pointers 206
comprising (pointer row.0, pointer column.0), wherein pri-
mary node 201 does not include null data block 204; and
storing primary node 201 in memory; writing, with one or
more processors, first null data block 204.1 including:
receiving a write command to write first null data block
204.1; writing first null data block 204.1 to primary node
201; making edges nodes (209, 215) by: making first column
edge node 215.1 proximate to primary node 201 and writing
first data block 216.1 to first column edge node 215.1; and
making a first row edge node 209.1 proximate to primary
node 201 and writing second data block 216.2 to first row
edge node 209.1; making additional diagonal nodes 211 with
null data blocks 204 and additional edge nodes (209, 215)
and interior nodes 210 with data blocks 216 by iteratively:
firstly making another edge column node 215 and writing
another data block 216 to said edge column node 215;
secondly making another edge row node 209 and writing
another data block 216 to said edge row node 209; thirdly
and successively making interior nodes 211 along a counter-
diagonal direction of data block matrix 200 and writing
another data block 216 to each of interior nodes 211 upon
creation of each of said interior node 211; and fourthly
making another diagonal node 211 and writing another null
data block 204 to said diagonal node 211; making hash row
node r,_ 217 at location column.m at a terminus of each row
and writing another data block 216 to each of said hash row
node r,_ 217; and making a hash column node _,c 217 at
location row.n at a terminus of each column and writing
another data block 216 to said hash column node _,c 217,
wherein: each hash row node 218 includes a hash of the
nodes in the row containing said hash row node 218; each
hash column node 217 includes a hash of the nodes in the
column containing said hash column node 217; data block
matrix 200 provides deletion of an arbitrary data block 216
while preserving hash-based integrity assurance that other
data blocks 216 are unchanged; and data block matrix 200
provides modification, with hash values, of an arbitrary data
block.

[0045] With reference to FIG. 13, it is contemplated that
computing system 1000 operates in accordance with
embodiments of the present operations, medium, and meth-
ods. Various portions of systems and methods described
herein, can include or be executed on one or more computer
systems similar to computing system 1000. Further, pro-
cesses and modules described herein can be executed by one
or more processing systems similar to that of computing
system 1000.

[0046] Computing system 1000 can include one or more
processors (e.g., processors 1010 @-1010 ») coupled to
system memory 1020, an input/output I/O device interface
1030, and a network interface 1040 via an input/output (1/O)
interface 1050. A processor can include a single processor or
a plurality of processors (e.g., distributed processors). A
processor can be any suitable processor capable of executing
or otherwise performing instructions. A processor can
include a central processing unit (CPU) that carries out
program instructions to perform the arithmetical, logical,
and input/output operations of computing system 1000. A
processor can execute code (e.g., processor firmware, a

US 2020/0348841 Al

protocol stack, a database management system, an operating
system, or a combination thereof) that creates an execution
environment for program instructions. A processor can
include a programmable processor. A processor can include
general or special purpose microprocessors. A processor can
receive instructions and data from a memory (e.g., system
memory 1020). Computing system 1000 can be a uni-
processor system including one processor (e.g., processor
1010 a), or a multi-processor system including any number
of suitable processors (e.g., 1010 a-1010). Multiple pro-
cessors can be employed to provide for parallel or sequential
execution of one or more portions of the techniques
described herein. Processes, such as logic flows, described
herein can be performed by one or more programmable
processors executing one or more computer programs to
perform functions by operating on input data and generating
corresponding output. Processes described herein can be
performed by, and apparatus can also be implemented as,
special purpose logic circuitry, e.g., an FPGA (field pro-
grammable gate array) or an ASIC (application specific
integrated circuit). Computing system 1000 can include a
plurality of computing devices (e.g., distributed computer
systems) to implement various processing functions.

[0047] 1/O device interface 1030 can provide an interface
for connection of one or more I/O devices 1060 to computer
system 1000. I/O devices can include devices that receive
input (e.g., from a user) or output information (e.g., to a
user). I/O devices 1060 can include, for example, graphical
user interface presented on displays (e.g., a cathode ray tube
(CRT) or liquid crystal display (LCD) monitor), pointing
devices (e.g., a computer mouse or trackball), keyboards,
keypads, touchpads, scanning devices, voice recognition
devices, gesture recognition devices, printers, audio speak-
ers, microphones, cameras, or the like. I/O devices 1060 can
be connected to computer system 1000 through a wired or
wireless connection. I/O devices 1060 can be connected to
computer system 1000 from a remote location. /O devices
1060 located on remote computer system, for example, can
be connected to computer system 1000 via a network and
network interface 1040.

