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Overview

Motivation

Goals

Analyzing wildfire evacuation decisions and departure timing with GPS data

Forecasting real-time travel demand during wildfire evacuations
Situational-Aware Multi-Graph Convolutional Recurrent Network (SA-MGCRN)

Key take-aways
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Motivation

Insider (2019) Kent Porter / The Press Democrat (2019)

Research Needs:
» Understand household behavior and movements in wildfires;
* Provide real-time decision support for emergency managers.
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Goals

Goal 1:
Improve understanding of people’s evacuation decision-making using

large-scale GPS data.

Goal 2:

Advance methodology of forecasting real-time travel demand during
wildfire evacuations.
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Analyzing wildfire evacuation decisions and
departure timing with GPS data

Zhao, X., Xu, Y., Lovreglio, R., Kuligowski, E., Nilsson, D., Cova, T., Wu, A., & Yan, X. (2022). Estimating wildfire evacuation decision
and departure timing using large-scale GPS data. Transportation Research Part D: Transport and Environment, 107, 103277.
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Study site exploration

2019 Kincade fire, Sonoma
County, CA:

« Started at 9:27 pm on
October 23, 2019 and was

fully contained at 7:00 pm on
November 6, 2019.

San
« . ,Antonio +g°

H

« Burned 77,758 acres, —
—— Sonoma County Boundary
destroyed 374 structures, L e

B Kincade Fire

damaged 60 structures, and st
caused 4 Injuries. Figure. Sonoma County and the Kincade Fire perimeter
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Data description & cleaning

 The GPS data was provided by Gravy Analytics and built on privacy-friendly

mobile location data.

» After the data cleaning process, we retained 44,211,050 records, or a total of

5,338 residents for analysis.
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Table 1. Synthetic GPS Data Samples

[D | LATITUDE | LONGITUDE | GEOHASHY | TIMESTAMP_EPOCH | TIMEZONE | FLAG
00001 i X1 9gbd**** [5715%Feskess TZ1 0
00002 Vs X Oqbc***** [S715%Feskess TZ1 0
00003 s X3 Ogbs***** [5712%Fkskesx TZ1 0
00003 va s Oqbe***** 15726%F¥%kxs+ TZ1 0
00004 Vs X5 9qbd****+ [S713%Feskess TZ1 0
00004 e Xg 9qbd***** 157 14%Feskess TZ1 0
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Methodological framework

Data Cleaning

/ GPS data points /

|

Remove data points with low accuracy
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Proxy-home-location inference
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Apply time-space heuristics method accompanied by clustering.

All data points of a
resident
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Evacuation-behavior inference

Note that we only analyze the evacuation behavior of people who resided in or
near the evacuation zones (within 5 miles of the evacuation zones’ boundaries).

Assumption 1: All evacuees departed from home.

Assumption 2: If the distance between the resident’s current location and the
resident’s proxy home location was larger than D, the resident has left home.

Assumption 3: Aresident is considered as an evacuee, if they left the
evacuation zone during the evacuation process.

Assumption 4: The evacuation departure time is when the evacuee left home
to evacuate.
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Evacuation-behavior inference

Definitions of evacuee groups:

Self-evacuee: The evacuee, located in or near the evacuation zone, left after
the fire started but before any evacuation warning/order was issued.

Shadow evacuee: The evacuee, located outside but near the evacuation
zone, left after an evacuation warning/order was issued.

Evacuee under warning: The evacuee was in the evacuation warning zone
and evacuated after the warning was issued and before an order was issued
(if any).

Ordered evacuee: The evacuee lived in the evacuation order zone and
evacuated after the order was issued.
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/ Data before the fire /

/ Proxy home locations /
[
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/ Evacuation zone /
I

Residents who lived out of evacuation zone

/ Data after fire started /

I Residents who lived in evacuation zone
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An example to illustrate the algorithm

I:I Resident who lived in evacuation zone

A Resident who lived out of evacuation zone

Table 1: Definitions of Different Evacuee Groups

Day 1 Day 2 Day 3: Warning Day 4 Day 5: Evacuation order
Self-evacuee | Self-evacuee | Evacuee under warning | Evacuee under warning | Ordered evacuee
Self-evacuee | Self-evacuee | Shadow evacuee Shadow evacuee Shadow evacuee

>
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Results: Home location inference
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Results: Temporal patterns
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Results: Spatial patterns
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Key take-aways

« A set of novel methodologies are developed to systematically analyze wildfire
evacuation process and identify different groups of evacuees.

