Developing Methods for Comparison of Cartridge Breechface Images

Xiao Hui Tai
Advisors: William F. Eddy, Xiaoyu Alan Zheng

108 images, 12 guns (9 images per gun)

Ruger

PMC

Remington

Winchester

PMC

Remington

Winchester

Remington

Winchester

This Project

- Focus on 2D images
- Build on published methods for comparing images
- Quantify confidence in making any statement of a match

Steps for One Pairwise Comparison

1) Automatically select breechface marks

2) Adjust for differences in brightness (leveling image)

> Pre-process
3) Remove circular symmetry
4) Outlier removal and filtering
5) Maximize correlation by translations and rotations
6) Produce p-value which serves as a measure of uncertainty
Compute similarity metric

Step 1: Select Breechface Marks

Flood fill

Erode

Currently selected firing pin region

Second pass

Step 2: Level Image

Original

Fitted Plane

Residuals

Step 3: Remove Circular Symmetry

Decompose each image into a linear combination of circularly symmetric basis

- β_{k} is the basis function coefficient for f_{k}.

Residuals from previous step

Coefficients for Each Basis Function

Fitted Circularly Symmetric

Residuals

Step 4: Outlier Removal and Filtering

Residuals from Previous Step

After All Pre-processing

Step 5: Maximize Correlation by Translations and Rotations

For each rotation angle,
Translations
$\operatorname{CCF}\left(I_{1}, I_{2}\right)=\frac{\sum_{i, j} I_{1}(i, j) I_{2}(i+d x, j+d y)}{\sqrt{\sum_{i, j} I_{1}(i, j)^{2}} \sqrt{\sum_{i, j} I_{2}(i, j)^{2}}}$
Comparison Image

$$
\begin{gathered}
\theta^{*}=-15^{\circ} \\
C C F_{\max }=.38
\end{gathered}
$$

Step 6: Perform Hypothesis Test

\mathbf{H}_{0} : Images are not a match (not from the same gun)
\mathbf{H}_{A} : Images are a match
Test statistic: $\mathrm{CCF}_{\text {max }}$
Distribution under \mathbf{H}_{0} : Empirical distribution of known non-matches

Interpretation of \mathbf{p}-value: Probability of observing a larger value of $C C F_{\text {max }}$, under the assumption that the two images are not a match.
"If these two images are not a match, the probability of observing CCF $_{\text {max }}>.38$ is <.01\%."

All Pairwise Comparisons for 1 Image

CCFmax for 107 pairwise comparisons

Distribution of $\mathrm{CCF}_{\text {max }}$ for All Pairwise Comparisons in Dataset

Our Method Reduces CCF of True Non-matches

Roth, Carriveau, Liu, Jain (IEEE, 2015)

Distribution of p-values for All Pairwise Comparisons in Dataset

Histogram of p-values for non-matches
$\mathrm{N}=10692$, mean $=0.500$

Histogram of p-values for matches
$\mathrm{N}=864$, mean $=0.049$

Thank you!

xtai@andrew.cmu.edu