[0048] Network interface 1040 can include a network
adapter that provides for connection of computer system
1000 to a network. Network interface can 1040 can facilitate
data exchange between computer system 1000 and other
devices connected to the network. Network interface 1040
can support wired or wireless communication. The network
can include an electronic communication network, such as
the Internet, a local area network (LAN), a wide area
network (WAN), a cellular communications network, or the
like.

[0049] System memory 1020 can be configured to store
program instructions 1100 or data 1110. Program instruc-
tions 1100 can be executable by a processor (e.g., one or
more of processors 1010 a-1010 ») to implement one or
more embodiments of the present techniques. Instructions
1100 can include modules of computer program instructions
for implementing one or more techniques described herein
with regard to various processing modules. Program instruc-
tions can include a computer program (which in certain
forms is known as a program, software, software applica-
tion, script, or code). A computer program can be written in
a programming language, including compiled or interpreted
languages, or declarative or procedural languages. A com-
puter program can include a unit suitable for use in a

Nov. 5, 2020

computing environment, including as a stand-alone pro-
gram, a module, a component, or a subroutine. A computer
program may or may not correspond to a file in a file system.
A program can be stored in a portion of a file that holds other
programs or data (e.g., one or more scripts stored in a
markup language document), in a single file dedicated to the
program in question, or in multiple coordinated files (e.g.,
files that store one or more modules, sub programs, or
portions of code). A computer program can be deployed to
be executed on one or more computer processors located
locally at one site or distributed across multiple remote sites
and interconnected by a communication network.

[0050] System memory 1020 can include a tangible pro-
gram carrier having program instructions stored thereon. A
tangible program carrier can include a non-transitory com-
puter readable storage medium. A non-transitory computer
readable storage medium can include a machine-readable
storage device, a machine-readable storage substrate, a
memory device, or any combination thereof. Non-transitory
computer readable storage medium can include non-volatile
memory (e.g., flash memory, ROM, PROM, EPROM,
EEPROM memory), volatile memory (e.g., random access
memory (RAM), static random access memory (SRAM),
synchronous dynamic RAM (SDRAM)), bulk storage
memory (e.g., CD-ROM and/or DVD-ROM, hard-drives),
or the like. System memory 1020 can include a non-
transitory computer readable storage medium that can have
program instructions stored thereon that are executable by a
computer processor (e.g., one or more of processors 1010
a-1010 ») to cause the subject matter and the functional
operations described herein. A memory (e.g., system
memory 1020) can include a single memory device and/or a
plurality of memory devices (e.g., distributed memory
devices). Instructions or other program code to provide the
functionality described herein can be stored on a tangible,
non-transitory computer readable media. In an embodiment,
the entire set of instructions can be stored concurrently on
the media, or in some cases, different parts of the instruc-
tions can be stored on the same media at different times.
[0051] 1/O interface 1050 can be configured to coordinate
/O traffic between processors 1010 a-1010 7, system
memory 1020, network interface 1040, /O devices 1060,
and/or other peripheral devices. I/O interface 1050 can
perform protocol, timing, or other data transformations to
convert data signals from one component (e.g., system
memory 1020) into a format suitable for use by another
component (e.g., processors 1010 ¢-1010). 1/O interface
1050 can include support for devices attached through
various types of peripheral buses, such as a variant of the
Peripheral Component Interconnect (PCI) bus standard or
the Universal Serial Bus (USB) standard.

[0052] Embodiments of the operations described herein
can be implemented using a single instance of computer
system 1000 or multiple computer systems 1000 configured
to host different portions or instances of embodiments.
Multiple computer systems 1000 can provide for parallel or
sequential processing or execution of one or more portions
of the operations described herein.

[0053] Those skilled in the art will appreciate that com-
puter system 1000 is merely illustrative and is not intended
to limit the scope of the techniques described herein. Com-
puter system 1000 can include any combination of devices
or software that can perform or otherwise provide for the
performance of the techniques described herein. For

