Developing Methods for Comparison of Cartridge Breechface Images

Xiao Hui Tai Advisors: William F. Eddy, Xiaoyu Alan Zheng

108 images, 12 guns (9 images per gun)

This Project

- Focus on 2D images
- Build on published methods for comparing images
- Quantify confidence in making any statement of a match

Steps for One Pairwise Comparison

- 1) Automatically select breechface marks
- 2) Adjust for differences in brightness (leveling image)
- 3) Remove circular symmetry
- 4) Outlier removal and filtering
- 5) Maximize correlation by translations and rotations
- 6) Produce p-value which serves as a measure of uncertainty

Pre-process

Compute similarity metric

Quantify confidence

Step 1: Select Breechface Marks

primer region

Histogram equalization with 2 bins

Canny edge detector

Only consider primer region

Dilate

Flood fill

Erode

Currently selected firing pin region

Second pass

Step 2: Level Image

Step 3: Remove Circular Symmetry

Decompose each image into a linear combination of circularly symmetric basis

K is the number of basis functions,

• f_k is the kth basis function, and

• β_k is the basis function coefficient for f_k .

circular symmetry

Residuals from previous step

Basis Function Number

150

-50

Basis coefficient

Fitted Circularly Symmetric

Step 4: Outlier Removal and Filtering

Residuals from Previous Step

After All Pre-processing

Step 5: Maximize Correlation by **Translations and Rotations**

Comparison Image

For each rotation angle,

Translations

$$CCF(I_1, I_2) = \frac{\sum_{i,j} I_1(i,j) I_2(i+dx, j+dy)}{\sqrt{\sum_{i,j} I_1(i,j)^2} \sqrt{\sum_{i,j} I_2(i,j)^2}}$$

Reference Image

$$\theta^* = -15^{\circ}$$

$$CCF_{max} = .38$$

Step 6: Perform Hypothesis Test

 H_0 : Images are not a match (not from the same gun)

 H_A : Images are a match

Test statistic: CCF_{max}

Distribution under H_n: Empirical distribution of known

non-matches

Interpretation of p-value: Probability of observing a larger value of CCF_{max} , under the assumption that the two images are not a match.

"If these two images are not a match, the probability of observing $CCF_{max} > .38$ is <.01%."

All Pairwise Comparisons for 1 Image

CCFmax for 107 pairwise comparisons

Distribution of CCF_{max} for All Pairwise Comparisons in Dataset

Our Method Reduces CCF_{max} of True Non-matches

Roth, Carriveau, Liu, Jain (IEEE, 2015) Vorburger and co-authors (NISTIR, 2007)

Distribution of p-values for All Pairwise Comparisons in Dataset

Thank you!

xtai@andrew.cmu.edu