

Scanning Probe Microscopy for NanoElectronics

May 25, 2011

<u>P. De Wolf</u>, T. Mueller, C. Li, C. Su Bruker Nano, Santa Barbara peter.dewolf@bruker-nano.com

Bruker Nano

Outline

- 1. High resolution structural imaging
 - At lower forces
 - At higher throughput
- 2. Property imaging:
 - Mechanical characterization
 - Electrical characterization
 - Chemical characterization

Lower Force Imaging using Peak Force Tapping

Peak Force Tapping: Tapping: o Sub-resonance (e.g. 2kHz) • Resonance (typ. 300kHz) Continuously measure the forces o Measure & control Amplitude 0 • Control the 'Peak Force' 1000 Result: 500 Force (mV) • Lower force imaging (< 50pN) mm • Longer tip lifetime • Higher resolution Peak Force -500 50 100 150 200 250 300 350 400 450 Time (µs)

High Resolution Peak Force Tapping Examples

Self-Assembled Molecular Brushes

1500x1500 nm scan

(OmpG Dimer) Protein Membrane Pores

100x100 nm scan

80x80 nm scan

 $C_{18}H_{38}$

Alkane Molecules

Sample courtesy: Ch. Bippes, MPI Dresden

Nanotrench Metrology using Peak Force Tapping

- Challenging in Tappingmode due to excessive damping of the probe oscillation, preventing the tip from reaching the bottom.
- Peak Force Tapping can more easily reach the bottom, while maximum force is tightly controlled to low values.

1000x1000 nm scan Pitch = 80 nm, Depth =55 nm, Bottom travel = 13 nm

May 25, 2011

Critical Dimension (CD) Mode

- Scanner servos in X-Z or Y-Z direction
- Data is taken on sidewall as well as flat surface

Outline

1. High resolution structural imaging

- At lower forces
- At higher throughput

2. Property imaging:

- Mechanical characterization
- Electrical characterization
- Chemical characterization

2 Elements limiting SPM speed: 'Z'-scanner & Tips

May 25, 2011

SPM System Transfer Function

- 20x increased bandwidth
- Same image quality, same force control

```
May 25, 2011
```

GaN on SiC 512x512 pixels, 38Hz Line Rate

High-resolution image of:

- Edge & Screw dislocations
- Atomic steps

13.5 seconds/image

GaN on SiC 4kx4k pixels, 10Hz Line Rate

22Hz Line Rate on Poly-Si (512x512 pixels)

http://www.youtube.com/watch?v=I25zRZ2ng_E

2x2 µm scan, 25 Seconds per image

Dynamics: Molecular Studies (DNA in Fluid)

http://www.youtube.com/watch?v=5cylVbEioIE

Sample courtesy of Y. Lyubchenko, Univ. of Nebraska Med. Ctr.

1 second per image (2100 images)

Outline

1. High resolution structural imaging

- At lower forces
- At higher throughput
- 2. Property imaging:
 - Mechanical characterization
 - Electrical characterization
 - Chemical characterization

Quantitative Nanomechanical Mapping

Modulus:	0.6 MPa-60 GPa	
Energy dissipation:	1eV-tens keV	
Adhesion:	10 pN ~ μN	
Deformation:	10 pm ~ 100 nm	

QNM on Siloxane Liquid Crystal

QNM on Benchmark Samples

QNM on Very Hard & Very Soft Samples

May 25, 2011

Electrical Characterization

SPM-based electrical modes are often based on 'Contact mode' operation. The high vertical and lateral forces can cause:

- Tip & sample damage
- Limited reproducibility
- Reduced resolution
- Artifacts

Solution?

	Force Levels	Contact Time
Tapping	1	X
Peak Force Tapping	V	V

Combination of Peak Force Tapping / Conductive-AFM (or Tunneling-AFM)

- Tip oscillates at 1kHz. Contact time is typically 20 200 μs.
- The average current during contact time & the peak current are measured.
- Requires fast C-AFM electronics: 20kHz bandwidth, <100fA noise</p>

PF-TUNA Example: Carpet of standing Carbon Nanotubes

1000x1000 nm scan size

- Impossible in contact mode, as forces are too high.
- Reveals strong conductivity variations

PF-TUNA Example: Network of Conductive Polymer Macromolecules, around CNT

700x700 nm scan size

- Impossible in contact mode, as forces are too high.
- Higher resolution vs. contact mode.

Sample courtesy: Ph. Leclere, Uni Mons (B)

Eliminating the Effect of the AFM laser light

 $8x8 \ \mu m \ scan \ size$

Laser on

Laser off

dC/dV

The surface is scanned twice:

- 1) With laser light (measure topography)
- 2) Without laser light (measure artifact-free electrical info)

Chemical Characterization: TERS

 Principle: Local field enhancement is achieved with a sharp metal structure that exhibits a surface plasmon resonance at the appropriate optical frequency, providing enhanced spatial resolution (Tip Enhanced Raman Spectroscopy)

BRUKER

Key Elements of the AFM-Raman

Probes:

- Forward pointing geometry
- Silicon Nitride base (avoids Raman background from Silicon)
- Coating of Ag (for excitation in blue or green), or Au (for excitation in red or NIR)
- Optimized optical access:
 - high numerical aperture (0.42 NA, 50x)
 - off-axis optical access to the tip (30 degree tilt)

Key Elements of the AFM-Raman

May 25, 2011

TERS Example: Collagen I Fibrils

Biophysical Journal Vol. 100, p 1837 (2011)

May 25, 2011

Acknowledgements

Bruker Nano – Probes Division

- Sample & data courtesy:
 - L. Kreplak, Uni Dalhousie, Canada
 - M. Raschke, Uni Boulder, Colorado
 - Y. Lyubchenko, Uni Nebraska Med. Ctr.
 - Ch. Bippes, MPI Dresden
 - Ph. Leclère, Uni Mons, Belgium