US 2020/0348841 Al

example, computer system 1000 can include or be a com-
bination of a cloud-computing system, a data center, a server
rack, a server, a virtual server, a desktop computer, a laptop
computer, a tablet computer, a server device, a client device,
a mobile telephone, a personal digital assistant (PDA), a
mobile audio or video player, a game console, a vehicle-
mounted computer, or a Global Positioning System (GPS),
or the like. Computer system 1000 can also be connected to
other devices that are not illustrated or can operate as a
stand-alone system. In addition, the functionality provided
by the illustrated components can in some embodiments be
combined in fewer components or distributed in additional
components. Similarly, in some embodiments, the function-
ality of some of the illustrated components may not be
provided or other additional functionality can be available.
[0054] Data block matrix 200 and processes disclosed
herein have numerous beneficial uses, including financial
services, patient care and clinical trials, electronic com-
merce, and as a component or building block for distributed
data management applications of many types. Advanta-
geously, data block matrix 200 overcomes limitations of
technical deficiencies of conventional technologies such as
meeting privacy requirements such as the European Union
General Data Protection Regulation (GDPR), which pro-
vides that organizations delete information related to a
particular individual at that person’s request. This require-
ment is incompatible with current blockchain data struc-
tures, including private (permissioned) blockchains because
blockchains are designed to ensure that block contents are
immutable. Any change in a blockchain will invalidate
subsequent hashes in following blocks, losing integrity
protection. The block matrix structure retains cryptographic
hash-based integrity protection for non-deleted blocks. Fur-
ther, certain conventional methods for meeting privacy-
sensitive data deletion requirements in a blockchain envi-
ronment introduce serious risks because such conventional
methods rely on storing encrypted data in the blockchain and
erasing a separately stored key to prevent access to the data.
This introduces risks for privacy-sensitive data because
private data relating to individuals must be secured for
decades, but progress in cryptography can result in the
ability to decipher data stored a few decades earlier using
new methods. Private data stored on a blockchain perma-
nently may be readable in 30 years’ time, even if the key is
deleted, violating privacy requirements. The block data
matrix allows data to be permanently deleted rather than
secured for some period of time until encoded data becomes
readable as cryptographic methods improve. The block data
matrix data structure can be extended into more than two
dimensions to an arbitrary number of dimensions to increase
storage capacity without sacrificing integrity protection.
[0055] Data block matrix 200 and processes herein unex-
pectedly allows for deletion or modification of data blocks
without losing hash protection for data integrity Moreover,
data block matrix 200 also provides use of standardized and
internationally accepted hash algorithms to protect data.
[0056] The articles and processes herein are illustrated
further by the following Examples, which is non-limiting.

EXAMPLES

Example 1. Data Block Matrix for Integrity
Protection and Provision of Modification

[0057] A data block matrix is a data structure that supports
the ongoing addition of hash-linked records while also

Nov. 5, 2020

allowing the deletion of arbitrary records, preserving hash-
based integrity assurance that other blocks are unchanged.
The data block matrix can be part of applications for
integrity protection that conventionally use permissioned
blockchains. This capability can meet privacy requirements
such as the European Union General Data Protection Regu-
lation (GDPR), wherein an organization can delete informa-
tion related to a particular individual. Here, the data block
matrix supports on-going addition of hash-linked records,
deletion of arbitrary records, and preservation of hash-based
integrity assurance that other blocks are unchanged.

[0058] A data block matrix is shown in FIG. 14 with rows
and columns numbered for indexing nodes that in which are
written data blocks, wherein a data block can include
unspecified data (e.g., a single record or multiple transac-
tions). Each row and column is terminated with a hash node
that has a hash of data blocks written in the nodes in that row
or column, e.g., H, is a hash node of row 0. Alternatively,
the hash value can be stored in the last block of the row or
column. A second alternative could be to concatenate hashes
of each block in a row or column and use the hash of this
concatenation as the hash value for that row or column.
[0059] To delete the block labeled “X”, write all zeroes to
that data block or change the data block in another manner
such as replacing or adding data to the data block. This
change disrupts the hash values of H;. and H- , for row 3 and
column 2. However, the integrity of all data blocks except
the one containing “X” is still ensured by the other hash
values. That is, other data blocks of row 3 are included in the
hashes for columns 0, 1, 3, and 4. Similarly, other data
blocks of column 2 are included in the hashes for rows 0, 1,
2, and 4. Thus the integrity of data blocks that have not been
deleted is assured.

[0060] Blocks are numbered 1 . . . k and are added to the
block data matrix starting with the node at cell 0,1. It is
contemplated to keep diagonal nodes null while new blocks
are written as follows:

{ /I i, j = row, column indices
if (i == j) {add null block; i = 0; j++;}
else if (i <j) {add block(i,j); swap(i,j);}
else if (i > j) {add block(i,j); j++; swap(i,j);{
I

wherein swap(i,j) exchanges the values of i and j, i.e., i'5
and j'=i. With this operation, nodes are filled with data
blocks as shown in FIG. 3.