« Self-evacuees and shadow evacuees consisted of more than half of
evacuees during the Kincade Fire.

» The total evacuation compliance rate is around 50%, which shows some
discrepancy from the results obtained from the separate survey study for the
same fire conducted by our team (Kuligowski et al., 2022).

Kuligowski, E. D., Zhao, X., Lovreglio, R., Xu, N., Yang, K., Westbury, A, ... & Brown, N. (2022). Modeling evacuation decisions in the
2019 Kincade fire in California. Safety Science, 146, 105541.
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Forecasting real-time travel demand during wildfire
evacuations

Xu, Y., Xiong, R., Lovreglio, R., Nilsson, D., & Zhao, X. (In Preparation). Forecasting real-time travel demand during wildfire
evacuations: A Situational-Aware Multi-Graph Convolutional Recurrent Network (SA-MGCRN) approach. In Proceedings of
Transportation Research Board 102" Annual Meeting, Washington, D.C.
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Trip generation inference — Incremental clustering
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Wang, F., & Chen, C. (2018). On data processing required to derive mobility patterns from passively-generated mobile phone data. Transportation Research Part C: Emerging
Technologies, 87, 58-74.

Wang, F., Wang, J., Cao, J., Chen, C., & Ban, X. J. (2019). Extracting trips from multi-sourced data for mobility pattern analysis: An app-based data example. Transportation
Research Part C: Emerging Technologies, 105, 183-202.

Chen, C., Bian, L., & Ma, J. (2014). From traces to trajectories: How well can we guess activity locations from mobile phone traces?. Transportation Research Part C: Emerging
Technologies, 46, 326-337.

Calabrese, F., Diao, M., Di Lorenzo, G., Ferreira Jr, J., & Ratti, C. (2013). Understanding individual mobility patterns from urban sensing data: A mobile phone trace example.
Transportation research part C: emerging technologies, 26, 301-313.
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Architecture of the SA-MGCRN model
Situational-Aware Multi-Graph Convolutional Recurrent Network (SA-MGCRN)
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Graph Convolutional Network (GCN)

ZNZNZNZN

DKDKOKDK
Why GCN? GCN v.s. CNN ANVAN AN

* CNN can only be performed in Euclidean space,
while GCN can handle graph-structured data.

» The census tracts do not have a regular spatial
structure but can be represented by a graph. Euclidean data Graph-structured data

How does GCN work?

* GCN performs convolutional operation using a filter.

« The filter is applied on each node of the graph, thus
capturing spatial dependency between a node and
its adjacent nodes.

Census Tracts (Sonoma County, CA)
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Gated Recurrent Unit (GRU)

Why GRU? GRU v.s. LSTM

* Widely-used RNN model to capture temporal dependency.

* GRU is faster to compute but still offers comparable
performance in prediction compared with LSTM.

» Using the memorize long-term information, GRU can deal
with the vanishing gradient problem.

How does GRU work?

* GRU uses two gates to determine what information
should be kept and passed to the output.

hey

* Reset gate: how much of the previous state
information to remember.

* Update gate: how much of the previous information
to pass to the new state.

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Structure of a GRU unit

x; -- input at time t;
h;_4, h; -- hidden states;
1; -- reset gate;

u; -- update gate;

~

h; -- candidate hidden state.