[0061] The data block matrix maintain selected properties
such as data balance in the nodes of the supra-diagonal
nodes and sub-diagonal nodes. Regarding data balance,
nodes are filled in a balanced manner, wherein the upper
half(above diagonal), supra-diagonal nodes contain at most
one additional cell more than the lower half (below diago-
nal), sub-diagonal nodes. The following invariant is main-
tained for each iteration of the loop:

i=/\/i<)\u=D\/i>j\u=1+1

wherein u=number of nodes above the diagonal nodes of the
data block matrix, and l=number of nodes below the diago-
nal nodes of the data block matrix. Further, with regard to
the hash chain length, the number of blocks in a row or
column hash chain is proportional to VN for a matrix with
N blocks, by the balance property. As used herein, row hash
chain refers to a hash value for the respective row. As used

US 2020/0348841 Al

herein, column hash chain refers to a hash value for the
respective column. Moreover, the data block matrix pro-
vides data block dispersal, wherein no consecutive data
blocks are written in nodes in the same row or column. That
is, for any two data blocks numbered a, b, where b=a+1, in
rows ia and ib, and columns ja and jb respectively, ia=ib and
ja=jb. This can be shown by considering cases below.
[0062] 1. If i<j, then block a will be written to node

(ia,ja) and then i and j swapped so that in the next

iteration, i>j, and data block b is written to node (ib,jb).

Since ib=ja and jb=ia, and i=j, ia=ib and ja=jb.

[0063] 2. If i>j, then data block a is be written to node

(ia,ja), j is incremented, and then i and j swapped. Then

either the relationship is unchanged, with i>j, or i=j.

[0064] Ifi=j, then no data block will be written in the
next iteration, but i will be set to 0 and j will be
incremented such that i<j, and the next data block
written with ib=0 and jb=ja+1, ensuring that ia=ib
and jasjb.

[0065] If i>j, then on the next iteration, block b will
be written with ib=ja and jb=ia, and i=j, so that ia=ib
and ja=jb.

[0066] Because no two consecutive data blocks appear in
the same row or column, a user can delete two consecutive
data blocks simultaneously without disturbing integrity pro-
tection for other data blocks because diagonal nodes include
null data blocks. Without this property, for example, the
following

[0067] In FIG. 15, if data blocks 7 and 8 are deleted, then
integrity protection for data blocks 4 and 9 is lost because
hashes would be invalidated for row 1, column 2, and row
2, column 1. Then nodes (1,1) and (2,2) have neither row nor
column hashes.

[0068] With regard to a number of data blocks, the total
number of data blocks in the data block matrix is N*~N since
diagonal nodes contain null data blocks. Thus, the last
numbered data block in a filled matrix of N rows and
columns is number N*-N. With rows and columns num-
bered from 0, i=N-1, and the last data block in the lower half
(below diagonal) is (i+1)*~(i+1)=i*+, and for any row i, the
last data block in the lower half is numbered i*+i. Accord-
ingly, the last data block in row i-1 in the lower half is i*~i
and the first in row i is i>~i+2. Similarly, the last upper half
data block in column j is j*+j-1.

[0069] With regard to a location of a data block, with the
relations above, expressions to locate a given data block
within the data block matrix is provided. For a data block B
in the lower half (B is even) of the data block matrix:

s=|VB]
i=Bss’+s?s:s+1

J=(B-(P-i+2))/2
and for data block B in the upper half (B is odd):
s=|VB+1]

J=B<s+s?s:5+1

i=(B-(P—j+1))/2

[0070] Data blocks can be deleted by overwriting with
zeroes, with one row and one column hash recalculated.
After deleting data block i, j, row 1 and column j, hash values
are recalculated.

[0071] The data block matrix can be used for incorpora-
tion into applications requiring integrity protection that
conventionally use permissioned blockchains. This capabil-

Nov. 5, 2020

ity could be used in meeting privacy policies for organiza-
tions to delete information related to a particular individual.
Such modification of data in data blocks can be incompatible
with conventional blockchain data structures, including pri-
vate, i.e., permissioned, blockchains because blockchains
ensure that block contents are immutable. A change in a
blockchain can invalidate subsequent hashes in following
blocks, losing integrity protection. The data block matrix
retains integrity protection of non-deleted blocks and also
can be extended beyond two dimensions to an arbitrary
number of dimensions, with straightforward extensions to
the algorithms above.

Example 2. Managing Data for a Clinical Trial
with a Data Block Matrix

[0072] With reference to FIG. 16, a process for managing
data for a clinical trial with a data block matrix includes
entry of multiple participants in a trial, recording of their
Personally Identifiable Information (PI) data in the data
block matrix, completion of the trial and withdrawal of the
participants, and deletion of their PII data from the data
block matrix. Initially, as shown in 200.1, data for partici-
pant 1 is recorded in the first data block above the diagonal,
according to the writing process described in Example 1.
This block, in location 0,1 is identified on the drawing. PI
data for participants 2 through n will then be recorded in data
blocks that are located using the process described in
Example 1. When the trial process is completed, it is
necessary to delete PI from the data block matrix, as shown
in 200.2. FIG. 16, 200.2, shows an example deletion for
participant number 5. The ij locations are computed accord-
ing to the process shown in FIG. 11, locating the node, for
which data is to be deleted, at location 1,2. Data will be
deleted by overwriting with zeroes. PI data for other par-
ticipants is then processed in the same manner.

[0073] While one or more embodiments have been shown
and described, modifications and substitutions can be made
thereto without departing from the spirit and scope of the
invention. Accordingly, it is to be understood that the present
invention has been described by way of illustrations and not
limitation. Embodiments herein can be used independently
or can be combined.

[0074] Those skilled in the art will also appreciate that
while various items are illustrated as being stored in memory
or on storage while being used, these items or portions of
them can be transferred between memory and other storage
devices for purposes of memory management and data
integrity. Alternatively, in other embodiments some or all of
the software components can execute in memory on another
device and communicate with the illustrated computer sys-
tem via inter-computer communication. Some or all of the
system components or data structures can also be stored
(e.g., as instructions or structured data) on a computer-
accessible medium or a portable article to be read by an
appropriate drive, various examples of which are described
above. In some embodiments, instructions stored on a com-
puter-accessible medium separate from computer system
1000 can be transmitted to computer system 1000 via
transmission media or signals such as electrical, electromag-
netic, or digital signals, conveyed via a communication
medium such as a network or a wireless link. Various
embodiments can further include receiving, sending, or
storing instructions or data implemented in accordance with
the foregoing description upon a computer-accessible
medium. Accordingly, the present techniques can be prac-
ticed with other computer system configurations.

US 2020/0348841 Al

[0075] In block diagrams, illustrated components are
depicted as discrete functional blocks, but embodiments are
not limited to systems in which the functionality described
herein is organized as illustrated. The functionality provided
by each of the components can be provided by software or
hardware modules that are differently organized than is
presently depicted, for example such software or hardware
can be intermingled, conjoined, replicated, broken up, dis-
tributed (e.g. within a data center or geographically), or
otherwise differently organized. The functionality described
herein can be provided by one or more processors of one or
more computers executing code stored on a tangible, non-
transitory, machine readable medium. In some cases, not-
withstanding use of the singular term “medium,” the instruc-
tions can be distributed on different storage devices
associated with different computing devices, for instance,
with each computing device having a different subset of the
instructions, an implementation consistent with usage of the
singular term “medium” herein. In some cases, third party
content delivery networks can host some or all of the
information conveyed over networks, in which case, to the
extent information (e.g., content) is said to be supplied or
otherwise provided, the information can provided by send-
ing instructions to retrieve that information from a content
delivery network.

Example 3. Component for Distributed Database
Applications

[0076] With their features of providing distributed, trusted
data using no central server, conventional blockchains have
some desirable properties for many complex distributed
systems, and a number of implementations have been pro-
posed. However, some environments and applications are
not well suited to using blockchains. For example, crypto-
currency, for which blockchains were designed, include
pseudo-anonymity, which many distributed database appli-
cations for finance or e-commerce require legitimate iden-
tification for government and tax purposes. Blockchains
were also designed for small transaction sizes, which while
acceptable for cryptocurrencies is not suitable for large
documents or images, or other large data that may be
required in distributed systems. Additionally, the primary
property of blockchain and conventional distributed ledger
systems is the immutability property, which prevents
changes to any data without requiring a complete recompu-
tation of all block hashes.

[0077] It is contemplated that the data block matrix is a
component or building block in constructing distributed
database systems because it provides integrity guarantees of
blockchain but has low resource consumption and provides
revising data blocks. As a component for database applica-
tions, the block data matrix provides numerous functions
such as:

[0078] for a data block matrix

[0079] public BlockMatrix(int dimension): constructor;
creates a BlockMatrix of the specified dimension;
BlockMatrix can hold (dimension*dimension)-dimen-
sion blocks;

[0080] public void setUpSecurity(): sets up security
provider in order to use the Java Security API;

[0081] public void generate(Wallet, float value): create
genesis block, making a transaction that transfers value
to wallet;

[0082] public void addBlock(Block newBlock): adds
newBlock to a BlockMatrix;

[0083] public Block getBlock(int blockNumber):
returns the block in the BlockMatrix specified by

Nov. 5, 2020

blockNumber, which is the number of the block in
terms of when it was inserted (e.g. 1st block, 2nd block,
etc.); block numbers begin with 1. They are not 0-in-
dexed;

[0084] public
ArrayList<Transaction>getBlock Transactions(int
blockNumber): returns a list of all transactions in the
block specified by blockNumber;