> h,
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Model updating scheme

Model for 10-24

Model for 10-25
Model for 10-26
Model for 10-27
Model for 10-28

Model for 11-03
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Data
10-16 10-23 10-24 10-25 10-26 10-27 10-28 e 11-03  11-03
Training Set (Empirical data) Test Set (Prediction)
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Case study: Kincade fire

TABLE 1: Descriptive statistics of input variables

Variables Mean Std. Min Max  Category
Proportion of residential areas 38.15%  16.46%  5.23% 100% Functional
Proportion of commercial areas 22.40%  19.25% 1.82% 100% similarity
Proportion of agricultural areas 7.40% 16.32% 0.0% 100%

Proportion of multi-family areas 26.74%  2530%  0.0% 100% graph
Population density (per sq. mile) 3339.79  3192.12 7.16 12474.63

Proportion of the young population 27.01% 7.68% 12.09%  54.98%

Proportion of the white population 76.58%  12.90% 38.17%  95.54%

Proportion of population with BA's 36.34%  12.65% 12.09%  63.62%

degree and above Demographic
Median household income (US dollar) 83823.67 20522.56 49856.0 145147.0 similarity

Proportion of households own 0 car 7.46% 6.67% 0%  32.02% aph
Proportion of houscholds own 1 cars ~ 36.77%  11.52%  3.65%  62.94% &P
Proportion of households own 2 cars 35.60%  11.41% 10.66%  88.03%

Proportion of households own 3 cars 13.86% 7.63% 0%  36.80%

Employment rate 95.65% 2.08% 88.96%  99.45%

Fire distance 185.65 1427  176.46 3235

Evacuation order/warning 0.10 0.29 0 1

Day of the week 0.30 0.46 0 1

e ——— g S Temperature 56.91 12.63 334 90.6
Eva bt anaa B . 4 e - Feels like temperature 56.69 12.41 334 86.4 Temporal
V\{aming-(?nly Zone “ A \ ; A Wind speed 4.25 4.49 0.0 29.6 Variables

Kincadelris e : 8 Sea level pressure 1016.57 327  1005.9 1023.9

_ Humidity 58.76 28.99 8.92 100

Visibility 8.79 2.38 0.0 9.9

Cloud cover 17.45 27.22 0.0 100
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Results: Trip generation inference
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Figure. Distribution of total trip generation in Sonoma County (census-tract level)
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The mean of hourly travel
demand for each census tract is
6.14, the standard deviation is
6.07, the maximum value is 56,
and the minimum value is 0.
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Results: Model comparison

Performance Metrics
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where y; is the observed value and
y; is the predicted value.
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TABLE 2: Prediction performance of SA-MGCRN and benchmark models

= Statistical models

| Classical machine
learning models

Methods MAE RMSE MAPE
HA 2.7347 3.5217 57.89%
ARIMA 22732 26110 48.12% -
SVR 2.0455 2.6441 43.48%
GBDT 2.1641 23093 45.77%
RF 2.1553 2.8008 45.63% -
MLP 22092 2.7356 46.77% 7
LSTM 1.9512 2.1262 41.27%
SA-MGCRN 0.9095 1.1224 20.13%

= Deep learning models
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Results: Model comparison
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Results: Ablation study

The ablation study examines the performance of the model by removing certain

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

components to see the contribution of the removed components.

TABLE 3: Results of ablation study

Methods MAE RMSE MAPE

SA-MGCRN 0.9095 1.1224 20.13%
W/O whether the day is weekend 0.9368 1.1644 20.82%
W/O evacuation order/warning information 0.9583 1.2135 21.21%
W/O spatial adjacency 1.0463 1.3356 23.16%
W/O functional similarity 1.0032 1.3098 22.20%
W/O demographic similarity 1.0369 1.3273 22.95%
W/O weather information 1.3781 1.4256 30.50%
W/O fire distance information 1.6133 1.7215 35.71%
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Key take-aways

* A new deep learning model, SA-MGCRN, along with a model updating
scheme, is developed to accurately forecast real-time travel demand in
wildfire evacuations.

« SA-MGCRN can be directly deployed to facilitate real-time emergency
management and revolutionize the state-of-the-practice.

» Fire proximity is the most important component of SA-MGCRN. In future
work, other fire cues (e.g., smoke and embers) need to be incorporated.
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Thank you for your attention!
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