[0085] public void clearlnfolnTransaction(int block-
Number, int transactionNumber): clears the info in the
transaction specified by transactionNumber in the
block specified by blockNumber; e.g., to clear the 1st
transaction in the second block, type clearInfolnTrans-
action(2, 1);

[0086] public int getlnputCount(): returns the number
of blocks that have been added to the BlockMatrix;
[0087] public String] | getRowHashes(): returns an

array of all the row hashes of the BlockMatrix;

[0088] public String[] getColumnHashes(): returns an
array of all the column hashes of the BlockMatrix;

[0089] public float getMinimumTransaction(): returns
the value of the minimum transaction of the BlockMa-
trix;

[0090] public void setMinimumTransaction(float num):

changes the value of the minimum transaction of the
BlockMatrix to num;

[0091] public int getDimension(): returns the dimen-
sion of the BlockMatrix:

[0092] public
ArrayList<Integer>getBlocksWithModifiedData():
returns a list of the blocks (by number) that have had
their data cleared after being added to the BlockMatrix;

[0093] public void printRowHashes(): prints the row
hashes of the BlockMatrix;

[0094] public void printColumnHashes(): prints the
row hashes of the BlockMatrix;

[0095] public void printHashes: prints all hashes of the
BlockMatrix;

[0096] public Boolean isMatrixValid(): returns true or
false depending on whether the

[0097] BlockMatrix has been tampered with and if it is
or is not still secure;

[0098] for a block

[0099] public Block(): constructor; creates a block;

[0100] public boolean addTransaction(Transaction
transaction): adds a transaction to the block; returns
true if the transaction is added successfully, and false if
not;

[0101] public ArrayList<Transaction>getTransactions(
): returns a list of all transactions in the Block;

[0102] public String getHash(): returns the hash of the
block;

[0103] public void printBlockTransactions(): prints
transaction details of each transaction in the block;

[0104] for a transaction

[0105] public int getBlockNumber(): returns the num-
ber of the block in which the transaction is stored;

[0106] public String getTransactionld(): returns the id
of the transaction; the id is the hash of the transaction;

[0107] public PublicKey getSender(): returns the Pub-
licKey of the sender of the transaction;

[0108] public PublicKey getRecipient(): returns the
PublicKey of the recipient of the transaction;

[0109] public float getValue(): returns the value of the
transaction, e.g., an amount being sent;

[0110] public String getlnfo(): returns the info or
message being passed along with the transaction;

US 2020/0348841 Al

[0111] public byte[] getSignature(): returns the signa-
ture of the transaction;

[0112] public ArrayList<TransactionInput>getInputs():
returns a list of all inputs of the transaction;

[0113] public
ArrayList<TransactionOutput>getOutputs(): returns a
list of all outputs of the transaction;

[0114] Transactionlnput

[0115] public String getTransactionOutputld(): returns
the id of the TransactionOutput a Transactionlnput is
referencing;

[0116] public TransactionOutput getUTXO(): returns
unspent TransactionOutput the Transactionlnput is
using;

[0117] TransactionOutput

[0118] public String getTransactionOutputld(): returns
the id of the TransactionOutput the TransactionInput is
referencing;

[0119] public TransactionOutput getUTXO(): returns
unspent TransactionOutput the Transactionlnput is
using;

[0120] public String getld(): returns the id of the
TransactionOutput; the id is a hash of the Transaction-
Output;

[0121] public PublicKey getRecipient(): returns the
PublicKey of the recipient, the new owner of the coins
from this TransactionOutput;

[0122] public float getValue(): returns the amount of
the asset in this TransactionOutput;

[0123] public String getParentTransactionld(): returns
the id of the Transaction this output was created in; and

[0124] Wallet

[0125] public Wallet(): constructor; create a wallet;

[0126] public float getBalance(): returns the balance of
this wallet;

[0127] public Transaction sendFunds(PublicKey recipi-
ent, float value, String info): returns a transaction that
sends value funds from this wallet to the wallet speci-
fied by recipient, along with the message info;

[0128] public PublicKey getPublicKey(): returns the
PublicKey of this wallet;

[0129] public HashMap<String,
TransactionOutput>getUTXOs(): returns a HashMap
of the unspent TransactionOutputs owned by this wal-
let; keys are the TransactionOutput ids, whereas the
values are the TransactionOutputs.

[0130] All ranges disclosed herein are inclusive of the
endpoints, and the endpoints are independently combinable
with each other. The ranges are continuous and thus contain
every value and subset thereof in the range. Unless other-
wise stated or contextually inapplicable, all percentages,
when expressing a quantity, are weight percentages. The
suffix (s) as used herein is intended to include both the
singular and the plural of the term that it modifies, thereby
including at least one of that term (e.g., the colorant(s)
includes at least one colorants). Optional or optionally
means that the subsequently described event or circumstance
can or cannot occur, and that the description includes
instances where the event occurs and instances where it does
not. As used herein, combination is inclusive of blends,
mixtures, alloys, reaction products, and the like.

[0131] As used herein, a combination thereof refers to a
combination comprising at least one of the named constitu-
ents, components, compounds, or elements, optionally
together with one or more of the same class of constituents,
components, compounds, or elements.

Nov. 5, 2020

[0132] Allreferences are incorporated herein by reference.
[0133] The use of the terms a and an and the and similar
referents in the context of describing the invention (espe-
cially in the context of the following claims) are to be
construed to cover both the singular and the plural, unless
otherwise indicated herein or clearly contradicted by con-
text. Or means and/or. It can further be noted that the terms
first, second, primary, secondary, and the like herein do not
denote any order, quantity, or importance, but rather are used
to distinguish one element from another. The modifier about
used in connection with a quantity is inclusive of the stated
value and has the meaning dictated by the context (e.g., it
includes the degree of error associated with measurement of
the quantity). The conjunction or is used to link objects of a
list or alternatives and is not disjunctive; rather the elements
can be used separately or can be combined under appropriate
circumstances.

What is claimed is:

1. A tangible, non-transitory, machine-readable medium
storing instructions that when executed by one or more
processors effectuate operations comprising:

performing, with one or more processors, initialization for

making a data block matrix and writing data blocks in

nodes of the data block matrix, wherein:

the data block matrix holds nodes that are arranged in
rows and columns of the data block matrix; a size of
the data block matrix is nxm with the number of
rows is n, and the number of columns is m each node
has location indexes location row.r and location
column.c and pointer indexes pointer row.i and
pointer column.j, wherein r, ¢, i, and j independently
are integers;

the location indexes provide a row indicated by integer
r and column indicated by integer c at which the node
is located in the data block matrix, and the pointer
indexes provide references, from a selected node to
a first node and a second node, with pointer row.i
being a pointer from the selected node to the first
node that is in the same location row.r=i as the
selected node and with pointer column.j being a
pointer from the selected node to the second node
that is in the same location column.c=j as the node;

(location row.0, location column.0) of the data block
matrix holds a primary node; each (location row.0,
location column.1 . . . m-1) of the data block matrix
holds a column edge node; each (location row.1 . . .
n-1, location column.0) of the data block matrix
holds a row edge node; the data block matrix holds
diagonal nodes at each (location row.r=c, location
column.c) except for (location row.r=n, location col-
umn.m, for n=m) and; each row r of the data block
matrix terminates at (location row.r, location column.
m) that holds a hash row node r,_; and each column
¢ of the data block matrix terminates at (location
row.n, location column c) that holds a hash column
node _,c, the initialization comprising:

receiving, with one or more processors, an initialization
command to prepare the one or more processors for
writing the primary node at (location row.0, location
column.0) as a first diagonal node;

producing, with one or more processors in response to
receiving the initialization command, the primary
node at (location row.0, location column.0) and
having pointers comprising (pointer row.0, pointer
column.0), wherein the primary node does not
include a null data block; and

storing the primary node in memory;

US 2020/0348841 Al

writing, with one or more processors, a first null data
block comprising:
receiving a write command to write a first null data
block;
writing the first null data block to the primary node;
making edges nodes by:
making a first column edge node proximate to the
primary node and writing a first data block to the
first column edge node; and
making a first row edge node proximate to the
primary node and writing a second data block to
the first row edge node;
making additional diagonal nodes with null data blocks
and additional edge nodes and interior nodes with data
blocks by iteratively:
firstly making another edge column node and writing
another data block to said edge column node;
secondly making another edge row node and writing
another data block to said edge row node;
thirdly and successively making interior nodes along a
counter-diagonal direction of the data block matrix
and writing another data block to each of the interior
nodes upon creation of each of said interior nodes;
and
fourthly making another diagonal node and writing
another null data block to said diagonal node;
making a hash row node r,_ at location column.m at a
terminus of each row and writing another data block to
each said hash row node r,_; and
making a hash column node _,c at location row.n at a
terminus of each column and writing another data block
to said hash column node _c,
wherein:
each hash row node comprises a hash of nodes in the
row containing said hash row node;
each hash column node comprises a hash of nodes in
the column containing said hash column node;
the data block matrix provides deletion of an arbitrary
data block while preserving hash-based integrity
assurance that other data blocks are unchanged; and
the data block matrix provides modification, with hash
values, of an arbitrary data block.
2. The medium of claim 1, wherein the operations further
comprise:
receiving a delete command to delete the arbitrary data
block; and
deleting the arbitrary data block while preserving hash-
based integrity assurance that other data blocks are
unchanged.
3. The medium of claim 1, wherein the operations further
comprise:
receiving a modification command to modify the arbitrary
data block; and
modifying the arbitrary data block while preserving hash-
based integrity assurance that other data blocks are
unchanged.
4. The medium of claim 1, wherein the operations further
comprise:
receiving a read command to read a data block;
determining a node in which the data block is written;
computing a pointer row index and a pointer column
index for the node in which the data block is written;
and
following the pointer row index and the pointer column
index for the node in which the data block is written to

Nov. 5, 2020

a target node linked to by the pointer row index and the
pointer column index; and

retrieving a data block written in the target node.

5. A method comprising:

performing, with one or more processors, initialization for
making a data block matrix and writing data blocks in
nodes of the data block matrix, wherein:

the data block matrix holds nodes that are arranged in
rows and columns of the data block matrix; a size of
the data block matrix is nxm with the number of
rows is n, and the number of columns is m

each node has location indexes location row.r and
location column.c and pointer indexes pointer row.i
and pointer column.j, wherein r, c, i, and j indepen-
dently are integers; the location indexes provide a
row indicated by integer r and column indicated by
integer ¢ at which the node is located in the data
block matrix, and the pointer indexes provide refer-
ences, from a selected node to a first node and a
second node, with pointer row.i being a pointer from
the selected node to the first node that is in the same
location row.r=i as the selected node and with
pointer column.j being a pointer from the selected
node to the second node that is in the same location
column.c=j as the node;

(location row.0, location column.0) of the data block
matrix holds a primary node; each (location row.0,
location column.1 . . . m-1) of the data block matrix
holds a column edge node; each (location row.1 . . .
n-1, location column.0) of the data block matrix
holds a row edge node; the data block matrix holds
diagonal nodes at each (location row.r=c, location
column.c) except for (location row.r=n, location col-
umn.m, for n=m) and; each row r of the data block
matrix terminates at (location row.r, location column.
m) that holds a hash row node r,_; and each column
¢ of the data block matrix terminates at (location
row.n, location column.c) that holds a hash column
node _,c, the initialization comprising:

receiving, with one or more processors, an initialization
command to prepare the one or more processors for
writing the primary node at (location row.0, location
column.0) as a first diagonal node;

producing, with one or more processors in response to
receiving the initialization command, the primary
node at (location row.0, location column.0) and
having pointers comprising (pointer row.0, pointer
column.0), wherein the primary node does not
include a null data block; and

storing the primary node in memory;

writing, with one or more processors, a first null data
block comprising:

receiving a write command to write a first null data
block;

writing the first null data block to the primary node;

making edges nodes by:
making a first column edge node proximate to the

row edge node and writing a first data block to the
first column edge node; and
making a first row edge node proximate to the row
edge node and writing a second data block to the
first row edge node;
making additional diagonal nodes with null data blocks
and additional edge nodes and interior nodes with data
blocks by iteratively:

firstly making another edge column node and writing

another data block to said edge column node;

US 2020/0348841 Al

secondly making another edge row node and writing
another data block to said edge row node;
thirdly and successively making interior nodes along a
counter-diagonal direction of the data block matrix
and writing another data block to each of the interior
nodes upon creation of each of said interior nodes;
and
fourthly making another diagonal node and writing
another null data block to said diagonal node;
making a hash row node r,_ at location column.m at a
terminus of each row and writing another data block to
each said hash row node r,_; and
making a hash column node _,c at location row.n at a
terminus of each column and writing another data block
to said hash column node _c,
wherein:
each hash row node comprises a hash of nodes in the
row containing said hash row node;
each hash column node comprises a hash of nodes in
the column containing said hash column node;
the data block matrix provides deletion of an arbitrary
data block while preserving hash-based integrity
assurance that other data blocks are unchanged; and
the data block matrix provides modification, with hash
values, of an arbitrary data block.

Nov. 5, 2020

6. The method of claim 5, further comprising:

receiving a delete command to delete the arbitrary data
block; and

deleting the arbitrary data block while preserving hash-
based integrity assurance that other data blocks are
unchanged.

7. The method of claim 5, further comprising:

receiving a modification command to modify the arbitrary
data block; and

modifying the arbitrary data block while preserving hash-
based integrity assurance that other data blocks are
unchanged.

8. The method of claim 5, further comprising:

receiving a read command to read a data block;

determining a node in which the data block is written;

computing a pointer row index and a pointer column
index for the node in which the data block is written;
and

following the pointer row index and the pointer column
index for the node in which the data block is written to
a target node linked to by the pointer row index and the
pointer column index; and

retrieving a data block written in the target node.

* % *® 0k %

